首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many avian species exhibit an extraordinary ability to exercise under hypoxic condition compared with mammals, and more efficient pulmonary O(2) transport has been hypothesized to contribute to this avian advantage. We studied six emus (Dromaius novaehollandaie, 4-6 mo old, 25-40 kg) at rest and during treadmill exercise in normoxia and hypoxia (inspired O(2) fraction approximately 0.13). The multiple inert gas elimination technique was used to measure ventilation-perfusion (V/Q) distribution of the lung and calculate cardiac output and parabronchial ventilation. In both normoxia and hypoxia, exercise increased arterial Po(2) and decreased arterial Pco(2), reflecting hyperventilation, whereas pH remained unchanged. The V/Q distribution was unimodal, with a log standard deviation of perfusion distribution = 0.60 +/- 0.06 at rest; this did not change significantly with either exercise or hypoxia. Intrapulmonary shunt was <1% of the cardiac output in all conditions. CO(2) elimination was enhanced by hypoxia and exercise, but O(2) exchange was not affected by exercise in normoxia or hypoxia. The stability of V/Q matching under conditions of hypoxia and exercise may be advantageous for birds flying at altitude.  相似文献   

2.
Hyperoxia has been shown to attenuate the increase in pulmonary artery (PA) pressure associated with immersed exercise in thermoneutral water, which could serve as a possible preventive strategy for the development of immersion pulmonary edema (IPE). We tested the hypothesis that the same is true during exercise in cold water. Six healthy volunteers instrumented with arterial and PA catheters were studied during two 16-min exercise trials during prone immersion in cold water (19.9-20.9°C) in normoxia [0.21 atmospheres absolute (ATA)] and hyperoxia (1.75 ATA) at 4.7 ATA. Heart rate (HR), Fick cardiac output (CO), mean arterial pressure (MAP), pulmonary artery pressure (PAP), pulmonary artery wedge pressure (PAWP), central venous pressure (CVP), arterial and venous blood gases, and ventilatory parameters were measured both early (E, 5-6 min) and late (L, 15-16 min) in exercise. During exercise at an average oxygen consumption rate (Vo(2)) of 2.38 l/min, [corrected] CO, CVP, and pulmonary vascular resistance were not affected by inspired (Vo(2)) [corrected] or exercise duration. Minute ventilation (Ve), alveolar ventilation (Va), and ventilation frequency (f) were significantly lower in hyperoxia compared with normoxia (mean ± SD: Ve 58.8 ± 8.0 vs. 65.1 ± 9.2, P = 0.003; Va 40.2 ± 5.4 vs. 44.2 ± 9.0, P = 0.01; f 25.4 ± 5.4 vs. 27.2 ± 4.2, P = 0.04). Mixed venous pH was lower in hyperoxia compared with normoxia (7.17 ± 0.07 vs. 7.20 ± 0.07), and this result was significant early in exercise (P = 0.002). There was no difference in mean PAP (MPAP: 28.28 ± 8.1 and 29.09 ± 14.3 mmHg) or PAWP (18.0 ± 7.6 and 18.7 ± 8.7 mmHg) between normoxia and hyperoxia, respectively. PAWP decreased from early to late exercise in hyperoxia (P = 0.002). These results suggest that the increase in pulmonary vascular pressures associated with cold water immersion is not attenuated with hyperoxia.  相似文献   

3.
Expired gas concentrations were measured during a multibreath washin of He in one female and seven male subjects at rest (seated) and during cycle exercise at work rates of 70-210 W. In a computational model, the ventilation distribution was represented as a log-normal distribution with standard deviation (sigmaV); values of sigmaV were obtained by fitting the output of the model to the data. At rest, sigmaV was 0.89 +/- 0.18; during exercise, sigmaV was 0.60 +/- 0.13, independent of the level of exercise. These values for the width of the functional ventilation distribution at the scale of the acinus are approximately two times larger than those obtained from anatomic measurements in animals at a scale of 1 cm3. The values for sigmaV, together with data from the literature on the width of the functional ventilation-perfusion distribution, show that ventilation and perfusion are highly correlated at rest, in agreement with anatomic data. The structural sources of nonuniform ventilation and perfusion and of the correlation between them are unknown.  相似文献   

4.
Previous studies (J. Appl. Physiol. 58: 978-988 and 989-995, 1985) have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during heavy exercise at sea level and during hypobaric hypoxia in a chamber [fractional inspired O2 concentration (FIO2) = 0.21, minimum barometric pressure (PB) = 429 Torr, inspired O2 partial pressure (PIO2) = 80 Torr]. We used the multiple inert gas elimination technique to compare gas exchange during exercise under normobaric hypoxia (FIO2 = 0.11, PB = 760 Torr, PIO2 = 80 Torr) with earlier hypobaric measurements. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate (HR), minute ventilation, respiratory rate (RR), and blood temperature were recorded at rest and during steady-state exercise in 10 normal subjects in the following order: rest, air; rest, 11% O2; light exercise (75 W), 11% O2; intermediate exercise (150 W), 11% O2; heavy exercise (greater than 200 W), 11% O2; heavy exercise, 100% O2 and then air; and rest 20 minutes postexercise, air. VA/Q inequality increased significantly during hypoxic exercise [mean log standard deviation of perfusion (logSDQ) = 0.42 +/- 0.03 (rest) and 0.67 +/- 0.09 (at 2.3 l/min O2 consumption), P less than 0.01]. VA/Q inequality was improved by relief of hypoxia (logSDQ = 0.51 +/- 0.04 and 0.48 +/- 0.02 for 100% O2 and air breathing, respectively). Diffusion limitation for O2 was evident at all exercise levels while breathing 11% O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Hypoxic pulmonary vasoconstriction (HPV) serves to maintain optimal gas exchange by decreasing perfusion to hypoxic regions. However, global hypoxia and nonuniform HPV may result in overperfusion of poorly constricted regions leading to local edema seen in high-altitude pulmonary edema. To quantify the spatial distribution of HPV and its response to regional Po2 (Pr(O2)) among small lung regions, five pigs were anesthetized and mechanically ventilated in the supine posture. The animals were ventilated with an inspired O2 fraction (Fi(O2)) of 0.50 and 0.21 and then (in random order) 0.15, 0.12, and 0.09. Regional blood flow (Q) and alveolar ventilation (Va) were measured by using intravenous infusion of 15 microm and inhalation of 1-microm fluorescent microspheres, respectively. Pr(O2) was calculated for each piece at each Fi(O2). Lung pieces differed in their Q response to hypoxia in a manner related to their initial Va/Q with Fi(O2) = 0.21. Reducing Fi(O2) < 0.15 decreased Q to the initially high Va/Q (higher Pr(O2)) regions and forced Q into the low Va/Q (dorsal-caudal) regions. Resistance increased in most lung pieces as Pr(O2) decreased, reaching a maximum resistance when Pr(O2) is between 40 and 50 Torr. Local resistance decreased at PrO2 < 40 Torr. Pieces were statistically clustered with respect to their relative Q response pattern to each Fi(O2). Some clusters were shown to be spatially organized. We conclude that HPV is spatially heterogeneous. The heterogeneity of Q response may be related, in part, to the heterogeneity of baseline Va/Q.  相似文献   

6.
We studied the roles of endothelins in determining ventilation (Va) and perfusion (Q) mismatch in a porcine model of acute pulmonary thromboembolism (APTE), using a nonspecific endothelin antagonist, tezosentan. Nine anesthetized piglets (approximately 23 kg) received autologous clots (approximately 20 g) via a central venous catheter at time = 0 min. The distribution of Va and Q at five different time points (-30, -5, 30, 60, 120 min) was mapped by fluorescent microspheres of 10 different colors. Five piglets (group 1) received tezosentan (courtesy of Actelion) starting at time = 40 min for 2 h, and four piglets (group 2) received only saline and served as control. Our results showed that, in all of the animals at 30 min following APTE but before tezosentan, the mean Va/Q was increased, as was Va/Q heterogeneity (log SD Va/Q), which represented a widening of its main peak. Afterwards, tezosentan attenuated the pulmonary hypertension in group 1 but also produced moderate systemic hypotension. However, it did not improve arterial PO2 or Va/Q mismatch. We concluded that endothelin antagonism had minimal impact on gas exchange following APTE and confirmed our earlier observation that the main mechanism for hypoxemia in APTE was due to the mechanical redistribution of pulmonary regional blood flow away from the embolized vessels, resulting in the creation of many divergent low and high Va/Q regions.  相似文献   

7.
The analysis of the gas in a single expirate has long been used to estimate the degree of ventilation-perfusion (Va/Q) inequality in the lung. To further validate this estimate, we examined three measures of Va/Q inhomogeneity calculated from a single full exhalation in nine anesthetized mongrel dogs under control conditions and after exposure to aerosolized methacholine. These measurements were then compared with arterial blood gases and with measurements of Va/Q inhomogeneity obtained using the multiple inert gas elimination technique. The slope of the instantaneous respiratory exchange ratio (R slope) vs. expired volume was poorly correlated with independent measures, probably because of the curvilinear nature of the relationship due to continuing gas exchange. When R was converted to the intrabreath Va/Q (iV/Q), the best index was the slope of iV/Q vs. volume over phase III (iV/Q slope). This was strongly correlated with independent measures, especially those relating to inhomogeneity of perfusion. The correlations for iV/Q slope and R slope considerably improved when only the first half of phase III was considered. We conclude that a useful noninvasive measurement of Va/Q inhomogeneity can be derived from the intrabreath respiratory exchange ratio.  相似文献   

8.
Hypoxic pulmonary vasoconstriction (HPV) is known to affect regional pulmonary blood flow distribution. It is unknown whether lungs with well-matched ventilation (V)/perfusion (Q) have regional differences in the HPV response. Five prone pigs were anesthetized and mechanically ventilated (positive end-expiratory pressure = 2 cmH2O). Two hypoxic preconditions [inspired oxygen fraction (FI(O2)) = 0.13] were completed to stabilize the animal's hypoxic response. Regional pulmonary blood Q and V distribution was determined at various FI(O2) (0.21, 0.15, 0.13, 0.11, 0.09) using the fluorescent microsphere technique. Q and V in the lungs were quantified within 2-cm3 lung pieces. Pieces were grouped, or clustered, based on the changes in blood flow when subjected to increasing hypoxia. Unique patterns of Q response to hypoxia were seen within and across animals. The three main patterns (clusters) showed little initial difference in V/Q matching at room air where the mean V/Q range was 0.92-1.06. The clusters were spatially located in cranial, central, and caudal portions of the lung. With decreasing FI(O2), blood flow shifted from the cranial to caudal regions. We determined that pulmonary blood flow changes, caused by HPV, produced distinct response patterns that were seen in similar regions across our prone porcine model.  相似文献   

9.
Pulmonary gas exchange in humans during exercise at sea level   总被引:3,自引:0,他引:3  
Previous studies have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during exercise at simulated altitude and suggested that similar changes could occur even at sea level. We used the multiple-inert gas-elimination technique to further study gas exchange during exercise in healthy subjects at sea level. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate, minute ventilation, respiratory rate, and blood temperature were recorded at rest and during steady-state exercise in the following order: rest, minimal exercise (75 W), heavy exercise (300 W), heavy exercise breathing 100% O2, repeat rest, moderate exercise (225 W), and light exercise (150 W). Alveolar-to-arterial O2 tension difference increased linearly with O2 uptake (VO2) (6.1 Torr X min-1 X 1(-1) VO2). This could be fully explained by measured VA/Q inequality at mean VO2 less than 2.5 l X min-1. At higher VO2, the increase in alveolar-to-arterial O2 tension difference could not be explained by VA/Q inequality alone, suggesting the development of diffusion limitation. VA/Q inequality increased significantly during exercise (mean log SD of perfusion increased from 0.28 +/- 0.13 at rest to 0.58 +/- 0.30 at VO2 = 4.0 l X min-1, P less than 0.01). This increase was not reversed by 100% O2 breathing and appeared to persist at least transiently following exercise. These results confirm and extend the earlier suggestions (8, 21) of increasing VA/Q inequality and O2 diffusion limitation during heavy exercise at sea level in normal subjects and demonstrate that these changes are independent of the order of performance of exercise.  相似文献   

10.
Exertional dyspnea limits exercise in some mitochondrial myopathy (MM) patients, but the clinical features of this syndrome are poorly defined, and its underlying mechanism is unknown. We evaluated ventilation and arterial blood gases during cycle exercise and recovery in five MM patients with exertional dyspnea and genetically defined mitochondrial defects, and in four control subjects (C). Patient ventilation was normal at rest. During exercise, MM patients had low Vo(2peak) (28 ± 9% of predicted) and exaggerated systemic O(2) delivery relative to O(2) utilization (i.e., a hyperkinetic circulation). High perceived breathing effort in patients was associated with exaggerated ventilation relative to metabolic rate with high VE/VO(2peak), (MM = 104 ± 18; C = 42 ± 8, P ≤ 0.001), and Ve/VCO(2peak)(,) (MM = 54 ± 9; C = 34 ± 7, P ≤ 0.01); a steeper slope of increase in ΔVE/ΔVCO(2) (MM = 50.0 ± 6.9; C = 32.2 ± 6.6, P ≤ 0.01); and elevated peak respiratory exchange ratio (RER), (MM = 1.95 ± 0.31, C = 1.25 ± 0.03, P ≤ 0.01). Arterial lactate was higher in MM patients, and evidence for ventilatory compensation to metabolic acidosis included lower Pa(CO(2)) and standard bicarbonate. However, during 5 min of recovery, despite a further fall in arterial pH and lactate elevation, ventilation in MM rapidly normalized. These data indicate that exertional dyspnea in MM is attributable to mitochondrial defects that severely impair muscle oxidative phosphorylation and result in a hyperkinetic circulation in exercise. Exaggerated exercise ventilation is indicated by markedly elevated VE/VO(2), VE/VCO(2), and RER. While lactic acidosis likely contributes to exercise hyperventilation, the fact that ventilation normalizes during recovery from exercise despite increasing metabolic acidosis strongly indicates that additional, exercise-specific mechanisms are responsible for this distinctive pattern of exercise ventilation.  相似文献   

11.
The relative roles of ventilation-perfusion (VA/Q) inequality, alveolar-capillary diffusion resistance, postpulmonary shunt, and gas phase diffusion limitation in determining arterial PO2 (PaO2) were assessed in nine normal unacclimatized men at rest and during bicycle exercise at sea level and three simulated altitudes (5,000, 10,000, and 15,000 ft; barometric pressures = 632, 523, and 429 Torr). We measured mixed expired and arterial inert and respiratory gases, minute ventilation, and cardiac output. Using the multiple inert gas elimination technique, PaO2 and the arterial O2 concentration expected from VA/Q inequality alone were compared with actual values, lower measured PaO2 indicating alveolar-capillary diffusion disequilibrium for O2. At sea level, alveolar-arterial PO2 differences were approximately 10 Torr at rest, increasing to approximately 20 Torr at a metabolic consumption of O2 (VO2) of 3 l/min. There was no evidence for diffusion disequilibrium, similar results being obtained at 5,000 ft. At 10 and 15,000 ft, resting alveolar-arterial PO2 difference was less than at sea level with no diffusion disequilibrium. During exercise, alveolar-arterial PO2 difference increased considerably more than expected from VA/Q mismatch alone. For example, at VO2 of 2.5 l/min at 10,000 ft, total alveolar-arterial PO2 difference was 30 Torr and that due to VA/Q mismatch alone was 15 Torr. At 15,000 ft and VO2 of 1.5 l/min, these values were 25 and 10 Torr, respectively. Expected and actual PaO2 agreed during 100% O2 breathing at 15,000 ft, excluding postpulmonary shunt as a cause of the larger alveolar-arterial O2 difference than accountable by inert gas exchange.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Eight normal subjects were decompressed to barometric pressure (PB) = 240 Torr over 40 days. The ventilation-perfusion (VA/Q) distribution was estimated at rest and during exercise [up to 80-90% maximal O2 uptake (VO2 max)] by the multiple inert gas elimination technique at sea level and PB = 428, 347, 282, and 240 Torr. The dispersion of the blood flow distribution increased by 64% from rest to 281 W, at both sea level and at PB = 428 Torr (heaviest exercise 215 W). At PB = 347 Torr, the increase was 79% (rest to 159 W); at PB = 282 Torr, the increase was 112% (108 W); and at PB = 240 Torr, the increase was 9% (60 W). There was no significant correlation between the dispersion and cardiac output, ventilation, or pulmonary arterial wedge pressure, but there was a correlation between the dispersion and mean pulmonary arterial pressure (r = 0.49, P = 0.02). When abnormal, the VA/Q pattern generally had perfusion in lung units of zero or near zero VA/Q combined with units of normal VA/Q. Alveolar-end-capillary diffusion limitation of O2 uptake (VO2) was observed at VO2 greater than 3 l/min at sea level, greater than 1-2 l/min VO2 at PB = 428 and 347 Torr, and at higher altitudes, at VO2 less than or equal to 1 l/min. These results show variable but increasing VA/Q mismatch with long-term exposure to both altitude and exercise. The VA/Q pattern and relationship to pulmonary arterial pressure are both compatible with alveolar interstitial edema as the primary cause of inequality.  相似文献   

13.
Ventilation-perfusion (VA/Q) inequality has been shown to increase with exercise. Potential mechanisms for this increase include nonuniform pulmonary vasoconstriction, ventilatory time constant inequality, reduced large airway gas mixing, and development of interstitial pulmonary edema. We hypothesized that persistence of VA/Q mismatch after ventilation and cardiac output subside during recovery would be consistent with edema; however, rapid resolution would suggest mechanisms related to changes in ventilation and blood flow per se. Thirteen healthy males performed near-maximal cycle ergometry at an inspiratory PO2 of 91 Torr (because hypoxia accentuates VA/Q mismatch on exercise). Cardiorespiratory variables and inert gas elimination patterns were measured at rest, during exercise, and between 2 and 30 min of recovery. Two profiles of VA/Q distribution behavior emerged during heavy exercise: in group 1 an increase in VA/Q mismatch (log SDQ of 0.35 +/- 0.02 at rest and 0.44 +/- 0.02 at exercise; P less than 0.05, n = 7) and in group 2 no change in VA/Q mismatch (n = 6). There were no differences in anthropometric data, work rate, O2 uptake, or ventilation during heavy exercise between groups. Group 1 demonstrated significantly greater VA/Q inequality, lower vital capacity, and higher forced expiratory flow at 25-75% of forced vital capacity for the first 20 min during recovery than group 2. Cardiac index was higher in group 1 both during heavy exercise and 4 and 6 min postexercise. However, both ventilation and cardiac output returned toward baseline values more rapidly than did VA/Q relationships. Arterial pH was lower in group 1 during exercise and recovery. We conclude that greater VA/Q inequality in group 1 and its persistence during recovery are consistent with the hypothesis that edema occurs and contributes to the increase in VA/Q inequality during exercise. This is supported by observation of greater blood flows and acidosis and, presumably therefore, higher pulmonary vascular pressures in such subjects.  相似文献   

14.
The ratios of ventilatory (V) and perfusion (Q) flow rates in the lung are to a large extent responsible for the efficiency of gas exchange. In a simplified monocompartmental model of the lung, the arterial partial pressure of a given gas (Pa) is a function of several factors: the solubility of this gas in blood, its venous and inspired partial pressures and the V/Q ratio. In a multicompartemental model, the mean arterial partial pressure of the gas is a function of the individual values of Pa in each compartment as well as the distribution of V/Q ratios in the lung and the relationship between the concentration and the partial pressure of the gas. The heterogeneity of the distribution of V/Q results from those of both V and Q. Two factors are mainly responsible for this heterogeneity: the gravity and the morphometric characteristics of bronchi and vessels. V/Q ratios are partially controlled at least in low V/Q compartments since hypoxia in these compartments leads to pulmonary arteriolar vasoconstriction. However lungs V/Q ratios range from 0.1 to 10 with a mode around 1. Age, muscular exercise, posture, accelerations, anesthesia, O2 breathing, pulmonary pathology are factors which may alter the distribution of V/Q ratios.  相似文献   

15.
The causes of exercise-induced hypoxemia (EIH) remain unclear. We studied the mechanisms of EIH in highly trained cyclists. Five subjects had no significant change from resting arterial PO(2) (Pa(O(2)); 92.1 +/- 2.6 Torr) during maximal exercise (C), and seven subjects (E) had a >10-Torr reduction in Pa(O(2)) (81.7 +/- 4.5 Torr). Later, they were studied at rest and during various exercise intensities by using the multiple inert gas elimination technique in normoxia and hypoxia (13.2% O(2)). During normoxia at 90% peak O(2) consumption, Pa(O(2)) was lower in E compared with C (87 +/- 4 vs. 97 +/- 6 Torr, P < 0.001) and alveolar-to-arterial O(2) tension difference (A-aDO(2)) was greater (33 +/- 4 vs. 23 +/- 1 Torr, P < 0. 001). Diffusion limitation accounted for 23 (E) and 13 Torr (C) of the A-aDO(2) (P < 0.01). There were no significant differences between groups in arterial PCO(2) (Pa(CO(2))) or ventilation-perfusion (VA/Q) inequality as measured by the log SD of the perfusion distribution (logSD(Q)). Stepwise multiple linear regression revealed that lung O(2) diffusing capacity (DL(O(2))), logSD(Q), and Pa(CO(2)) each accounted for approximately 30% of the variance in Pa(O(2)) (r = 0.95, P < 0.001). These data suggest that EIH has a multifactorial etiology related to DL(O(2)), VA/Q inequality, and ventilation.  相似文献   

16.
The supine pulmonary venous admixture (shunt) has been measured at Cerro de Pasco, 4,350 m altitude in eight subjects native to high altitude (HAN) under resting condition. Alveolar-arterial O2 tension difference (AaDO2) was also determined at rest and during exercise. The same subjects were studied again after 10 days' sojourn at sea level in Lima at 150 m altitude. They were compared with four subjects from sea level (SLN) who were studied first at Lima and after 2 and 10 days at Cerro de Pasco. At altitude, AaDO2 was smaller in HAN than SLN both at rest and during exercise. Shunt was the same in both groups. It is concluded that HAN show more even ventilation/perfusion relationship (VA/Q) at altitude, probably due to their high pulmonary artery pressure. On the contrary, SLN show less even VA/Q on altitude exposure, since their shunt decreased 37%. At sea level, HAN increased their AaDO2 due partially to an increase of 110% in their shunt, and in part due to less even VA/Q as shown by augmented VD/VT ratios. Each group tended to have a more effective gas exchange in its own environment.  相似文献   

17.
We propose a model to measure both regional ventilation (V) and perfusion (Q) in which the regional radiodensity (RD) in the lung during xenon (Xe) washin is a function of regional V (increasing RD) and Q (decreasing RD). We studied five anesthetized, paralyzed, mechanically ventilated, supine sheep. Four 2.5-mm-thick computed tomography (CT) images were simultaneously acquired immediately cephalad to the diaphragm at end inspiration for each breath during 3 min of Xe breathing. Observed changes in RD during Xe washin were used to determine regional V and Q. For 16 mm(3), Q displayed more variance than V: the coefficient of variance of Q (CV(Q)) = 1.58 +/- 0.23, the CV of V (CV(V)) = 0.46 +/- 0.07, and the ratio of CV(Q) to CV(V) = 3.5 +/- 1.1. CV(Q) (1.21 +/- 0.37) and the ratio of CV(Q) to CV(V) (2.4 +/- 1.2) were smaller at 1,000-mm(3) scale, but CV(V) (0.53 +/- 0.09) was not. V/Q distributions also displayed scale dependence: log SD of V and log SD of Q were 0.79 +/- 0.05 and 0.85 +/- 0.10 for 16-mm(3) and 0.69 +/- 0.20 and 0.67 +/- 0.10 for 1,000-mm(3) regions of lung, respectively. V and Q measurements made with CT and Xe also demonstrate vertically oriented and isogravitational heterogeneity, which are described using other methodologies. Sequential images acquired by CT during Xe breathing can be used to determine both regional V and Q noninvasively with high spatial resolution.  相似文献   

18.
During short-term maximal exercise,horses have impaired pulmonary gas exchange, manifested by diffusionlimitation and arterial hypoxemia, without marked ventilation-perfusion(A/)inequality. Whether gas exchange deteriorates progressively duringprolonged submaximal exercise has not been investigated. Sixthoroughbred horses performed treadmill exercise at ~60% of maximaloxygen uptake until exhaustion (28-39 min). Multipleinert gas, blood-gas, hemodynamic, metabolic rate, and ventilatory datawere obtained at rest and 5-min intervals during exercise. Oxygenuptake, cardiac output, and alveolar-arterialPO2 gradient were unchanged after thefirst 5 min of exercise. Alveolar ventilation increased progressivelyduring exercise, from increased tidal volume and respiratory frequency,resulting in an increase in arterialPO2 and decrease in arterialPCO2. At rest there was minimal A/inequality, log SD of the perfusion distribution (logSD) = 0.20. This doubled by 5 min of exercise (logSD = 0.40) butdid not increase further. There was no evidence of alveolar-end-capillary diffusion limitation during exercise. However, there was evidence for gas-phase diffusion limitation at all time points, and enflurane was preferentially overretained. Horses maintainexcellent pulmonary gas exchange during exhaustive, submaximal exercise. AlthoughA/inequality is greater than at rest, it is less than observed in mostmammals and the effect on gas exchange is minimal.

  相似文献   

19.
Quantification of regional V/Q ratios in humans by use of PET. I. Theory   总被引:1,自引:0,他引:1  
With positron emission tomography, quantitative measurements of regional alveolar and mixed venous concentrations of positron-emitting radioisotopes can be made within a transaxial section through the thorax. This allows the calculation of regional ventilation-to-perfusion (V/Q) ratios by use of established tracer dilution theory and the constant intravenous infusion of 13N. This paper considers the effect of the inspiration of dead-space gas on regional V/Q and investigates the relationship between the measured V/Q, physiological V/Q, and V/Q defined conventionally in terms of bulk gas flow (VA/Q). Ventilation has been described in terms of net gas transport, and the term effective ventilation has been introduced. A simple two-compartment model has been constructed to allow for the reinspiration of regional (or personal) and common dead-space gas. By use of this model, with parameters representative of normal lung the effective V/Q ratio for 13N [(VA/Q)eff(13N)] is shown to overestimate VA/Q by 18% when VA/Q = 0.1 but underestimate VA/Q by 68% when VA/Q = 10. For physiological gases, the model predicts that the behavior of O2 should be similar to that of 13N, so that, in terms of gas transport, V/Q ratios obtained using the infusion of 13N closely follow those for O2. Values of the effective V/Q ratio for CO2 [(VA/Q)eff(CO2)] lie approximately halfway between (VA/Q)eff(13N) and VA/Q. These results indicate that dead-space ventilation is far less a confounding issue when V/Q is considered in terms of net gas transport (VAeff), rather than bulk flow (VA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Using positron emission tomography (PET) and intravenously injected (13)N(2), we assessed the topographical distribution of pulmonary perfusion (Q) and ventilation (V) in six healthy, spontaneously breathing subjects in the supine and prone position. In this technique, the intrapulmonary distribution of (13)N(2), measured during a short apnea, is proportional to regional Q. After resumption of breathing, regional specific alveolar V (sVA, ventilation per unit of alveolar gas volume) can be calculated from the tracer washout rate. The PET scanner imaged 15 contiguous, 6-mm-thick, slices of lung. Vertical gradients of Q and sVA were computed by linear regression, and spatial heterogeneity was assessed from the squared coefficient of variation (CV(2)). Both CV and CV were corrected for the estimated contribution of random imaging noise. We found that 1) both Q and V had vertical gradients favoring dependent lung regions, 2) vertical gradients were similar in the supine and prone position and explained, on average, 24% of Q heterogeneity and 8% of V heterogeneity, 3) CV was similar in the supine and prone position, and 4) CV was lower in the prone position. We conclude that, in recumbent, spontaneously breathing humans, 1) vertical gradients favoring dependent lung regions explain a significant fraction of heterogeneity, especially of Q, and 2) although Q does not seem to be systematically more homogeneous in the prone position, differences in individual behaviors may make the prone position advantageous, in terms of V-to-Q matching, in selected subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号