首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
The BTB-Kelch protein Krp1 is highly and specifically expressed in skeletal muscle, where it is proposed to have a role in myofibril formation. We observed significant upregulation of Krp1 in C2 cells early in myoblast differentiation, well before myofibrillogenesis. Krp1 has a role in cytoskeletal organization and cell motility; since myoblast migration and elongation/alignment are important events in early myogenesis, we hypothesized that Krp1 is involved with earlier regulation of differentiation. Krp1 protein levels were detectable by 24 h after induction of differentiation in C2 cells and were significantly upregulated by 48 h, i.e., following the onset myogenin expression and preceding myosin heavy chain (MHC) upregulation. Upregulation of Krp1 required a myogenic stimulus as signaling derived from increased myoblast cell density was insufficient to activate Krp1 expression. Examination of putative Krp1 proximal promoter regions revealed consensus E box elements associated with myogenic basic helix-loop-helix binding. The activity of a luciferase promoter-reporter construct encompassing this 2,000-bp region increased in differentiating C2 myoblasts and in C2 cells transfected with myogenin and/or MyoD. Knockdown of Krp1 via short hairpin RNA resulted in increased C2 cell number and proliferation rate as assessed by bromodeoxyuridine incorporation, whereas overexpression of Krp1-myc had the opposite effect; apoptosis was unchanged. No effects of changed Krp1 protein levels on cell migration were observed, either by scratch wound assay or live cell imaging. Paradoxically, both knockdown and overexpression of Krp1 inhibited myoblast differentiation assessed by expression of myogenin, MEF2C, MHC, and cell fusion.  相似文献   

5.
Sema4C is a member of transmembrane semaphorin proteins which regulate axonal guidance in the developing nervous system. The expression of Sema4C was dramatically induced not only during differentiation of C2C12 mouse myoblasts, but also during injury-induced skeletal muscle regeneration. C2C12 cells stably or transiently expressing Sema4C both showed increased myogenic differentiation reflected by accelerated myotube formation and expression of muscle-specific proteins. Overexpression of Sema4C elicited p38 phosphorylation directly, and the effects of Sema4C during myogenic differentiation could be abolished by the p38alpha-specific inhibitor SB203580. Knockdown of Sema4C by siRNA transfection during C2C12 myoblasts differentiation could suppress the phosphorylation of p38 followed by dramatically diminished myotube formation. Sema4C could activate the myogenin promoter during myogenic differentiation. This activation could be abolished by p38 inhibitor SB203580. Taken together, these observations reveal novel functional potentialities of Sema4C which suggest that Sema4C promotes terminal myogenic differentiation in a p38 MAPK-dependent manner.  相似文献   

6.
7.
8.
A variety of differentiated cell types can be converted to skeletal muscle cells following transfection with the myogenic regulatory gene MyoD1. To determine whether multipotent embryonic stem (ES) cells respond similarly, cultures of two ES cell lines were electroporated with a MyoD1 cDNA driven by the beta-actin promoter. All transfected clones, carrying a single copy of the exogenous gene, expressed high levels of MyoD1 mRNA. Surprisingly, although maintained in mitogen-rich medium, this ectopic expression was associated with a transactivation of the endogenous myogenin and myosin light chain 2 gene but not the endogenous MyoD1, MRF4, Myf5, the skeletal muscle actin, or the myosin heavy chain genes. Preferential myogenesis and the appearance of contracting skeletal muscle fibers were observed only when the transfected cells were allowed to differentiate in vitro, via embryoid bodies, in low-mitogen-containing medium. Myogenesis was associated with the activation of MRF4 and Myf5 genes and resulted in a significant increase in the level of myogenin mRNA. Not all cells were converted to skeletal muscle cells, indicating that only a subset of stem cells can respond to MyoD1. Moreover, the continued expression of the introduced gene was not required for myogenesis. These results show that ES cells can respond to MyoD1, but environmental factors control the expression of its myogenic differentiation function, that MyoD1 functions in ES cells even under environmental conditions that favor differentiation is not dominant (incomplete penetrance), that MyoD1 expression is required for the establishment of the myogenic program but not for its maintenance, and that the exogenous MyoD1 gene can trans-activate the endogenous myogenin and MLC2 genes in undifferentiated ES cells.  相似文献   

9.
10.
11.
12.
13.
UCP2 and UCP3 are members of the uncoupling protein family, which may play roles in energy homeostasis. In order to determine the regulation of the predominant expression of UCP3 in skeletal muscle, the effects of differentiation and myogenic regulatory factors on the promoter activities of the mouse UCP2 and UCP3 genes were studied. Reporter plasmids, containing approximately 3 kb of the 5'-upstream region of the mouse UCP2 and UCP3 genes, were transfected into C2C12 myoblasts, which were then induced to differentiate. Differentiation positively induced the reporter expression about 20-fold via the UCP3 promoter, but by only 2-fold via the UCP2 promoter. C2C12 myoblasts were cotransfected with expression vectors for myogenin and/or MyoD as well as reporter constructs. The simultaneous expression of myogenin and MyoD caused an additional 20-fold increase in the reporter expression via the UCP3 promoter, but only a weak effect via the UCP2 promoter. In L6 myoblasts, only MyoD activated the UCP3 promoter, but in 3T3-L1 cells neither factor activated the UCP3 promoter, indicating that additional cofactors are required, which are present only in C2C12 myoblasts. The expression of UCP2 and UCP3 is differentially regulated during muscle differentiation due to the different responsiveness of their promoter regions to myogenin and MyoD.  相似文献   

14.
15.
16.
cis-4-Hydroxy-L-proline (cis-OH-Pro) and ethyl-3,4-dihydroxybenzoate (EDHB), two distinct inhibitors of collagen synthesis, prevented myogenesis in C2C12 mouse skeletal muscle cells. Both inhibitors blocked myotube formation and the expression of sarcomeric myosin heavy chain. Northern blot analysis showed that cis-OH-Pro- and EDHB-treated C2C12 muscle cells did not express the myogenic regulatory genes, MyoD1 and myogenin, but continued to express non-muscle isoforms of actin (beta and gamma) and alpha-tropomyosin. 10TFL2-3B cells, a C3H10T1/2 cell line permanently transfected with myogenin cDNA, constitutively expressed exogenous myogenin in the presence of cis-OH-Pro but failed to activate endogenous myogenin and to undergo myogenesis. These results demonstrate that commitment to terminal differentiation and activation of myogenic regulatory genes requires active synthesis of the extracellular matrix component collagen.  相似文献   

17.
18.
19.
Fibroblast growth factor-inducible 14 (Fn14), distantly related to tumor necrosis factor receptor superfamily and a receptor for TWEAK cytokine, has been implicated in several biological responses. In this study, we have investigated the role of Fn14 in skeletal muscle formation in vitro. Flow cytometric and Western blot analysis revealed that Fn14 is highly expressed on myoblastic cell line C2C12 and mouse primary myoblasts. The expression of Fn14 was decreased upon differentiation of myoblasts into myotubes. Suppression of Fn14 expression using RNA interference inhibited the myotube formation in both C2C12 and primary myoblast cultures. Fn14 was required for the transactivation of skeletal alpha-actin promoter and the expression of specific muscle proteins such as myosin heavy chain fast type and creatine kinase. RNA interference-mediated knockdown of Fn14 receptor in C2C12 myoblasts decreased the levels of myogenic regulatory factors MyoD and myogenin upon induction of differentiation. Conversely, overexpression of MyoD increased differentiation in Fn14-knockdown C2C12 cultures. Suppression of Fn14 expression in C2C12 myoblasts also inhibited the differentiation-associated increase in the activity of serum response factor and RhoA GTPase. In addition, our data suggest that the role of Fn14 during myogenic differentiation could be independent of TWEAK cytokine. Collectively, our study suggests that the Fn14 receptor is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes.  相似文献   

20.
Transforming growth factor beta 1 (TGF-beta 1) is an inhibitor of skeletal muscle myoblast differentiation. Myoblast differentiation is dependent on the expression of certain myogenic differentiation genes and is affected by cell interaction with the extracellular matrix. We have searched for events in the differentiation process of L6E9 rat myoblasts that may be involved in the inhibitory action of TGF-beta 1. Elevated expression of the myogenic differentiation gene, myogenin, which is thought to play a central role in the differentiation process, occurs 10 h after the shift of L6E9 myoblasts to differentiation medium. Elevation of myogenin mRNA is blocked by TGF-beta 1 added at the time of the shift. This effect is preceded by, and might be related to, a rapid up-regulation of junB mRNA observed in TGF-beta 1-treated L6E9 myoblasts. However, TGF-beta 1 can also block myogenic differentiation in cells transfected with the myogenin gene under the control of a constitutive SV40 viral promoter. The nature of a mechanism that could mediate the inhibitory action of TGF-beta 1 without blocking myogenin mRNA expression is suggested by the observations that (a) TGF-beta 1 upregulates type I collagen expression and deposition in L6E9 myoblasts, (b) a fibrillar type I collagen layer inhibits L6E9 myoblast differentiation, and (c) inhibition of L6E9 myoblast differentiation by a type I collagen layer occurs without a block in myogenin expression. Thus, the data suggest that inhibition of L6E9 myoblast differentiation by TGF-beta 1 may be accomplished by at least two mechanisms acting in concert. One mechanism leads to a block in the expression of myogenin whereas the other mechanism may involve TGF-beta 1-induced changes in cell adhesion that either block the action of myogenic differentiation gene products or prevent the function of other as yet unknown components of the myogenic differentiation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号