首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Survey results and genotypic characterization of Escherichia coli strains demonstrate that the bacteriocins colicin Ia and microcin V coassociate in a strain more often than would be expected by chance. When these two bacteriocins co-occur, they are encoded on the same conjugative plasmid. Plasmids encoding colicin Ia and microcin V are nonrandomly distributed with respect to the genomic background of the host strain. Characterization of microcin V and colicin Ia nucleotide variation, together with the backbone of plasmids encoding these bacteriocins, indicates that the association has evolved on multiple occasions and involves the movement of the microcin V operon, together with the genes iroNEDCB and iss, onto a nonrandom subset of colicin Ia plasmids. The fitness advantage conferred on cells encoding both colicin Ia and microcin V has yet to be determined.  相似文献   

3.
Escherichia coli G3/10 is a component of the probiotic drug Symbioflor 2. In an in vitro assay with human intestinal epithelial cells, E. coli G3/10 is capable of suppressing adherence of enteropathogenic E. coli E2348/69. In this study, we demonstrate that a completely novel class II microcin, produced by probiotic E. coli G3/10, is responsible for this behavior. We named this antibacterial peptide microcin S (MccS). Microcin S is coded on a 50.6 kb megaplasmid of E. coli G3/10, which we have completely sequenced and annotated. The microcin S operon is about 4.7 kb in size and is comprised of four genes. Subcloning of the genes and gene fragments followed by gene expression experiments enabled us to functionally characterize all members of this operon, and to clearly identify the nucleotide sequences encoding the microcin itself (mcsS), its transport apparatus and the gene mcsI conferring self immunity against microcin S. Overexpression of cloned mcsI antagonizes MccS activity, thus protecting indicator strain E. coli E2348/69 in the in vitro adherence assay. Moreover, growth of E. coli transformed with a plasmid containing mcsS under control of an araC PBAD activator-promoter is inhibited upon mcsS induction. Our data provide further mechanistic insight into the probiotic behavior of E. coli G3/10.  相似文献   

4.
5.
Abstract Most enterohemorrhagic Escherichia coli O157:H7 strains harbor a large-sized (90 kb) plasmid designated pO157 and show an enterohemolytic phenotype. In this study the hemolytic activity of E. coli O157:H7 strain EDL933 was investigated. Curing of strain EDL933 from pO157 resulted in loss of its hemolytic activity. By transformation with Tn801-tagged pO157 (pSK3), the hemolysin-negative E. coli K-12 strains C600 and DH5 α became positive for hemolysin production. By transformation of recombinant plasmids carrying a 11.9 kb Bam HI fragment and a 5.3 kb Sal I fragment of pSK3 hemolytic activity is revealed when tranformed in E. coli C600 or DH5α DNA-hybridization of pO157 and subclones with the α-hemolysin specific DNA probe was only found under conditions of low stringency. No hybridization was found with enterohemolysin I (EHly1) and enterohemolysin II (EHly2) probes. Our results indicate that a hitherto not described hemolysin belonging to the α-hemolysin family is encoded by the 90 kb plasmid of E. coli O157 strains.  相似文献   

6.
Previously, we isolated a selenate- and arsenate-reducing bacterium, designated strain SF-1, from selenium-contaminated sediment and identified it as a novel species, Bacillus selenatarsenatis. B. selenatarsenatis strain SF-1 independently reduces selenate to selenite, arsenate to arsenite, and nitrate to nitrite by anaerobic respiration. To identify the genes involved in selenate reduction, 17 selenate reduction-defective mutant strains were isolated from a mutant library generated by random insertion of transposon Tn916. Tn916 was inserted into the same genome position in eight mutants, and the representative strain SF-1AM4 did not reduce selenate but did reduce nitrate and arsenate to the same extent as the wild-type strain. The disrupted gene was located in an operon composed of three genes designated srdBCA, which were predicted to encode a putative oxidoreductase complex by the BLASTX program. The plasmid vector pGEMsrdBCA, containing the srdBCA operon with its own promoter, conferred the phenotype of selenate reduction in Escherichia coli DH5α, although E. coli strains containing plasmids lacking any one or two of the open reading frames from srdBCA did not exhibit the selenate-reducing phenotype. Domain structure analysis of the deduced amino acid sequence revealed that SrdBCA had typical features of membrane-bound and molybdopterin-containing oxidoreductases. It was therefore proposed that the srdBCA operon encoded a respiratory selenate reductase complex. This is the first report of genes encoding selenate reductase in gram-positive bacteria.  相似文献   

7.
Septicemic Escherichia coli 4787 (O115: K-: H51: F165) of porcine origin possess gene clusters related to extraintestinal E. coli fimbrial adhesins. This strain produces two fimbriae: F165(1) and F165(2). F165(1) (Prs-like) belongs to the P fimbrial family, encoded by foo operon and F165(2) is a F1C-like encoded by fot operon. Data from this study suggest that these two operons are part of two PAIs. PAI I(4787) includes a region of 20 kb, which not only harbors the foo operon but also contains a potential P4 integrase gene and is located within the pheU tRNA gene, at 94 min of the E. coli chromosome. PAI II(4787) includes a region of over 35 kb, which harbors the fot operon, iroBCDEN gene clusters, as well as part of microcin M genes and nonfunctional mobility genes. PAI II(4787) is found between the proA and yagU at 6 min of the E. coli chromosome.  相似文献   

8.
The 157-kb conjugative plasmid pEO5 encoding α-haemolysin in strains of human enteropathogenic Escherichia coli (EPEC) O26 was investigated for its relationship with EHEC-haemolysin-encoding plasmids of enterohaemorrhagic E. coli (EHEC) O26 and O157 strains. Plasmid pEO5 was found to be compatible with EHEC-virulence plasmids and did not hybridize in Southern blots with plasmid pO157 from the EHEC O157:H7 strain EDL933, indicating that both plasmids were unrelated. A 9227-bp stretch of pEO5 DNA encompassing the entire α- hly CABD operon was sequenced and compared for similarity to plasmid and chromosomally inherited α- hly determinants. The α- hly determinant of pEO5 (7252 bp) and its upstream region was most similar to corresponding sequences of the murine E. coli α-hly plasmid pHly152, in particular, the structural α- hly CABD genes (99.2% identity) and the regulatory hly R regions (98.8% identity). pEO5 and α-hly plasmids of EPEC O26 strains from humans and cattle were very similar for the regions encompassing the structural α- hly CABD genes. The major difference found between the hly regions of pHly152 and pEO5 is caused by the insertion of an IS 2 element upstream of the hly C gene in pHly152. The presence of transposon-like structures at both ends of the α- hly sequence indicates that this pEO5 virulence factor was probably acquired by horizontal gene transfer.  相似文献   

9.
Transposition of the structural genes of the deo operon of Escherichia coli K-12 into plasmid RP4 by means of temperate bacteriophage Mu was carried out. Some variants of composite RP4-deo-Mu plasmids were obtained and the expression of the deo genes integrated into the RP4 plasmid genome was studied. It was shown that the expression of these genes remains under the control of the chromosomal regulatory genes (deoR and cytR); although the activity of thymidine phosphorilase in the strain E. coli which contains hybrid plasmid is 4-6 fold greater than that in strains of E. coli with chromosomal localization of the deo operon.  相似文献   

10.
A new microcin produced by an Citrobacter R51 strain has been detected. This antibiotic has been shown to inhibit the growth of a number of Gram-negative as well as Gram-positive strains of bacteria on the minimal medium plates. The properties of partially purified microcin were characterized. Constitutive synthesis of microcin is determined by a conjugative plasmid. The genes of microcin synthesis and immunity were cloned on a plasmid and plasmid vehicles. A physical map of the 12 kb fragment coding for the production of microcin R51 and immunity to this antibiotic is presented.  相似文献   

11.
The complete sequence of the plasmid MccC7-H22 encoding microcin C7, isolated from probiotic E. coli H22, was determined and analyzed. DNA of pMccC7-H22 comprises 32,014 bp and contains 39 predicted ORFs. Two main gene clusters, i.e., genes involved in plasmid replication and maintenance and genes encoding microcin C7 synthesis, are separated by several ORFs homologous to ORFs present in IS (insertion sequence) elements and transposons. Additional 14 ORFs code for proteins with similarities to known proteins (4 ORFs) or for hypothetical proteins with unknown function (10 ORFs). The differences in G+C content of individual ORFs and gene clusters of pMccC7-H22 indicate a mosaic structure for the plasmid, resulting from recombination events. Real-time PCR quantification was applied to measure the copy number of pMccC7-H22. Escherichia coli H22 carries approximately 5 copies of pMccC7-H22 per chromosome and thus pMccC7-H22 belongs to the group of relatively low-copy-number plasmids. Following 360 generations, all bacterial colonies (out of 100 tested) synthesized microcin C7 indicating that pMccC7-H22 is stably maintained in E. coli H22. Screening of 105 E. coli strains isolated from human fecal samples revealed 2 (1.9%) strains that produced microcin C7.  相似文献   

12.
Escherichia coli O3 and O21 are associated with enteroaggregative E. coli (EAEC). EAEC strains are often non-typable using the routine agglutination method due to their aggregative phenotype. Typing of E. coli O3 and O21 may also be impeded by cross-reactions with O152 or O83. In this study, the O antigen gene clusters of E. coli O3 and O21 were characterized, and PCR assays based on O antigen specific genes wzx (encoding O unit flippase) and wzy (encoding O unit polymerase) from each strain were developed. By screening against all 186 known E. coli O serotypes, the PCR assays were shown to be highly specific to O3 and O21 respectively. The sensitivity of the assays was determined to be 1 pg per mul of chromosomal DNA and 2 CFU per 10 g of water samples. The PCR assays were also applied to 658 clinical E. coli isolates, and 100% of detection accuracy was obtained. The PCR assays developed here are suitable for the detection and identification of E. coli O3 and O21 strains in environmental and clinical samples.  相似文献   

13.
The periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) in Escherichia coli and Shigella spp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less in E. coli O157:H7 strains. Deletion of hdeB did not affect the acid survival of cells, and deletion of hdeA led to less than a 5-fold decrease in survival. Sequence analysis of the hdeAB operon revealed a point mutation at the putative start codon of the hdeB gene in all 26 E. coli O157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB in E. coli O157:H7; however, the plasmid-borne O157-hdeB was able to restore partially the acid resistance in an E. coli O145ΔhdeAB mutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude that E. coli O157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms within E. coli.  相似文献   

14.
Enterotoxigenic Escherichia coli (ETEC) of serogroup O166 gave mannose-resistant haemagglutination (MRHA) with bovine and human erythrocytes. The strains did not react with antisera prepared against the known colonization factors CFA/I, CFA/II, CFA/III, CFA/IV and PCFO159:H4. Strain E7476 of serotype O166:H27, which produced heat-stable enterotoxin (ST), was examined initially. It produced fimbriae about 7 nm in diameter. On SDS-PAGE two possible fimbrial polypeptides of molecular mass 15.5 and 17.0 kDa were seen. When variants of strain E7476 were isolated, loss of ST and MRHA together was associated with loss of a 98 MDa plasmid, while loss of ST alone correlated with plasmid deletion. An absorbed anti-strain E7476 antiserum reacted specifically with the 15.5 and 17.0 kDa polypeptides in Western immunoblotting and bound to the intact fimbriae by immuno-electron microscopy. When this antiserum was used in an ELISA to examine other strains of serogroup O166, a positive reaction was obtained with all the ST- and MRHA-positive strains. One strain of serotype O71:H27 and two strains of serotype O98:H- also reacted with the absorbed anti-strain E7476 antiserum. The antiserum did not react with ETEC carrying known colonization factors. E. coli K12 and a number of E. coli of different serotypes carrying a plasmid coding for ST transferred from strain E7476, all gave MRHA and reacted with the absorbed anti-strain E7476 antiserum. The term putative colonization factor O166 (PCFO166) is proposed to describe the adhesive factor(s) on ETEC of serogroup O166 because of the similarity of properties with those of known colonization factors.  相似文献   

15.
ibeA is a virulence factor found in some extraintestinal pathogenic Escherichia coli (ExPEC) strains from the B2 phylogenetic group and particularly in newborn meningitic and avian pathogenic strains. It was shown to be involved in the invasion process of the newborn meningitic strain RS218. In a previous work, we showed that in the avian pathogenic E. coli (APEC) strain BEN2908, isolated from a colibacillosis case, ibeA was rather involved in adhesion to eukaryotic cells by modulating type 1 fimbria synthesis (M. A. Cortes et al., Infect. Immun. 76:4129-4136, 2008). In this study, we demonstrate a new role for ibeA in oxidative stress resistance. We showed that an ibeA mutant of E. coli BEN2908 was more sensitive than its wild-type counterpart to H(2)O(2) killing. This phenotype was also observed in a mutant deleted for the whole GimA genomic region carrying ibeA and might be linked to alterations in the expression of a subset of genes involved in the oxidative stress response. We also showed that RpoS expression was not altered by the ibeA deletion. Moreover, the transfer of an ibeA-expressing plasmid into an E. coli K-12 strain, expressing or not expressing type 1 fimbriae, rendered it more resistant to an H(2)O(2) challenge. Altogether, these results show that ibeA by itself is able to confer increased H(2)O(2) resistance to E. coli. This feature could partly explain the role played by ibeA in the virulence of pathogenic strains.  相似文献   

16.
17.
A specialized phage lambda ddeo carrying the deo operon of Escherichia coli is analyzed by exposing the DNA to the specific restriction endonucleases EcoRI and BamHI. Using the lambda ddeo DNA fragment, obtained by digestion with BamHI and plasmid RSF2124 as a vehicle, the hybrid plasmid pAM1 carrying all the genes of the deo operon is constructed and cloned in E. coli cells. It is shown that the activity of thymidine phosphorylase in the strain AM061, which contains hybrid plasmid pAM1 is 30-fold greater than that in strains of E. coli with chromosomal localization of the deo operon.  相似文献   

18.
It was earlier shown that expression of the microcin C51 operon in Escherichia coli cells is activated upon decelerated growth of cells during their transition to the stationary growth phase and depends on the sigmaS subunit of RNA polymerase. Using a single-copy construct containing the cloned promoter region of the microcin C51 operon and a promoterless lac operon (P(mcc)-lac), it was shown that the promoter of the microcin operon was also induced by stress caused by the transition of cells at the exponential growth phase into the medium without glucose as a sole carbon source. Activation of P(mcc)-lac expression upon severe glucose starvation occurred in rpoS+ and rpoS- strains. In cells carrying the rpoD800 mutation that renders the sigma70 subunit of RNA polymerase temperature-sensitive, an activation of P(mcc)-lac expression was observed at nonpermissive temperature, in contrast to its complete inhibition in E. coli cells at the phase of delayed growth. Other stressors-nitrogen starvation, high temperatures, osmotic shock, tetracycline and chloramphenicol-did not activate P(mcc)-lac expression in cells at the exponential growth phase.  相似文献   

19.
The study was undertaken to determine the clonal relationship and the genetic diversity among Escherichia coli isolates by comparing a non-motile O157 variant with three O157:H7 EHEC isolates and one O55:H7 enteropathogenic E. coli (EPEC) strain. E. coli strains were characterized by sorbitol phenotype, multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, random amplification polymorphic DNA, and the presence of specific virulence genes (stx, E-hly and LEE genes). Sorbitol fermentation was observed in O157:H- (strain 116I), O55:H7 and O157:H7 (strain GC148) serotypes. stx1 or stx2 and E-hly genes were only detected among O157:H7 isolates. LEE typing revealed specific allele distribution: eaegamma, tirgamma, espAgamma, espBgamma associated with EPEC O55:H7 and EHEC O157:H7 strains (B1/1 and EDL 933), eaealpha, tiralpha, espAalpha, espBalpha related to the 116I O157:H- strain and the GC148 strain presented non-typable LEE sequences. Multilocus enzyme profiles revealed two main clusters associated with specific LEE pathotypes. E. coli strains were discriminated by random amplification of polymorphic DNA-polymerase chain reaction and pulsed-field gel electrophoresis methodologies. The molecular approaches used in this study allowed the determination of the genetic relatedness among E. coli strains as well as the detection of lineage specific group markers.  相似文献   

20.
SSOR, a clinical isolate of Shigella sonnei which exhibits a Salicin-negative phenotype, is unable to mutate to give rise to Sal+ derivatives although a homolog of the Escherichia coli bgl operon is retained by the strain. This was correlated to the presence of an endogenous plasmid in the strain. A plasmid-cured derivative, AK711, could give rise to Sal+ mutants in two steps. Introduction of the plasmid DNA, extracted from SSOR, into various strains of E. coli and S. sonnei, resulted in ampicillin resistant transformants. Interestingly, the presence of the plasmid suppressed the mutational activation of the bgl operon in the transformants. This was further substantiated by the observation that, transformants that have lost the plasmid regained the ability for mutational activation of the bgl operon. Preliminary characterisation of the plasmid indicated a size of 3.8 kb with an origin of replication resembling that of ColE1 replicons and the bla gene homolog of Tn3. Observations of the mutation frequency at the srl and lac loci in the presence of the plasmid indicate that there is a reduction in the mutation frequency, suggesting an antimutator activity associated with the plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号