首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein methyltransferases (PMTs) catalyze arginine and lysine methylation of diverse histone and nonhistone targets. These posttranslational modifications play essential roles in regulating multiple cellular events in an epigenetic manner. In the recent process of defining PMT targets, S-adenosyl-L-methionine (SAM) analogues have emerged as powerful small molecule probes to label and profile PMT targets. To examine efficiently the reactivity of PMTs and their variants on SAM analogues, we transformed a fluorogenic PMT assay into a ready high throughput screening (HTS) format. The reformulated fluorogenic assay is featured by its uncoupled but more robust character with the first step of accumulation of the commonly-shared reaction byproduct S-adenosyl-L-homocysteine (SAH), followed by SAH-hydrolase-mediated fluorogenic quantification. The HTS readiness and robustness of the assay were demonstrated by its excellent Z' values of 0.83-0.95 for the so-far-examined 8 human PMTs with SAM as a cofactor (PRMT1, PRMT3, CARM1, SUV39H2, SET7/9, SET8, G9a and GLP1). The fluorogenic assay was further implemented to screen the PMTs against five SAM analogues (allyl-SAM, propargyl-SAM, (E)-pent-2-en-4-ynyl-SAM (EnYn-SAM), (E)-hex-2-en-5-ynyl-SAM (Hey-SAM) and 4-propargyloxy-but-2-enyl-SAM (Pob-SAM)). Among the examined 8 × 5 pairs of PMTs and SAM analogues, native SUV39H2, G9a and GLP1 showed promiscuous activity on allyl-SAM. In contrast, the bulky SAM analogues, such as EnYn-SAM, Hey-SAM and Pob-SAM, are inert toward the panel of human PMTs. These findings therefore provide the useful structure-activity guidance to further evolve PMTs and SAM analogues for substrate labeling. The current assay format is ready to screen methyltransferase variants on structurally-diverse SAM analogues.  相似文献   

2.
3.
Histone modification, for example, by histone deacetylase (HDAC) and histone lysine methyltransferase (HMT), plays an important role in regulating gene expression. To obtain novel inhibitors as tools for investigating the physiological function of members of the HMT family, we designed and synthesized novel inhibitors, which are amine analogues of adenosylmethionine (AdoMet; the cofactor utilized in the methylation reaction) bearing various alkylamino groups coupled via an ethylene linker. The inhibitory activities of these compounds towards SET7/9, an HMT, were evaluated. It was found that introduction of an alkylamino group increased the inhibitory activity.  相似文献   

4.
5.
Epigenetic regulation through protein posttranslational modifications is essential in development and disease. Among the key chemical modifications is protein methylation carried out by protein methyltransferases (PMTs). Quantitative and sensitive PMT activity assays can provide valuable tools to investigate PMT functions. Here we developed an enzyme-coupled luminescence assay for S-adenosyl-l-methionine (AdoMet/SAM)-based PMTs. In this assay, S-adenosyl-l-homocystine (AdoHcy/SAH), the by-product of PMT-involved methylation, is sequentially converted to adenine, adenosine monophosphate, and then adenosine 5′-triphosphate (ATP) by 5′-methylthio-adenosine/AdoHcy nucleosidase (MTAN), adenine phosphoribosyl transferase (APRT), and pyruvate orthophosphate dikinase (PPDK), respectively. The resultant ATP can be readily quantified with a luciferin/luciferase kit. This assay is featured for its quantitative linear response to AdoHcy and the ultrasensitivity to 0.3 pmol of AdoHcy. With this assay, the kinetic parameters of SET7/9 methylation were characterized and unambiguously support an ordered mechanism with AdoMet binding as the initial step, followed by the substrate binding and the rate-limiting methylation. The luminescence assay is also expected to be generally applicable to many other AdoMet-dependent enzymes. In addition, the mix-and-measure 96-/384-well format of our assay makes it suitable for automation and high throughput. Our enzyme-coupled luminescence assay, therefore, represents a convenient and ultrasensitive approach to examine methyltransferase activities and identify methyltransferase inhibitors.  相似文献   

6.
Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors.  相似文献   

7.
8.
The post-translational modifications of histones, including histone methylation and demethylation, control the expression switch of multiple genes. SET domain-containing lysine methyltransferase 7 (SET7) is the only methyltransferase, which can specifically monomethylate lysine-4 of histone H3 (H3K4me1) and play critical roles in various diseases, including breast cancer, hepatitis C virus (HCV), atherosclerotic vascular disease, diabetes, prostate cancer, hepatocellular carcinoma, and obesity. However, several known SET7 inhibitors exhibit weak activity or poor selectivity. Therefore, the development of novel SET7 inhibitors is highly desirable and of great clinical value. In this study, we identified 279 as a new hit compound by structure-based virtual screening and further AlphaLISA-based biochemical evaluation. Via chemical optimization, the synthesized compound DC21 was confirmed as a potent SET7 inhibitor with an IC50 value of 15.93 μM. The interaction between DC21 and SET7 was also validated through SPR experiment. Especially, DC21 retarded proliferation of MCF7 cells with an IC50 value of 25.84 μM in cellular level. In addition, DC21 has good selectivity for several other epigenetic targets, such as SUV39H1, G9a, NSD1, DOT1L and MOF. DC21 can serve as a lead compound to develop more potential SET7 inhibitors and as a chemical probe for SET7 biological function studies.  相似文献   

9.
10.
Methylation of proteins is emerging to be an important regulator of protein function. SET7/9, a protein lysine methyltransferase, catalyses methylation of several proteins involved in diverse biological processes. SET7/9-mediated methylation often regulates the stability, sub-cellular localization and protein-protein interactions of its substrate proteins. Here, we aimed to identify novel biological processes regulated by SET7/9 by identifying new interaction partners. For this we used yeast two-hybrid screening and identified the large subunit ribosomal protein, eL42 as a potential interactor of SET7/9. We confirmed the SET7/9-eL42 interaction by co-immunoprecipitation and GST pulldown studies. The N-terminal MORN domain of SET7/9 is essential for its interaction with eL42. Importantly, we identified that SET7/9 methylates eL42 at three different lysines - Lys53, Lys80 and Lys100 through site-directed mutagenesis. By puromycin incorporation assay, we find that SET7/9-mediated methylation of eL42 affects global translation. This study identifies a new role of the functionally versatile SET7/9 lysine methyltransferase in the regulation of global protein synthesis.  相似文献   

11.
12.
DNA methyltransferase 1 (DNMT1) is the enzyme most responsible for epigenetic modification of human DNA and the intended target of approved cancer drugs such as 5-aza-cytidine and 5-aza-2′-deoxycytidine. 5-aza nucleosides have complex mechanisms of action that require incorporation into DNA, and covalent trapping and proteolysis of DNMT isozymes. Direct DNMT inhibitors are needed to refine understanding of the role of specific DNMT isozymes in cancer etiology and, potentially, to improve cancer prevention and treatment. Here, we developed a high throughput pipeline for identification of direct DNMT1 inhibitors. The components of this screen include an activated form of DNMT1, a restriction enzyme-coupled fluorigenic assay performed in 384 well plates with a z-factor of 0.66, a counter screen against the restriction enzyme, a screen to eliminate DNA intercalators, and a differential scanning fluorimetry assay to validate direct binders. Using the Microsource Spectrum collection of 2320 compounds, this screen identified nine compounds with dose responses ranging from 300 nM to 11 µM, representing at least two different pharmacophores with DNMT1 inhibitory activity. Seven of nine inhibitors identified exhibited two to four-fold selectivity for DNMT1 versus DNMT3A.  相似文献   

13.
Sun XJ  Xu PF  Zhou T  Hu M  Fu CT  Zhang Y  Jin Y  Chen Y  Chen SJ  Huang QH  Liu TX  Chen Z 《PloS one》2008,3(1):e1499
SET domain-containing proteins represent an evolutionarily conserved family of epigenetic regulators, which are responsible for most histone lysine methylation. Since some of these genes have been revealed to be essential for embryonic development, we propose that the zebrafish, a vertebrate model organism possessing many advantages for developmental studies, can be utilized to study the biological functions of these genes and the related epigenetic mechanisms during early development. To this end, we have performed a genome-wide survey of zebrafish SET domain genes. 58 genes total have been identified. Although gene duplication events give rise to several lineage-specific paralogs, clear reciprocal orthologous relationship reveals high conservation between zebrafish and human SET domain genes. These data were further subject to an evolutionary analysis ranging from yeast to human, leading to the identification of putative clusters of orthologous groups (COGs) of this gene family. By means of whole-mount mRNA in situ hybridization strategy, we have also carried out a developmental expression mapping of these genes. A group of maternal SET domain genes, which are implicated in the programming of histone modification states in early development, have been identified and predicted to be responsible for all known sites of SET domain-mediated histone methylation. Furthermore, some genes show specific expression patterns in certain tissues at certain stages, suggesting the involvement of epigenetic mechanisms in the development of these systems. These results provide a global view of zebrafish SET domain histone methyltransferases in evolutionary and developmental dimensions and pave the way for using zebrafish to systematically study the roles of these genes during development.  相似文献   

14.
The methylation of lysine residues of histones plays a pivotal role in the regulation of chromatin structure and gene expression. Here, we report two crystal structures of SET7/9, a histone methyltransferase (HMTase) that transfers methyl groups to Lys4 of histone H3, in complex with S-adenosyl-L-methionine (AdoMet) determined at 1.7 and 2.3 A resolution. The structures reveal an active site consisting of: (i) a binding pocket between the SET domain and a c-SET helix where an AdoMet molecule in an unusual conformation binds; (ii) a narrow substrate-specific channel that only unmethylated lysine residues can access; and (iii) a catalytic tyrosine residue. The methyl group of AdoMet is directed to the narrow channel where a substrate lysine enters from the opposite side. We demonstrate that SET7/9 can transfer two but not three methyl groups to unmodified Lys4 of H3 without substrate dissociation. The unusual features of the SET domain-containing HMTase discriminate between the un- and methylated lysine substrate, and the methylation sites for the histone H3 tail.  相似文献   

15.
16.
17.
18.
Nuclear factor kappa-B (NF-kappaB)-regulated inflammatory genes, such as TNF-alpha (tumor necrosis factor-alpha), play key roles in the pathogenesis of inflammatory diseases, including diabetes and the metabolic syndrome. However, the nuclear chromatin mechanisms are unclear. We report here that the chromatin histone H3-lysine 4 methyltransferase, SET7/9, is a novel coactivator of NF-kappaB. Gene silencing of SET7/9 with small interfering RNAs in monocytes significantly inhibited TNF-alpha-induced inflammatory genes and histone H3-lysine 4 methylation on these promoters, as well as monocyte adhesion to endothelial or smooth muscle cells. Chromatin immunoprecipitation revealed that SET7/9 small interfering RNA could reduce TNF-alpha-induced recruitment of NF-kappaB p65 to inflammatory gene promoters. Inflammatory gene induction by ligands of the receptor for advanced glycation end products was also attenuated in SET7/9 knockdown monocytes. In addition, we also observed increased inflammatory gene expression and SET7/9 recruitment in macrophages from diabetic mice. Microarray profiling revealed that, in TNF-alpha-stimulated monocytes, the induction of 25% NF-kappaB downstream genes, including the histone H3-lysine 27 demethylase JMJD3, was attenuated by SET7/9 depletion. These results demonstrate a novel role for SET7/9 in inflammation and diabetes.  相似文献   

19.
Cellular identity during metazoan development is maintained by epigenetic modifications of chromatin structure brought about by the activity of specific proteins which mediate histone variant incorporation, histone modifications, and nucleosome remodeling. HP1 proteins directly influence gene expression by modifying chromatin structure. We previously showed that the Caenorhabditis elegans HP1 proteins HPL-1 and HPL-2 are required for several aspects of post-embryonic development. To gain insight into how HPL proteins influence gene expression in a developmental context, we carried out a candidate RNAi screen to identify suppressors of hpl-1 and hpl-2 phenotypes. We identified SET-2, the homologue of yeast and mammalian SET1, as an antagonist of HPL-1 and HPL-2 activity in growth and somatic gonad development. Yeast Set1 and its mammalian counterparts SET1/MLL are H3 lysine 4 (H3K4) histone methyltransferases associated with gene activation as part of large multisubunit complexes. We show that the nematode counterparts of SET1/MLL complex subunits also antagonize HPL function in post-embryonic development. Genetic analysis is consistent with SET1/MLL complex subunits having both shared and unique functions in development. Furthermore, as observed in other species, we find that SET1/MLL complex homologues differentially affect global H3K4 methylation. Our results suggest that HP1 and a SET1/MLL-related complex may play antagonistic roles in the epigenetic regulation of specific developmental programs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号