首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs. To prevent errors in protein synthesis, many synthetases have evolved editing pathways by which misactivated amino acids (pre-transfer editing) and misacylated tRNAs (post-transfer editing) are hydrolyzed. Previous studies have shown that class II prolyl-tRNA synthetase (ProRS) possesses both pre- and post-transfer editing functions against noncognate alanine. To assess the relative contributions of pre- and post-transfer editing, presented herein are kinetic studies of an Escherichia coli ProRS mutant in which post-transfer editing is selectively inactivated, effectively isolating the pre-transfer editing pathway. When post-transfer editing is abolished, substantial levels of alanine mischarging are observed under saturating amino acid conditions, indicating that pre-transfer editing alone cannot prevent the formation of Ala-tRNA Pro. Steady-state kinetic parameters for aminoacylation measured under these conditions reveal that the preference for proline over alanine is 2000-fold, which is well within the regime where editing is required. Simultaneous measurement of AMP and Ala-tRNA Pro formation in the presence of tRNA Pro suggested that misactivated alanine is efficiently transferred to tRNA to form the mischarged product. In the absence of tRNA, enzyme-catalyzed Ala-AMP hydrolysis is the dominant form of editing, with "selective release" of noncognate adenylate from the active site constituting a minor pathway. Studies with human and Methanococcus jannaschii ProRS, which lack a post-transfer editing domain, suggest that enzymatic pre-transfer editing occurs within the aminoacylation active site. Taken together, the results reported herein illustrate how both pre- and post-transfer editing pathways work in concert to ensure accurate aminoacylation by ProRS.  相似文献   

2.
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.  相似文献   

3.
Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been uncertain. Here, we use novel kinetic approaches to distinguish among three models for pre-transfer editing by Escherichia coli isoleucyl-tRNA synthetase (IleRS). We demonstrate that tRNA-dependent hydrolysis of noncognate valyl-adenylate by IleRS is largely insensitive to mutations in the editing domain of the enzyme and that noncatalytic hydrolysis after release is too slow to account for the observed rate of clearing. Measurements of the microscopic rate constants for amino acid transfer to tRNA in IleRS and the related valyl-tRNA synthetase (ValRS) further suggest that pre-transfer editing in IleRS is an enzyme-catalyzed activity residing in the synthetic active site. In this model, the balance between pre-transfer and post-transfer editing pathways is controlled by kinetic partitioning of the noncognate aminoacyl-adenylate. Rate constants for hydrolysis and transfer of a noncognate intermediate are roughly equal in IleRS, whereas in ValRS transfer to tRNA is 200-fold faster than hydrolysis. In consequence, editing by ValRS occurs nearly exclusively by post-transfer hydrolysis in the editing domain, whereas in IleRS both pre- and post-transfer editing are important. In both enzymes, the rates of amino acid transfer to tRNA are similar for cognate and noncognate aminoacyl-adenylates, providing a significant contrast with editing DNA polymerases.  相似文献   

4.
The fidelity of tRNA aminoacylation is dependent in part on amino acid editing mechanisms. A hydrolytic activity that clears mischarged tRNAs typically resides in an active site on the tRNA synthetase that is distinct from its synthetic aminoacylation active site. A second pre-transfer editing pathway that hydrolyzes the tRNA synthetase aminoacyl adenylate intermediate can also be activated. Pre- and post-transfer editing activities can co-exist within a single tRNA synthetase resulting in a redundancy of fidelity mechanisms. However, in most cases one pathway appears to dominate, but when compromised, the secondary pathway can be activated to suppress tRNA synthetase infidelities.  相似文献   

5.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

6.
The connective polypeptide 1 (CP1) editing domain of leucyl-tRNA synthetase (LeuRS) from various species either harbors a conserved active site to exclude tRNA mis-charging with noncognate amino acids or is evolutionarily truncated or lost because there is no requirement for high translational fidelity. However, human mitochondrial LeuRS (hmtLeuRS) contains a full-length but degenerate CP1 domain that has mutations in some residues important for post-transfer editing. The significance of such an inactive CP1 domain and a translational accuracy mechanism with different noncognate amino acids are not completely understood. Here, we identified the essential role of the evolutionarily divergent CP1 domain in facilitating hmtLeuRS''s catalytic efficiency and endowing enzyme with resistance to AN2690, a broad-spectrum drug acting on LeuRSs. In addition, the canonical core of hmtLeuRS is not stringent for noncognate norvaline (Nva) and valine (Val). hmtLeuRS has a very weak tRNA-independent pre-transfer editing activity for Nva, which is insufficient to remove mis-activated Nva. Moreover, hmtLeuRS chimeras fused with a functional CP1 domain from LeuRSs of other species, regardless of origin, showed restored post-transfer editing activity and acquired fidelity during aminoacylation. This work offers a novel perspective on the role of the CP1 domain in optimizing aminoacylation efficiency.  相似文献   

7.
Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to cognate tRNAs in a two-step process that is critical for the faithful translation of genetic information. During the first chemical step of tRNA aminoacylation, noncognate amino acids that are smaller than or isosteric with the cognate substrate can be misactivated. Thus, to maintain high accuracy during protein translation, some synthetases have evolved an editing mechanism. Previously, we showed that class II Escherichia coli proline-tRNA synthetase (ProRS) is capable of (1) weakly misactivating Ala, (2) hydrolyzing the misactivated Ala-AMP in a reaction known as pretransfer editing, and (3) deacylating a mischarged Ala-tRNA(Pro) variant via a post-transfer editing pathway. In contrast to most systems where an editing function has been established, pretransfer editing by E. coli ProRS occurs in a tRNA-independent fashion. However, neither the pre- nor the post-transfer editing active site(s) has been identified. Sequence analyses revealed that most prokaryotic ProRSs possess a large insertion domain (INS) between class II conserved motifs 2 and 3. The function of the approximately 180-amino acid INS in E. coli ProRS is the subject of this investigation. Alignment-guided Ala scanning mutagenesis was carried out to test conserved amino acid residues present in the INS for their role in pre- and post-transfer editing. Our biochemical data and modeling studies suggest that the prokaryotic INS plays a critical role in editing and that this activity resides in a domain that is functionally and structurally distinct from the aminoacylation active site.  相似文献   

8.
Faithful translation of the genetic code depends on accurate coupling of amino acids with cognate transfer RNAs (tRNAs) catalyzed by aminoacyl-tRNA synthetases. The fidelity of leucyl-tRNA synthetase (LeuRS) depends mainly on proofreading at the pre- and post-transfer levels. During the catalytic cycle, the tRNA CCA-tail shuttles between the synthetic and editing domains to accomplish the aminoacylation and editing reactions. Previously, we showed that the Y330D mutation of Escherichia coli LeuRS, which blocks the entry of the tRNA CCA-tail into the connective polypeptide 1domain, abolishes both tRNA-dependent pre- and post-transfer editing. In this study, we identified the counterpart substitutions, which constrain the tRNA acceptor stem binding within the synthetic active site. These mutations negatively impact the tRNA charging activity while retaining the capacity to activate the amino acid. Interestingly, the mutated LeuRSs exhibit increased global editing activity in the presence of a non-cognate amino acid. We used a reaction mimicking post-transfer editing to show that these mutations decrease post-transfer editing owing to reduced tRNA aminoacylation activity. This implied that the increased editing activity originates from tRNA-dependent pre-transfer editing. These results, together with our previous work, provide a comprehensive assessment of how intra-molecular translocation of the tRNA CCA-tail balances the aminoacylation and editing activities of LeuRS.  相似文献   

9.
To prevent genetic code ambiguity due to misincorporation of amino acids into proteins, aminoacyl-tRNA synthetases have evolved editing activities to eliminate intermediate or final non-cognate products. In this work we studied the different editing pathways of class Ia leucyl-tRNA synthetase (LeuRS). Different mutations and experimental conditions were used to decipher the editing mechanism, including the recently developed compound AN2690 that targets the post-transfer editing site of LeuRS. The study emphasizes the crucial importance of tRNA for the pre- and post-transfer editing catalysis. Both reactions have comparable efficiencies in prokaryotic Aquifex aeolicus and Escherichia coli LeuRSs, although the E. coli enzyme favors post-transfer editing, whereas the A. aeolicus enzyme favors pre-transfer editing. Our results also indicate that the entry of the CCA-acceptor end of tRNA in the editing domain is strictly required for tRNA-dependent pre-transfer editing. Surprisingly, this editing reaction was resistant to AN2690, which inactivates the enzyme by forming a covalent adduct with tRNALeu in the post-transfer editing site. Taken together, these data suggest that the binding of tRNA in the post-transfer editing conformation confers to the enzyme the capacity for pre-transfer editing catalysis, regardless of its capacity to catalyze post-transfer editing.  相似文献   

10.
Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.  相似文献   

11.
H Jakubowski 《Biochemistry》1999,38(25):8088-8093
Lysyl-tRNA synthetase (LysRS), a class II enzyme whose major function is to provide Lys-tRNALys for protein synthesis, also catalyzes aminoacylation of tRNALys with arginine, threonine, methionine, leucine, alanine, serine, and cysteine. The limited selectivity in the tRNA aminoacylation reaction appears to be due to inefficient editing of some amino acids (Met, Leu, Cys, Ala, Thr) by a pre-transfer mechanism or the absence of editing of other amino acids (Arg and Ser). Purified Arg-tRNALys, Thr-tRNALys, and Met-tRNALys were essentially not deacylated by LysRS, indicating that the enzyme does not possess a post-transfer editing mechanism. However, LysRS possesses an efficient pre-transfer editing mechanism which prevents misacylation of tRNALys with ornithine. A novel feature of this editing reaction is that ornithine lactam is formed by the facile cyclization of ornithyl adenylate.  相似文献   

12.
Aminoacyl-tRNA synthetases hydrolyze aminoacyl adenylates and aminoacyl-tRNAs formed from near-cognate amino acids, thereby increasing translational fidelity. The contributions of pre- and post-transfer editing pathways to the fidelity of Escherichia coli threonyl-tRNA synthetase (ThrRS) were investigated by rapid kinetics. In the pre-steady state, asymmetric activation of cognate threonine and noncognate serine was observed in the active sites of dimeric ThrRS, with similar rates of activation. In the absence of tRNA, seryl-adenylate was hydrolyzed 29-fold faster by the ThrRS catalytic domain than threonyl-adenylate. The rate of seryl transfer to cognate tRNA was only 2-fold slower than threonine. Experiments comparing the rate of ATP consumption to the rate of aminoacyl-tRNAAA formation demonstrated that pre-transfer hydrolysis contributes to proofreading only when the rate of transfer is slowed significantly. Thus, the relative contributions of pre- and post-transfer editing in ThrRS are subject to modulation by the rate of aminoacyl transfer.  相似文献   

13.
Farrow MA  Schimmel P 《Biochemistry》2001,40(14):4478-4483
Aminoacyl-tRNA synthetases establish the rules of the genetic code by aminoacylation reactions. Occasional activation of the wrong amino acid can lead to errors of protein synthesis. For isoleucyl-tRNA synthetase, these errors are reduced by tRNA-dependent hydrolytic editing reactions that occur at a site 25 A from the active site. These reactions require that the misactivated amino acid be translocated from the active site to the center for editing. One mechanism describes translocation as requiring the mischarging of tRNA followed by a conformational change in the tRNA that moves the amino acid from one site to the other. Here a specific DNA aptamer is investigated. The aptamer can stimulate amino acid-specific editing but cannot be aminoacylated. Although the aptamer could in principle stimulate hydrolysis of a misactivated amino acid by an idiosyncratic mechanism, the aptamer is shown here to induce translocation and hydrolysis of misactivated aminoacyl adenylate at the same site as that seen with the tRNA cofactor. Thus, translocation to the site for editing does not require joining of the amino acid to the nucleic acid. Further experiments demonstrated that aptamer-induced editing is sensitive to aptamer sequence and that the aptamer is directed to a site other than the active site or tRNA binding site of the enzyme.  相似文献   

14.
Aminoacyl-tRNA synthetases are essential enzymes that help to ensure the fidelity of protein translation by accurately aminoacylating (or "charging") specific tRNA substrates with cognate amino acids. Many synthetases have an additional catalytic activity to confer amino acid editing or proofreading. This activity relieves ambiguities during translation of the genetic code that result from one synthetase activating multiple amino acid substrates. In this review, we describe methods that have been developed for assaying both pre- and post-transfer editing activities. Pre-transfer editing is defined as hydrolysis of a misactivated aminoacyl-adenylate prior to transfer to the tRNA. This reaction has been reported to occur either in the aminoacylation active site or in a separate editing domain. Post-transfer editing refers to the hydrolysis reaction that cleaves the aminoacyl-ester linkage formed between the carbonyl carbon of the amino acid and the 2' or 3' hydroxyl group of the ribose on the terminal adenosine. Post-transfer editing takes place in a hydrolytic active site that is distinct from the site of amino acid activation. Here, we focus on methods for determination of steady-state reaction rates using editing assays developed for both classes of synthetases.  相似文献   

15.
Evidence is presented that the editing mechanisms of aminoacyl-tRNA synthetase operate by two alternative pathways: pre-transfer, by hydrolysis of the non-cognate aminoacyl adenylate; post-transfer, by hydrolysis of the mischarged tRNA. The methionyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus and isoleucyl-tRNA synthetase from E. coli, for example, are shown to reject misactivated homocysteine rapidly by the pre-transfer route. A novel feature of this reaction is that homocysteine thiolactone is formed by the facile cyclisation of the homocysteinyl adenylate. Valyl-tRNA synthetases, on the other hand, reject the more readily activated non-cognate amino acids by primarily the post-transfer route. The features governing the choice of pathway are discussed.  相似文献   

16.
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNAIle organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNAIle affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNAIle synthesis under cellular conditions. Finally, the extent to which tRNAIle modulates activation and pre-transfer editing is independent of the intactness of its 3′-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3′-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.  相似文献   

17.
Aminoacyl-tRNA synthetases are responsible for activating specific amino acids and transferring them onto cognate tRNA molecules. Due to the similarity in many amino acid side chains, certain synthetases misactivate non-cognate amino acids to an extent that would be detrimental to protein synthesis if left uncorrected. To ensure accurate translation of the genetic code, some synthetases therefore utilize editing mechanisms to hydrolyze non-cognate products. Previously class II Escherichia coli proline-tRNA synthetase (ProRS) was shown to exhibit pre- and post-transfer editing activity, hydrolyzing a misactivated alanine-adenylate (Ala-AMP) and a mischarged Ala-tRNAPro variant, respectively. Residues critical for the editing activity (Asp-350 and Lys-279) are found in a novel insertion domain (INS) positioned between motifs 2 and 3 of the class defining aminoacylation active site. In this work, we present further evidence that INS is responsible for editing in ProRS. We deleted the INS from wild-type E. coli ProRS to yield DeltaINS-ProRS. While DeltaINS-ProRS was still capable of misactivating alanine, the truncated construct was defective in hydrolyzing non-cognate Ala-AMP. When the INS domain was cloned and expressed as an independent protein, it was capable of deacylating a mischarged Ala-microhelixPro variant. Similar to full-length ProRS, post-transfer editing was abolished in a K279A mutant INS. We also show that YbaK, a protein of unknown function from Haemophilus influenzae with high sequence homology to the prokaryotic INS domain, was capable of deacylating Ala-tRNAPro and Ala-microhelixPro variants but not cognate Pro-tRNAPro. Thus, we demonstrate for the first time that an independently folded class II synthetase editing domain and a previously identified homolog can catalyze a hydrolytic editing reaction.  相似文献   

18.
To prevent potential errors in protein synthesis, some aminoacyl-transfer RNA (tRNA) synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). Class Ia leucyl-tRNA synthetase (LeuRS) may misactivate various natural and non-protein amino acids and then mischarge tRNALeu. It is known that the fidelity of prokaryotic LeuRS depends on multiple editing pathways to clear the incorrect intermediates and products in the every step of aminoacylation reaction. Here, we obtained human cytoplasmic LeuRS (hcLeuRS) and tRNALeu (hctRNALeu) with high activity from Escherichia coli overproducing strains to study the synthetic and editing properties of the enzyme. We revealed that hcLeuRS could adjust its editing strategy against different non-cognate amino acids. HcLeuRS edits norvaline predominantly by post-transfer editing; however, it uses mainly pre-transfer editing to edit α-amino butyrate, although both amino acids can be charged to tRNALeu. Post-transfer editing as a final checkpoint of the reaction was very important to prevent mis-incorporation in vitro. These results provide insight into the modular editing pathways created to prevent genetic code ambiguity by evolution.  相似文献   

19.
The fidelity of aminoacylation of tRNA(Thr) by the threonyl-tRNA synthetase (ThrRS) requires the discrimination of the cognate substrate threonine from the noncognate serine. Misacylation by serine is corrected in a proofreading or editing step. An editing site has been located 39 A away from the aminoacylation site. We report the crystal structures of this editing domain in its apo form and in complex with the serine product, and with two nonhydrolyzable analogs of potential substrates: the terminal tRNA adenosine charged with serine, and seryl adenylate. The structures show how serine is recognized, and threonine rejected, and provide the structural basis for the editing mechanism, a water-mediated hydrolysis of the mischarged tRNA. When the adenylate analog binds in the editing site, a phosphate oxygen takes the place of one of the catalytic water molecules, thereby blocking the reaction. This rules out a correction mechanism that would occur before the binding of the amino acid on the tRNA.  相似文献   

20.
Leucyl-tRNA synthetase (LeuRS) has a specific post-transfer editing activity directed against mischarged isoleucine and similar noncognate amino acids. We describe the post-transfer-editing and product complexes of Thermus thermophilus LeuRS (LeuRSTT) with tRNA(Leu) at 2.9- to 3.3-A resolution. In the post-transfer-editing configuration, A76 binds in the editing active site exactly as previously found for the adenosine moiety of a small-molecule editing-substrate analog. The 60 C-terminal residues of LeuRSTT, unseen in previous structures, fold into a compact domain flexibly linked to the rest of the molecule and interacting with the G19-C56 tertiary base pair of tRNA(Leu). LeuRS recognition of tRNA(Leu) depends essentially on tRNA shape rather than base-specific interactions. The structures show that considerable domain rotations, notably of the editing domain, accompany the tRNA-3' end dynamics associated successively with aminoacylation, post-transfer editing and product release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号