首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Degradation of the extracellular matrix (ECM) protein laminin contributes to excitotoxic cell death in the hippocampus, but the mechanism of this effect is unknown. To study this process, we disrupted laminin γ1 (lamγ1) expression in the hippocampus. Lamγ1 knockout (KO) and control mice had similar basal expression of kainate (KA) receptors, but the lamγ1 KO mice were resistant to KA-induced neuronal death. After KA injection, KA1 subunit levels increased in control mice but were unchanged in lamγ1 KO mice. KA1 levels in tissue plasminogen activator (tPA)–KO mice were also unchanged after KA, indicating that both tPA and laminin were necessary for KA1 up-regulation after KA injection. Infusion of plasmin-digested laminin-1 into the hippocampus of lamγ1 or tPA KO mice restored KA1 up-regulation and KA-induced neuronal degeneration. Interfering with KA1 function with a specific anti-KA1 antibody protected against KA-induced neuronal death both in vitro and in vivo. These results demonstrate a novel pathway for neurodegeneration involving proteolysis of the ECM and KA1 KA receptor subunit up-regulation.  相似文献   

2.
Excitotoxic damage represents the major mechanism leading to cell death in many human neurodegenerative diseases such as ischemia, trauma and epilepsy. Caused by an excess of glutamate that acts on metabotropic and ionotropic excitatory receptors, excitotoxicity activates several death signaling pathways leading to an extensive neuronal loss and a consequent strong activation of astrogliosis. Currently, the search for a neuroprotective strategy is aimed to identify the level in the signaling pathways to block excitotoxicity avoiding the loss of important physiological functions and side effects. To this aim, PTEN can be considered an ideal candidate: downstream the excitatory receptors activated in excitotoxicity (whose inhibition was shown to be not clinically viable), it is involved in neuronal damage and in the first stage of the reactive astrogliosis in vivo. In this study, we demonstrated the involvement of PTEN in excitotoxicity through its pharmacological inhibition by dipotassium bisperoxo (picolinato) oxovanadate [bpv(pic)] in a model of temporal lobe epilepsy, obtained by intraperitoneal injection of kainate in 2-month-old C57BL/6J male mice. We have demonstrated that inhibition of PTEN by bpv(pic) rescues neuronal death and decreases the reactive astrogliosis in the CA3 area of the hippocampus caused by systemic administration of kainate. Moreover, the neurotoxin administration increases significantly the scanty presence of mitochondrial PTEN that is significantly decreased by the administration of the inhibitor 6 hr after the injection of kainate, suggesting a role of PTEN in mitochondrial apoptosis. Taken together, our results confirm the key role played by PTEN in the excitotoxic damage and the strong anti-inflammatory and neuroprotective potential of its inhibition.  相似文献   

3.
Xapelli S  Silva AP  Ferreira R  Malva JO 《Peptides》2007,28(2):288-294
In the present work we investigated the neuroprotective role of neuropeptide Y (NPY) after an excitotoxic insult in rat organotypic hippocampal slice cultures. Exposure of 2 week-old rat hippocampal slice cultures to 12muM kainate (KA) for 24h induced neuronal death in dentate gyrus (DG) granular cell layer, CA1 and CA3 pyramidal cell layers, as quantified by cellular propidium iodide (PI) uptake. The activation of Y(1) or Y(2) receptors 30min after starting the exposure to the excitotoxic insult with kainate resulted in neuroprotection by reducing the PI uptake in DG, CA1 and CA3 cell layers. The use of Y(1) or Y(2) receptors antagonists, BIBP3226 (1muM) or BIIE0246 (1muM), resulted in the loss of the neuroprotection induced by the activation of Y(1) or Y(2) receptors, respectively, in all hippocampal subfields. Taken together these results suggest that activation of NPY Y(1) or Y(2) receptors activates neuroprotective pathways that are able to rescue neurons from excitotoxic cell death.  相似文献   

4.
Curcumin is a natural antioxidant isolated from the medicinal plant Curcuma longa Linn. We previously reported that manganese complexes of curcumin (Cp-Mn) and diacetylcurcumin (DiAc-Cp-Mn) exhibited potent superoxide dismutase (SOD)-like activity in an in vitro assay. Nitric oxide (NO) is a free radial playing a multifaceted role in the brain and its excessive production is known to induce neurotoxicity. Here, we examined the in vivo effect of Cp-Mn and DiAc-Cp-Mn on NO levels enhanced by kainic acid (KA) and L-arginine (L-Arg) in the hippocampi of awake rats using a microdialysis technique. Injection of KA (10 mg/kg, i.p.) and L-Arg (1000 mg/kg, i.p.) significantly increased the concentration of NO and Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly reversed the effects of KA and L-Arg without affecting the basal NO concentration. Following KA-induced seizures, severe neuronal cell damage was observed in the CA1 and CA3 subfields of hippocampal 3 days after KA administration. Pretreatment with Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly attenuated KA-induced neuronal cell death in both CA1 and CA3 regions of rat hippocampus compared with vehicle control, and Cp-Mn and DiAc-Cp-Mn showed more potent neuroprotective effect than their parent compounds, curcumin and diacetylcurcumin. These results suggest that Cp-Mn and DiAc-Cp-Mn protect against KA-induced neuronal cell death by suppression of KA-induced increase in NO levels probably by their NO scavenging activity and antioxidative activity. Cp-Mn and DiAc-Cp-Mn have an advantage to be neuroprotective agents in the treatment of acute brain pathologies associated with NO-induced neurotoxicity and oxidative stress-induced neuronal damage such as epilepsy, stroke and traumatic brain injury.  相似文献   

5.
N-Methyl-d-aspartate (NMDA) receptors play a critical role in the brain stimulating synaptic plasticity and mediating neurodegeneration; a neuroprotective role has also been described, but its molecular mechanisms in hippocampus are under study. Here, we report that in primary cultures of rat hippocampal neurons exposure to low micromolar NMDA concentrations are neuroprotective against excitotoxic insults, while high micromolar NMDA concentrations provoke neuronal death. Molecular analysis reveals that a toxic concentration of NMDA induced a transient phosphorylation of cAMP-response element-binding protein (pCREB) in 2 min that rapidly decreased below basal levels. In contrast, a nontoxic NMDA concentration gave up to longer (20 min) rise of pCREB, suggesting that neuroprotection could be associated to a relatively prolonged presence of pCREB in the neurons. In support of this tenet, rolipram, an inhibitor of phosphodiesterase IV that increases the levels of cAMP and pCREB, protected against NMDA-induced neuronal death. Similar results were obtained with dibutyrate-cAMP (a cAMP analogue with membrane permeability) that also abrogated NMDA excitotoxicity. Conversely, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H89), an inhibitor of protein kinase A (PKA), that prevents the formation of pCREB induced by nontoxic NMDA concentrations, reverted the neuroprotection achieved by preincubation of low micromolar NMDA concentrations. These results substantiate the notion that induction of pCREB via PKA plays an important role in NMDA-mediated neuroprotection.  相似文献   

6.
Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation of the induced neurodegeneration, we have developed standardized protocols, including--a) densitometric measurements of the cellular uptake of propidium iodide (PI), --b) histological staining by Flouro-Jade, --c) lactate dehydrogenase (LDH) release to the culture medium, --d) immunostaining for microtubulin-associated protein 2, and --e) general and specific neuronal and glial cell stains. The results show good correlation between the different markers, and are in accordance with results obtained in vivo. Examples presented in this review will focus on the use of PI uptake to monitor the excitotoxic effects of --a) KA and AMPA (and NMDA) in hippocampal slice cultures, and --b) KA and AMPA in corticostriatal slice cocultures, with demonstration of differentiated neuroprotective effects of NBQX in relation to cortex and striatum and KA and AMPA. A second set of studies include modulation of hippocampal KA-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use for studies of excitotoxic, glutamate receptor-induced neuronal cell death, receptor modulation and related neuroprotection.  相似文献   

7.
Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection.  相似文献   

8.
In the present study, we examined patterns of A-myb expression in the kainic acid (KA)-treated mouse hippocampus. Western blot analysis revealed that A-myb expression was dramatically increased in brain 3 days after KA treatment, and was sustained for more than 7 days. A-myb immunoreactivity was restricted to hippocampal neurons in control mice. Three days after KA treatment, strong A-myb immunoreactivity was observed in reactive astrocytes throughout the CA3 region. Thereafter, A-myb immunoreactive astrocytes gradually concentrated around the CA3 region in parallel with selective neuronal loss, and only a few A-myb immunoreactive astrocytes persisted in the CA3 region 14 days after KA treatment. These findings suggest that the A-myb plays a role in the reactive gliosis signaling pathway in KA-induced excitotoxic lesions.  相似文献   

9.
Increased oxidative stress has been implicated in the mechanisms of excitotoxicity in hippocampus induced by kainic acid (KA), an excitatory glutamate receptor agonist. Resveratrol, a polyphenolic antioxidant compound enriched in grape, is regarded as an important ingredient in red wine to offer cardiovascular and neural protective effects. This study was designed to investigate whether resveratrol treatment may ameliorate neuronal death after KA administration. Adult Sprague Dawley male rats were treated with KA (8 mg/kg) daily for 5 days and another group was treated similarly with KA plus resveratrol (30 mg/kg/day). Three hr after the last treatment protocol, animals were sacrificed, and brain sections were obtained for histochemical and immunohistochemical identification of neurons, astrocytes and microglial cells. After KA administration, significant neuronal death and activation of astrocytes and microglial cells were observed in the hippocampal CA1, CA3 and polymorphic layer (hilar) of the dentate gyrus (DG) (P < 0.001). The KA-induced hippocampal neuronal damage was significantly attenuated by treatment with resveratrol (P < 0.001). Resveratrol also suppressed KA-induced activation of astrocytes and microglial cells. Since increased oxidative stress is a key factor for KA-induced neurotoxicity, this study demonstrated the ability of resveratrol to act as free radical scavenger to protect against neuronal damage caused by excitotoxic insults.Special issue dedicated to Dr. Lawrence F. Eng.  相似文献   

10.
Glycyrrhizin (GL), a triterpene present in the roots and rhizomes of licorice (Glycyrrhiza glabra), has been shown to have anti-inflammatory and anti-viral effects. In our previous reports, we demonstrated the neuroprotective effects of GL in the postischemic brain and in kainic acid (KA)-induced seizure animal model. In this KA-induced seizure model, the systemic administration of GL 30 min before KA administration significantly suppressed neuronal cell death and markedly suppressed gliosis and proinflammatory marker inductions. In the present study, we showed that high-mobility group box 1 (HMGB1), an endogenous danger signal, was induced in hippocampal CA1 and CA3 regions of the same KA-induced model, and peaked at ~3 h and at 6 days post-KA. HMGB1 was transiently induced in neurons and astrocyte at 3 h post-KA, and it was released from dying neurons and accumulated in serum at 12 h post-KA. Furthermore, after ~4 days of almost undetectable levels in the hippocampus, delayed and marked HMGB1 induction was detected at 6 days post-KA, mainly in astrocytes and endothelial cells, in which HMGB1 was localized in nuclei, and not secreted into serum. Interestingly, GL suppressed HMGB1 inductions in hippocampus and also suppressed its release into serum in KA-treated mice. Since we established previously that GL has anti-inflammatory and anti-excitotoxic effects in this KA-induced seizure model, these results indicate that the neuroprotective effect of GL in the KA-injected mouse brain might be attributable to the inhibitions of HMGB1 induction and release, which in turn, mitigates the inflammatory process.  相似文献   

11.
Apoptotic cell death induced by kainic acid (KA) in cultures of rat cerebellar granule cells (CGC) and in different brain regions of Wistar rat pups on postnatal day 21 (P21) was studied. In vitro , KA (100–500 μM) induced a concentration-dependent loss of cell viability in MTT assay and cell death had apoptotic morphology as studied by chromatin staining with propidium iodide (PI). In vivo , twenty-four hours after induction of status epilepticus (SE) by an intraperitoneal KA injection (5 mg/kg) we quantified apoptotic cells in hippocampus (CA1 and CA3), parietal cortex and cerebellum using PI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) technique. We report that dantrolene, a specific ryanodine receptor antagonist, was able to significantly reduce the apoptotic cell death in CGC cultures and in hyppocampal CA1 and parietal cortex regions. Our finding can be valuable for neuroprotective therapy strategies in patients with repeated generalized seizures or status epilepticus.  相似文献   

12.
Abstract: Aberrant elevations in intracellular calcium levels, promoted by the excitatory amino acid glutamate, may be a final common mediator of the neuronal damage that occurs in hypoxic-ischemic and seizure disorders. Glutamate and altered neuronal calcium homeostasis have also been proposed to play roles in more chronic neurodegenerative disorders, including Alzheimer's disease. Any extrinsic factors that may augment calcium levels during such disorders may significantly exacerbate the resulting damage. Glucocorticoids (GCs), the adrenal steroid hormones released during stress, may represent one such extrinsic factor. GCs can exacerbate hippocampal damage induced by excitotoxic seizures and hypoxia-ischemia, and we have observed recently that GCs elevate intracellular calcium levels in hippocampal neurons. We now report that the excitotoxin kainic acid (KA) can elicit antigenic changes in the microtubule-associated protein tau similar to those seen in the neurofibrillary tangles of Alzheimer's disease. KA induced a transient increase in the immunoreactivity of hippocampal CA3 neurons towards antibodies that recognize aberrant forms of tau (5E2 and Alz-50). The tau immunoreactivity appeared within 3h of KA injection, preceded extensive neuronal damage, and subsequently disappeared as neurons degenerated. KA also caused spectrin breakdown, indicating the involvement of calcium-dependent proteases. Physiological concentrations of corticosterone (the species-typical GC of rats) enhanced the neuronal damage induced by KA and, critically, enhanced the intensity of tau immunoreactivity and spectrin breakdown. Moreover, the GC enhancement of spectrin proteolysis was prevented by energy supplementation, supporting the hypothesis that GC disruption of calcium homeostasis in the hippocampus is energetic in nature. Taken together, these findings demonstrate that neurofibrillary tangle-like alterations in tau, and spectrin breakdown, can be induced by excitatory amino acids and exacerbated by GCs in vivo.  相似文献   

13.

Background

Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions.

Methodology/Principal Findings

Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A.

Conclusions/Significance

Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease.  相似文献   

14.
Because excessive glutamate release is believed to play a pivotal role in numerous neuropathological disorders, such as ischemia or seizure, we aimed to investigate whether intrinsic prosaposin (PS), a neuroprotective factor when supplied exogenously in vivo or in vitro, is up-regulated after the excitotoxicity induced by kainic acid (KA), a glutamate analog. In the present study, PS immunoreactivity and its mRNA expression in the hippocampal and cortical neurons showed significant increases on day 3 after KA injection, and high PS levels were maintained even after 3 weeks. The increase in PS, but not saposins, detected by immunoblot analysis suggests that the increase in PS-like immunoreactivity after KA injection was not due to an increase in saposins as lysosomal enzymes after neuronal damage, but rather to an increase in PS as a neurotrophic factor to improve neuronal survival. Furthermore, several neurons with slender nuclei inside/outside of the pyramidal layer showed more intense PS mRNA expression than other pyramidal neurons. Based on the results from double immunostaining using anti-PS and anti-GABA antibodies, these neurons were shown to be GABAergic interneurons in the extra- and intra-pyramidal layers. In the cerebral cortex, several large neurons in the V layer showed very intense PS mRNA expression 3 days after KA injection. The choroid plexus showed intense PS mRNA expression even in the normal rat, and the intensity increased significantly after KA injection. The present study indicates that inhibitory interneurons as well as stimulated hippocampal pyramidal and cortical neurons synthesize PS for neuronal survival, and the choroid plexus is highly activated to synthesize PS, which may prevent neurons from excitotoxic neuronal damage. To the best of our knowledge, this is the first study that demonstrates axonal transport and increased production of neurotrophic factor PS after KA injection.  相似文献   

15.
The ovarian hormone progesterone is neuroprotective in different experimental models of neurodegeneration. In the nervous system, progesterone is metabolized to 5alpha-dihydroprogesterone (DHP) by the enzyme 5alpha-reductase. DHP is subsequently reduced to 3alpha,5alpha-tetrahydroprogesterone (THP) by a reversible reaction catalyzed by the enzyme 3alpha-hydroxysteroid dehydrogenase. In this study we have analyzed whether progesterone metabolism is involved in the neuroprotective effect of the hormone in the hilus of the hippocampus of ovariectomized rats injected with kainic acid, an experimental model of excitotoxic cell death. Progesterone increased the levels of DHP and THP in plasma and hippocampus and prevented kainic-acid-induced neuronal loss. In contrast to progesterone, the synthetic progestin medroxyprogesterone acetate (MPA, Provera) did not increase DHP and THP levels and did not prevent kainic-acid-induced neuronal loss. The administration of the 5alpha-reductase inhibitor finasteride prevented the increase in the levels of DHP and THP in plasma and hippocampus as a result of progesterone administration and abolished the neuroprotective effect of progesterone. Both DHP and THP were neuroprotective against kainic acid. However, the administration of indomethacin, a 3alpha-hydroxysteroid dehydrogenase inhibitor, blocked the neuroprotective effect of both DHP and THP, suggesting that both metabolites are necessary for the neuroprotective effect of progesterone. In conclusion, our findings indicate that progesterone is neuroprotective against kainic acid excitotoxicity in vivo while the synthetic progestin MPA is not and suggest that progesterone metabolism to its reduced derivatives DHP and THP is necessary for the neuroprotective effect of the hormone.  相似文献   

16.
Ascorbic acid (AA) and dehydroascorbic acid (DHA) have been shown to have protective effects as anti-oxidants in experimental neurological disorder models such as stroke, ischemia, and epileptic seizures. The present study was conducted to examine the protective effects of AA and DHA on kainic acid (KA) neurotoxicity using organotypic hippocampal slice cultures. After 12 h KA treatment, significant delayed neuronal death was detected in the CA3, but not the CA1, region. Pretreatment with intermediate doses of AA and DHA significantly prevented cell death and inhibited reactive oxygen species (ROS) level, and mitochondrial dysfunction in the CA3 region. In contrast, pretreatment with low or high doses of AA or DHA was not effective. These data suggest that pretreatment with both AA and DHA has dose-dependent neuroprotective effects on KA-induced neuronal injury through inhibiting ROS generation and mitochondrial dysfunction.  相似文献   

17.
18.

Background

The endocannabinoid 2-arachidonoyl glycerol (2-AG) acts as a retrograde messenger and modulates synaptic signaling e. g. in the hippocampus. 2-AG also exerts neuroprotective effects under pathological situations. To better understand the mechanism beyond physiological signaling we used Organotypic Entorhino-Hippocampal Slice Cultures (OHSC) and investigated the temporal regulation of 2-AG in different cell subsets during excitotoxic lesion and dendritic lesion of long range projections in the enthorhinal cortex (EC), dentate gyrus (DG) and the cornu ammonis region 1 (CA1).

Results

2-AG levels were elevated 24 h after excitotoxic lesion in CA1 and DG (but not EC) and 24 h after perforant pathway transection (PPT) in the DG only. After PPT diacylglycerol lipase alpha (DAGL) protein, the synthesizing enzyme of 2-AG was decreased when Dagl mRNA expression and 2-AG levels were enhanced. In contrast to DAGL, the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MAGL) showed no alterations in total protein and mRNA expression after PPT in OHSC. MAGL immunoreaction underwent a redistribution after PPT and excitotoxic lesion since MAGL IR disappeared in astrocytes of lesioned OHSC. DAGL and MAGL immunoreactions were not detectable in microglia at all investigated time points. Thus, induction of the neuroprotective endocannabinoid 2-AG might be generally accomplished by down-regulation of MAGL in astrocytes after neuronal lesions.

Conclusion

Increase in 2-AG levels during secondary neuronal damage reflects a general neuroprotective mechanism since it occurred independently in both different lesion models. This intrinsic up-regulation of 2-AG is synergistically controlled by DAGL and MAGL in neurons and astrocytes and thus represents a protective system for neurons that is involved in dendritic reorganisation.  相似文献   

19.
Agents that elevate intracellular cyclic AMP (cAMP) levels promote neuronal survival in a manner independent of neurotrophic factors. Inhibitors of phosphatidylinositol 3 kinase and dominant-inactive mutants of the protein kinase Akt do not block the survival effects of cAMP, suggesting that another signaling pathway is involved. In this report, we demonstrate that elevation of intracellular cAMP levels in rat cerebellar granule neurons leads to phosphorylation and inhibition of glycogen synthase kinase 3beta (GSK-3beta). The increased phosphorylation of GSK-3beta by protein kinase A (PKA) occurs at serine 9, the same site phosphorylated by Akt. Purified PKA is able to phosphorylate recombinant GSK-3beta in vitro. Inhibitors of GSK-3 block apoptosis in these neurons, and transfection of neurons with a GSK-3beta mutant that cannot be phosphorylated interferes with the prosurvival effects of cAMP. These data suggest that activated PKA directly phosphorylates GSK-3beta and inhibits its apoptotic activity in neurons.  相似文献   

20.
Kainic acid (KA) is an excitatory and neurotoxic substance. The role of α-calcitonin gene-related peptide (α-CGRP) in the regulation of KA-induced hippocampal neuronal cell death was investigated in the present study. The intracerebroventricular (i.c.v.) administration with KA (0.07 μg) increased hippocampal α-CGRP mRNA level in ICR mice. The α-CGRP mRNA level began to increase at 1 h, reached at maximal level at 6 and 12 h, and returned to the control level by 24 h after i.c.v. administration with KA. In addition, KA-induced hippocampal CA3 neuronal death in C57BL6 (wild type) group was more pronounced compared to KA-induced hippocampal CA3 pyramidal cell death in α-CGRP knock-out (KO) group. Furthermore, sumatriptan, a CGRP releasing inhibitor, significantly protected the pyramidal cell death in CA3 hippocampal region induced by KA administered i.c.v. in ICR mice. Our results suggest that α-CGRP may play an important role in the regulation of KA-induced pyramidal cell death in CA3 region of the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号