共查询到20条相似文献,搜索用时 15 毫秒
1.
Ana María Perdomo-Arciniegas Manuel Elkin Patarroyo Jean-Paul Vernot 《International journal of peptide research and therapeutics》2008,14(1):64-74
Protein kinase C (PKC) participates in a myriad of cellular processes. Protein kinase C isoforms play different roles based
on their cellular expression balance and activation. The activity of classical PKC isoforms has been shown to be crucial for
immune cell population homeostasis, playing a positive role in survival and proliferation. Protein kinase C inhibitors have
been used for conditions where up-regulated PKC results in a pathological state. The most commonly investigated PKC inhibitors
are highly effective in inhibiting PKC function but they are relatively unspecific, some of them even inhibiting other kinase
families. Protein kinase C pseudosubstrates are auto-inhibitory domains which have been used to inhibit more specifically
PKC in vitro but they do not freely penetrate cells. This could be resolved by using cell-permeable PKC pseudosubstrates which
would more accurately modulate cellular PKC activity and PKC-related functions in intact cells. Here we show the development
of a chimeric peptide inhibitor of classical PKC isoforms, consisting of a cell permeable sequence and a pseudosubstrate sequence
which was able to translocate into cells, inhibiting PKC kinase activity and PKC T-cell-specific substrate phosphorylation.
We also demonstrate a dramatic reduction in T-cell proliferation at high chimeric peptide concentration; this was attributed
to apoptosis induction, as demonstrated by cell shrinking, phosphatidylserine exposure and DNA fragmentation. As expected,
the control peptide (pseudosubstrate) did not penetrate cells, affect cell proliferation or survival. We also show that a
neoplastic T-cell line which expresses higher levels of PKC is more resistant to chimeric peptide-mediated cell death than
normal cells, corroborating a PKC role in apoptosis resistance. This chimeric peptide could be useful for the specific modulation
of the PKC signalling pathway in pathological conditions. 相似文献
2.
本文由兔脑细胞质可溶部分分离纯化了蛋白激酶C,测得该酶分子量为79.2kD,最适pH为6.5,最适反应温度为20℃,热不稳定,即使在4℃下,24h就丧失活力50%,同时观察了蛋白激酶C的抑制剂H_7对酶活力的影响。 相似文献
3.
Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis. 相似文献
4.
Yang Yang Chenji Wang Pingzhao Zhang Kun Gao Dejie Wang Hongxiu Yu Ting Zhang Sirui Jiang Saiyin Hexige Zehui Hong Akira Yasui Jun O. Liu Haojie Huang Long Yu 《The Journal of biological chemistry》2013,288(1):529-539
Polycomb group protein PHF1 is well known as a component of a novel EED-EZH2·Polycomb repressive complex 2 complex and plays important roles in H3K27 methylation and Hox gene silencing. PHF1 is also involved in the response to DNA double-strand breaks in human cells, promotes nonhomologous end-joining processes through interaction with Ku70/Ku80. Here, we identified another function of PHF1 as a potential p53 pathway activator in a pathway screen using luminescence reporter assay. Subsequent studies showed PHF1 directly interacts with p53 proteins both in vivo and in vitro and co-localized in nucleus. PHF1 binds to the C-terminal regulatory domain of p53. Overexpression of PHF1 elevated p53 protein level and prolonged its turnover. Knockdown of PHF1 reduced p53 protein level and its target gene expression both in normal state and DNA damage response. Mechanically, PHF1 protects p53 proteins from MDM2-mediated ubiquitination and degradation. Furthermore, we showed that PHF1 regulates cell growth arrest and etoposide-induced apoptosis in a p53-dependent manner. Finally, PHF1 expression was significantly down-regulated in human breast cancer samples. Taken together, we establish PHF1 as a novel positive regulator of the p53 pathway. These data shed light on the potential roles of PHF1 in tumorigenesis and/or tumor progression. 相似文献
5.
Ken Ohnishi Xinjiang Wang Akihisa Takahashi Takeo Ohnishi 《Experimental cell research》1998,238(2):399
To examine whether protein kinase C (PKC) contributes to p53-dependent WAF1 induction after heat treatment, the effects of calphostin C (CAL), a specific inhibitor of PKC, on WAF1 induction were analyzed by PKC activity and gel mobility-shift assays and Western blot analysis in human glioblastoma cell lines. Heat-induced accumulation of WAF1 in A-172 cells carrying wild-typep53(wtp53) was suppressed by CAL in a dose-dependent manner. In T98G cells carrying mutantp53(mp53), no significant accumulation of WAF1 was observed after heat treatment and CAL exerted no significant effects on this response of T98G cells. In accordance with the accumulation of WAF1, heat-induced activation of the binding ability of p53 to p53 consensus sequence (p53 CON) was suppressed by CAL in A-172 cells but no DNA-binding activity was observed in the mp53 in T98G cells. PKC in A-172 cells was activated rapidly (within 5 min) after heat treatment in the membrane fraction but not in the cytosolic fraction. When the cell lines were treated with the PKC activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), WAF1 was accumulated in A-172 cells in a dose-dependent manner but not in T98G cells. In addition, the cellular contents of WAF1 after heating did not increase in A-172 cells transformed with mp53.These results suggest that PKC contributes to heat-induced signal transduction leading to p53-dependent WAF1 induction in a way that PKC is involved in the specific DNA-binding activation of p53. 相似文献
6.
Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a transient p53- and p21(Cip1)-dependent G(1)-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser-33 in p53, which is associated with decreased p53 ubiquitination and stabilization of p53. We report here that delayed cell cycle progression, Ser-33 phosphorylation, and p53 nuclear accumulation from SEPW1 depletion require mitogen-activated protein kinase kinase 4 (MKK4). Silencing MKK4 rescued G(1) arrest, Ser-33 phosphorylation, and nuclear accumulation of p53 induced by SEPW1 depletion, but silencing MKK3, MKK6, or MKK7 did not. SEPW1 silencing did not change the phosphorylation state of MKK4 but increased total MKK4 protein. Silencing p38γ, p38δ, or JNK2 partially rescued G(1) arrest from SEPW1 silencing, suggesting they signal downstream from MKK4. These results imply that SEPW1 silencing increases MKK4, which activates p38γ, p38δ, and JNK2 to phosphorylate p53 on Ser-33 and cause a transient G(1) arrest. 相似文献
7.
Assaad A. Eid Bridget M. Ford Karen Block Balakuntalam S. Kasinath Yves Gorin Goutam Ghosh-Choudhury Jeffrey L. Barnes Hanna E. Abboud 《The Journal of biological chemistry》2010,285(48):37503-37512
Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes. 相似文献
8.
9.
10.
Tameka A. Bailey Haitao Luan Eric Tom Timothy Alan Bielecki Bhopal Mohapatra Gulzar Ahmad Manju George David L. Kelly Amarnath Natarajan Srikumar M. Raja Vimla Band Hamid Band 《The Journal of biological chemistry》2014,289(44):30443-30458
ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. 相似文献
11.
Grant T. Corbett Avik Roy Kalipada Pahan 《The Journal of biological chemistry》2013,288(12):8299-8312
12.
Li Ping Jiang Hualian Peng Hong Zeng Weijie Zhong Yongheng He Miao Xie Luyang Chen Junhai Guo Deyin Wu Junyu Li Chun-Mei 《中国病毒学》2021,36(6):1411-1420
Virologica Sinica - Zika virus (ZIKV) infection could disrupt neurogenesis and cause microcephaly in neonates by targeting neural progenitor cells (NPCs). The tumor suppressor p53-mediated cell... 相似文献
13.
SD Smith M Enge W Bao M Thullberg TD Costa H Olofsson B Gashi G Selivanova S Strömblad 《The Journal of biological chemistry》2012,287(35):29336-29347
Protein kinase C α (PKCα) is overexpressed in numerous types of cancer. Importantly, PKCα has been linked to metastasis of malignant melanoma in patients. However, it has been unclear how PKCα may be regulated and how it exerts its role in melanoma. Here, we identified a role for PKCα in melanoma cell survival in a three-dimensional collagen model mimicking the in vivo pathophysiology of the dermis. A pathway was identified that involved integrin αv-mediated up-regulation of PKCα and PKCα-dependent regulation of p53 localization, which was connected to melanoma cell survival. Melanoma survival and growth in three-dimensional microenvironments requires the expression of integrin αv, which acts to suppress p53 activity. Interestingly, microarray analysis revealed that PKCα was up-regulated by integrin αv in a three-dimensional microenvironment-dependent manner. Integrin αv was observed to promote a relocalization of endogenous p53 from the nucleus to the cytoplasm upon growth in three-dimensional collagen as well as in vivo, whereas stable knockdown of PKCα inhibited the integrin αv-mediated relocalization of p53. Importantly, knockdown of PKCα also promoted apoptosis in three-dimensional collagen and in vivo, resulting in reduced tumor growth. This indicates that PKCα constitutes a crucial component of the integrin αv-mediated pathway(s) that promote p53 relocalization and melanoma survival. 相似文献
14.
Kajimoto T Sawamura S Tohyama Y Mori Y Newton AC 《The Journal of biological chemistry》2010,285(53):41896-41910
Conventional and novel protein kinase C (PKC) isozymes transduce the abundance of signals mediated by phospholipid hydrolysis; however redundancy in regulatory mechanisms confounds dissecting the unique signaling properties of each of the eight isozymes constituting these two subgroups. Previously, we created a genetically encoded reporter (C kinase activity reporter (CKAR)) to visualize the rate, amplitude, and duration of agonist-evoked PKC signaling at specific locations within the cell. Here we designed a reporter, δCKAR, that specifically measures the activation signature of one PKC isozyme, PKC δ, in cells, revealing unique spatial and regulatory properties of this isozyme. Specifically, we show two mechanisms of activation: 1) agonist-stimulated activation at the plasma membrane (the site of most robust PKC δ signaling), Golgi, and mitochondria that is independent of Src and can be triggered by phorbol esters and 2) agonist-stimulated activation in the nucleus that requires Src kinase activation and cannot be triggered by phorbol esters. Translocation studies reveal that the G-protein-coupled receptor agonist UTP induces the translocation of PKC δ into the nucleus by a mechanism that depends on the C2 domain and requires Src kinase activity. However, translocation from the cytosol into the nucleus is not required for the Src-dependent regulation of nuclear activity; a construct of PKC δ prelocalized to the nucleus continues to be activated by UTP by a mechanism dependent on Src kinase activity. These data identify the nucleus as a signaling hub for PKC δ that is driven by receptor-mediated signaling pathways (but not phorbol esters) and differs from signaling at plasma membrane and Golgi in that it is controlled by Src family kinases. 相似文献
15.
Denuja Karunakaran Maaike Kockx Dylan M. Owen John R. Burnett Wendy Jessup Leonard Kritharides 《The Journal of biological chemistry》2013,288(7):5186-5197
Macrophage-specific apolipoprotein E (apoE) secretion plays an important protective role in atherosclerosis. However, the precise signaling mechanisms regulating apoE secretion from primary human monocyte-derived macrophages (HMDMs) remain unclear. Here we investigate the role of protein kinase C (PKC) in regulating basal and stimulated apoE secretion from HMDMs. Treatment of HMDMs with structurally distinct pan-PKC inhibitors (calphostin C, Ro-31-8220, Go6976) and a PKC inhibitory peptide all significantly decreased apoE secretion without significantly affecting apoE mRNA or apoE protein levels. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated apoE secretion, and both PMA-induced and apoAI-induced apoE secretion were inhibited by PKC inhibitors. PKC regulation of apoE secretion was found to be independent of the ATP binding cassette transporter ABCA1. Live cell imaging demonstrated that PKC inhibitors inhibited vesicular transport of apoE to the plasma membrane. Pharmacological or peptide inhibitor and knockdown studies indicate that classical isoforms PKCα/β and not PKCδ, -ϵ, -θ, or -ι/ζ isoforms regulate apoE secretion from HMDMs. The activity of myristoylated alanine-rich protein kinase C substrate (MARCKS) correlated with modulation of PKC activity in these cells, and direct peptide inhibition of MARCKS inhibited apoE secretion, implicating MARCKS as a downstream effector of PKC in apoE secretion. Comparison with other secreted proteins indicated that PKC similarly regulated secretion of matrix metalloproteinase 9 and chitinase-3-like-1 protein but differentially affected the secretion of other proteins. In conclusion, PKC regulates the secretion of apoE from primary human macrophages. 相似文献
16.
17.
Lorena Buitrago Dheeraj Bhavanasi Carol Dangelmaier Bhanu Kanth Manne Rachit Badolia Alessandra Borgognone Alexander Y. Tsygankov Steven E. McKenzie Satya P. Kunapuli 《The Journal of biological chemistry》2013,288(40):29160-29169
Protein kinase C (PKC) isoforms differentially regulate platelet functional responses downstream of glycoprotein VI (GPVI) signaling, but the role of PKCs regulating upstream effectors such as Syk is not known. We investigated the role of PKC on Syk tyrosine phosphorylation using the pan-PKC inhibitor GF109203X (GFX). GPVI-mediated phosphorylation on Syk Tyr-323, Tyr-352, and Tyr-525/526 was rapidly dephosphorylated, but GFX treatment inhibited this dephosphorylation on Tyr-525/526 in human platelets but not in wild type murine platelets. GFX treatment did not affect tyrosine phosphorylation on FcRγ chain or Src family kinases. Phosphorylation of Lat Tyr-191 and PLCγ2 Tyr-759 was also increased upon treatment with GFX. We evaluated whether secreted ADP is required for such dephosphorylation. Exogenous addition of ADP to GFX-treated platelets did not affect tyrosine phosphorylation on Syk. FcγRIIA- or CLEC-2-mediated Syk tyrosine phosphorylation was also potentiated with GFX in human platelets. Because potentiation of Syk phosphorylation is not observed in murine platelets, PKC-deficient mice cannot be used to identify the PKC isoform regulating Syk phosphorylation. We therefore used selective inhibitors of PKC isoforms. Only PKCβ inhibition resulted in Syk hyperphosphorylation similar to that in platelets treated with GFX. This result indicates that PKCβ is the isoform responsible for Syk negative regulation in human platelets. In conclusion, we have elucidated a novel pathway of Syk regulation by PKCβ in human platelets. 相似文献
18.
Lei Li Ya-Chao Yao Shu-Huan Fang Cai-Qi Ma Yi Cen Zu-Min Xu Zhi-Yu Dai Cen Li Shuai Li Ting Zhang Hong-Hai Hong Wei-Wei Qi Ti Zhou Chao-Yang Li Xia Yang Guo-Quan Gao 《The Journal of biological chemistry》2014,289(44):30785-30799
Pigment epithelium-derived factor (PEDF), a potent antiangiogenesis agent, has recently attracted attention for targeting tumor cells in several types of tumors. However, less is known about the apoptosis-inducing effect of PEDF on human lung cancer cells and the underlying molecular events. Here we report that PEDF has a growth-suppressive and proapoptotic effect on lung cancer xenografts. Accordingly, in vitro, PEDF apparently induced apoptosis in A549 and Calu-3 cells, predominantly via the Fas-L/Fas death signaling pathway. Interestingly, A549 and Calu-3 cells are insensitive to the Fas-L/Fas apoptosis pathway because of the low level of cell surface Fas. Our results revealed that, in addition to the enhancement of Fas-L expression, PEDF increased the sensitivity of A549 and Calu-3 cells to Fas-L-mediated apoptosis by triggering the translocation of Fas protein to the plasma membrane in a p53- and FAP-1-dependent manner. Similarly, the up-regulation of Fas-L by PEDF was also mediated by p53. Furthermore, peroxisome proliferator-activated receptor γ was determined to be the upstream regulator of p53. Together, these findings uncover a novel mechanism of tumor cell apoptosis induced by PEDF and provide a potential therapeutic strategy for tumors that are insensitive to Fas-L/Fas-dependent apoptosis because of a low level of cell surface Fas. 相似文献
19.
Junko Sawada Fangfei Li Masanobu Komatsu 《The Journal of biological chemistry》2015,290(13):8133-8145
Abnormal angiogenesis is associated with a broad range of medical conditions, including cancer. The formation of neovasculature with functionally defective blood vessels significantly impacts tumor progression, metastasis, and the efficacy of anticancer therapies. Vascular endothelial growth factor (VEGF) potently induces vascular permeability and vessel growth in the tumor microenvironment, and its inhibition normalizes tumor vasculature. In contrast, the signaling of the small GTPase R-Ras inhibits excessive angiogenic growth and promotes the maturation of regenerating blood vessels. R-Ras signaling counteracts VEGF-induced vessel sprouting, permeability, and invasive activities of endothelial cells. In this study, we investigated the effect of R-Ras on VEGF receptor 2 (VEGFR2) activation by VEGF, the key mechanism for angiogenic stimulation. We show that tyrosine phosphorylation of VEGFR2 is significantly elevated in the tumor vasculature and dermal microvessels of VEGF-injected skin in R-Ras knockout mice. In cultured endothelial cells, R-Ras suppressed the internalization of VEGFR2, which is required for full activation of the receptor by VEGF. Consequently, R-Ras strongly suppressed autophosphorylation of the receptor at all five major tyrosine phosphorylation sites. Conversely, silencing of R-Ras resulted in increased VEGFR2 phosphorylation. This effect of R-Ras on VEGFR2 was, at least in part, dependent on vascular endothelial cadherin. These findings identify a novel function of R-Ras to control the response of endothelial cells to VEGF and suggest an underlying mechanism by which R-Ras regulates angiogenesis. 相似文献
20.
An-Chi Tsai Shiow-Lin Pan Hui-Lung Sun Chih-Ya Wang Chieh-Yu Peng Shih-Wei Wang Ya-Ling Chang Sheng-Chu Kuo Kuo-Hsiung Lee Che-Ming Teng 《The Journal of biological chemistry》2010,285(8):5497-5506
CHM-1 (2′-fluoro-6,7-methylenedioxy-2-phenyl-4-quinolone) has been identified as a potent antitumor agent in human hepatocellular carcinoma; however, its role in tumor angiogenesis is unclear. This study investigated the effects of CHM-1 and the mechanisms by which it exerts its antiangiogenic and vascular disrupting properties. Using a xenograft model antitumor assay, we found that CHM-1 significantly inhibits tumor growth and microvessel formation. Flow cytometry, immunofluorescence microscopy, and cell death enzyme-linked immunosorbent assay kit revealed that CHM-1 inhibits growth of human umbilical vein endothelial cells (HUVEC) by induction of apoptotic cell death in a concentration-dependent manner. CHM-1 also suppresses HUVEC migration and capillary-like tube formation. We were able to correlate CHM-1-induced apoptosis in HUVEC with the cleavage of procaspase-3, -7, and -8, as well as with the cleavage of poly(ADP-ribose) polymerase by Western blotting assay. Such sensitization was achieved through up-regulation of death receptor 5 (DR5) but not DR4 or Fas. CHM-1 was also capable of increasing the expression level of p53, and most importantly, the induction of DR5 by CHM-1 was abolished by p53 small interfering RNA. Taken together, the results of this study indicate that CHM-1 exhibits vascular targeting activity associated with the induction of DR5-mediated endothelial cell apoptosis through p53 up-regulation, which suggests its potential as an antivascular and antitumor therapeutic agent. 相似文献