共查询到20条相似文献,搜索用时 15 毫秒
1.
Lars Kirsten Maria Gaertner Christian Schnabel Sven Meissner Edmund Koch 《Journal of biophotonics》2013,6(2):148-152
The investigation of lung dynamics on alveolar scale is crucial for the understanding and treatment of lung diseases, such as acute lung injury and ventilator induced lung injury, and to promote the development of protective ventilation strategies. One approach to this is the establishment of numerical simulations of lung tissue mechanics where detailed knowledge about three‐dimensional alveolar structure changes during the ventilation cycle is required. We suggest four‐dimensional optical coherence tomography (OCT) imaging as a promising modality for visualizing the structural dynamics of single alveoli in subpleural lung tissue with high temporal resolution using a mouse model. A high‐speed OCT setup based on Fourier domain mode locked laser technology facilitated the acquisition of alveolar structures without noticeable motion artifacts at a rate of 17 three‐dimensional stacks per ventilation cycle. The four‐dimensional information, acquired in one single ventilation cycle, allowed calculating the volume‐pressure curve and the alveolar compliance for single alveoli. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
Lara M. Wurster Ronak N. Shah Fabian Placzek Simon Kretschmer Michael Niederleithner Laurin Ginner Jason Ensher Michael P. Minneman Erich E. Hoover Hans Zappe Wolfgang Drexler Rainer A. Leitgeb alar Ataman 《Journal of biophotonics》2019,12(4)
A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm and A‐line rate of 173 kHz. The endoscope operates in contact mode to avoid motion artifacts, in particular, beneficial for OCTA measurements, and achieves a transversal resolution of 12 μm in air at a rigid probe size of 4 mm in diameter and 11.3 mm in length. A spiral scan pattern is generated at a scanning frequency of 360 Hz to sample a maximum field of view of 1.3 mm. OCT images of a human finger as well as visualization of microvasculature of the human palm are presented both in two and three dimensions. The combination of morphological tissue contrast with qualitative dynamic blood flow information within this endoscopic imaging approach potentially enables improved early diagnostic capabilities of internal organs for diseases such as bladder cancer. 相似文献
3.
Jungeun Won Ryan G. Porter Michael A. Novak Jon Youakim Ada Sum Ronit Barkalifa Edita Aksamitiene Anqi Zhang Ryan Nolan Ryan Shelton Stephen A. Boppart 《Journal of biophotonics》2021,14(4):e202000215
Decreased mobility of the human eardrum, the tympanic membrane (TM), is an essential indicator of a prevalent middle ear infection. The current diagnostic method to assess TM mobility is via pneumatic otoscopy, which provides subjective and qualitative information of subtle motion. In this study, a handheld spectral-domain pneumatic optical coherence tomography system was developed to simultaneously measure the displacement of the TM, air pressure inputs applied to a sealed ear canal, and to perform digital pneumatic otoscopy. A novel approach based on quantitative parameters is presented to characterize spatial and temporal variations of the dynamic TM motion. Furthermore, the TM motions of normal middle ears are compared with those of ears with middle ear infections. The capability of noninvasively measuring the rapid motion of the TM is beneficial to understand the complex dynamics of the human TM, and can ultimately lead to improved diagnosis and management of middle ear infections. 相似文献
4.
Investigation of optical attenuation imaging using optical coherence tomography for monitoring of scars undergoing fractional laser treatment 下载免费PDF全文
Shaghayegh Es'haghian Peijun Gong Lixin Chin Karl‐Anton Harms Alexandra Murray Suzanne Rea Brendan F. Kennedy Fiona M. Wood David D. Sampson Robert A. McLaughlin 《Journal of biophotonics》2017,10(4):511-522
We demonstrate the use of the near‐infrared attenuation coefficient, measured using optical coherence tomography (OCT), in longitudinal assessment of hypertrophic burn scars undergoing fractional laser treatment. The measurement method incorporates blood vessel detection by speckle decorrelation and masking, and a robust regression estimator to produce 2D en face parametric images of the attenuation coefficient of the dermis. Through reliable co‐location of the field of view across pre‐ and post‐treatment imaging sessions, the study was able to quantify changes in the attenuation coefficient of the dermis over a period of ~20 weeks in seven patients. Minimal variation was observed in the mean attenuation coefficient of normal skin and control (untreated) mature scars, as expected. However, a significant decrease (13 ± 5%, mean ± standard deviation) was observed in the treated mature scars, resulting in a greater distinction from normal skin in response to localized damage from the laser treatment. By contrast, we observed an increase in the mean attenuation coefficient of treated (31 ± 27%) and control (27 ± 20%) immature scars, with numerical values incrementally approaching normal skin as the healing progressed. This pilot study supports conducting a more extensive investigation of OCT attenuation imaging for quantitative longitudinal monitoring of scars.
5.
Muraoka Y Ikeda HO Nakano N Hangai M Toda Y Okamoto-Furuta K Kohda H Kondo M Terasaki H Kakizuka A Yoshimura N 《PloS one》2012,7(4):e36135
Background
Recently, a transgenic rabbit with rhodopsin Pro 347 Leu mutation was generated as a model of retinitis pigmentosa (RP), which is characterized by a gradual loss of vision due to photoreceptor degeneration. The purpose of the current study is to noninvasively visualize and assess time-dependent changes in the retinal structures of a rabbit model of retinal degeneration by using speckle noise-reduced spectral-domain optical coherence tomography (SD-OCT).Methodology/Principal Findings
Wild type (WT) and RP rabbits (aged 4–20 weeks) were investigated using SD-OCT. The total retinal thickness in RP rabbits decreased with age. The thickness of the outer nuclear layer (ONL) and between the external limiting membrane and Bruch''s membrane (ELM–BM) were reduced in RP rabbits around the visual streak, compared to WT rabbits even at 4 weeks of age, and the differences increased with age. However, inner nuclear layer (INL) thickness in RP rabbits did not differ from that of WT during the observation period. The ganglion cell complex (GCC) thickness in RP rabbits increased near the optic nerve head but not around the visual streak in the later stages of the observation period. Hyper-reflective change was widely observed in the inner segments (IS) and outer segments (OS) of the photoreceptors in the OCT images of RP rabbits. Ultrastructural findings in RP retinas included the appearance of small rhodopsin-containing vesicles scattered in the extracellular space around the photoreceptors.Conclusions/Significance
In the current study, SD-OCT provided the pattern of photoreceptor degeneration in RP rabbits and the longitudinal changes in each retinal layer through the evaluation of identical areas over time. The time-dependent changes in the retinal structure of RP rabbits showed regional and time-stage variations. In vivo imaging of RP rabbit retinas by using SD-OCT is a powerful method for characterizing disease dynamics and for assessing the therapeutic effects of experimental interventions. 相似文献6.
K. Divakar Rao Aneesh Alex Yogesh Verma Sreeja Thampi Pradeep K. Gupta 《Journal of biophotonics》2009,2(5):288-291
We report noninvasive imaging of the brain of adult Zebrafish (Danio rerio) using real time optical coherence tomography (OCT) capable of acquiring cross sectional 2D OCT images @ 8 frames/sec. Anatomic features such as telencephalon, tectum opticum, eminentia Granularis and cerebellum were clearly resolved in the OCT images. A 3D model of Zebrafish brain was reconstructed, for the first time to our knowledge, using these 2D OCT images. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
7.
Aims: Quantifying the ex vivo growth of complex multispecies dental biofilms using cross‐polarization 1310‐nm optical coherence tomography (CP‐OCT) system was investigated. Methods and Results: Bacterial microcosms, which were derived from plaque samples of paediatric subjects, were incubated in a biofilm reactor system containing discs of different dental materials for 72 h with daily sucrose pulsing (5×). CP‐OCT analysis of biofilm mass was validated with crystal violet (CV) assays at various growth stages of these complex biofilms. CP‐OCT was able to filter out the back‐reflected signals of water layers in the hydrated biofilm and allowed for direct biofilm quantification. The overall depth‐resolved scattering intensity of the biofilm showed very strong positive correlation with CV assay quantification (Spearman’s ρ = 0·92) during the growth phase of the biofilm. Conclusion: CP‐OCT was able to quantify the mass of the biofilm by measuring the overall depth‐resolved scattering of the biofilm. Significance and Impact of the Study: CP‐OCT has the ability to nondestructively monitor biofilm growth and elucidate the growth characteristics of these microcosms on different dental material compositions. 相似文献
8.
Endomicroscopic optical coherence tomography for cellular resolution imaging of gastrointestinal tracts 下载免费PDF全文
Yuemei Luo Dongyao Cui Xiaojun Yu En Bo Xianghong Wang Nanshuo Wang Cilwyn S. Braganza Shufen Chen Xinyu Liu Qiaozhou Xiong Si Chen Shi Chen Linbo Liu 《Journal of biophotonics》2018,11(4)
Our ability to detect neoplastic changes in gastrointestinal (GI) tracts is limited by the lack of an endomicroscopic imaging tool that provides cellular‐level structural details of GI mucosa over a large tissue area. In this article, we report a fiber‐optic‐based micro‐optical coherence tomography (μOCT) system and demonstrate its capability to acquire cellular‐level details of GI tissue through circumferential scanning. The system achieves an axial resolution of 2.48 μm in air and a transverse resolution of 4.8 μm with a depth‐of‐focus (DOF) of ~150 μm. To mitigate the issue of limited DOF, we used a rigid sheath to maintain a circular lumen and center the distal‐end optics. The sensitivity is tested to be 98.8 dB with an illumination power of 15.6 mW on the sample. With fresh swine colon tissues imaged ex vivo, detailed structures such as crypt lumens and goblet cells can be clearly resolved, demonstrating that this fiber‐optic μOCT system is capable of visualizing cellular‐level morphological features. We also demonstrate that time‐lapsed frame averaging and imaging speckle reduction are essential for clearly visualizing cellular‐level details. Further development of a clinically viable μOCT endomicroscope is likely to improve the diagnostic outcome of GI cancers. 相似文献
9.
Jianghua Li Changshui Chen Bingling Chen Zhiyuan Shen Yonghong He Yunfei Xia Songhao Liu 《Journal of biophotonics》2012,5(7):544-549
We tried to explore the intrinsic differences in the optical properties of the four representative NPC cell lines on the models of radiobiology and metastasis by OCT. The scattering coefficients and anisotropies were extracted by fitting the average a‐scan attenuation curves based on the multiple scatter effect. The values of scattering coefficients and anisotropy factors were 5.21 ± 0.11, 5.30 ± 0.09, 5.92 ± 0.21, 6.97 ± 0.22, and 0.892 ± 0.009, 0.886 ± 0.006, 0.884 ± 0.009, 0.86 ± 0.01 for CNE1, CNE2, 5‐8F and 6‐10B pellets (p < 0.05, P = 0.07 for CNE1 and CNE2), respectively. The results showed that the radiobiology and metastasis cell's model could be distinguished obviously; which implied that the corresponding types of NPC tissue might be potentially differentiated by OCT. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
Optical coherence tomography (OCT) was used to monitor the dynamics of tumour spheroid formation by the hanging drop method.
In contrast to microscopy, the estimates obtained using OCT for the volume of the spheroid, were consistent with the measured
changes in cell number as a function of time. The OCT images also revealed heterogeneous structures in the spheroids of ∼200 μm
diameter. These corresponded to the necrotic regions identified by fluorescence of propidium iodide stained cells. 相似文献
11.
Ultrahigh-resolution ophthalmic optical coherence tomography 总被引:23,自引:0,他引:23
12.
Arash Dadkhah Dhruba Paudel Shuliang Jiao 《Experimental biology and medicine (Maywood, N.J.)》2021,246(20):2207
Optical coherence tomography angiography (OCTA) is a functional extension of optical coherence tomography for non-invasive in vivo three-dimensional imaging of the microvasculature of biological tissues. Several algorithms have been developed to construct OCTA images from the measured optical coherence tomography signals. In this study, we compared the performance of three OCTA algorithms that are based on the variance of phase, amplitude, and the complex representations of the optical coherence tomography signals for rodent retinal imaging, namely the phase variance, improved speckle contrast, and optical microangiography. The performance of the different algorithms was evaluated by comparing the quality of the OCTA images regarding how well the vasculature network can be resolved. Quantities that are widely used in ophthalmic studies including blood vessel density, vessel diameter index, vessel perimeter index, vessel complexity index were also compared. Results showed that both the improved speckle contrast and optical microangiography algorithms are more robust than phase variance, and they can reveal similar vasculature features while there are statistical differences in the calculated quantities. 相似文献
13.
Nhan Le Hrebesh M. Subhash LaTonya Kilpatrick‐Liverman Ruikang K. Wang 《Journal of biophotonics》2020,13(7)
We report the development of an integrated multifunctional imaging system capable of providing anatomical (optical coherence tomography, OCT), functional (OCT angiography, OCTA) and molecular imaging (light‐induced autofluorescence, LIAF) for in vivo dental applications. Blue excitation light (405 nm) was used for LIAF imaging, while the OCT was powered by a 1310 nm swept laser source. A red‐green‐blue digital camera, with a 450 nm cut‐on broadband optical filter, was used for LIAF detection. The exciting light source and camera were integrated directly with the OCT scanning probe. The integrated system used two noninvasive imaging modalities to improve the speed of in vivo OCT data collection and to better target the regions of interest. The newly designed system maintained the ability to detect differences between healthy and hypomineralized teeth, identify dental biofilm and visualize the microvasculature of gingival tissue. The development of the integrated OCT‐LIAF system provides an opportunity to conduct clinical studies more efficiently, examining changes in oral conditions over time. 相似文献
14.
Atefeh Abdolmanafi Farida Cheriet Luc Duong Ragui Ibrahim Nagib Dahdah 《Journal of biophotonics》2020,13(1)
Intravascular optical coherence tomography (IV‐OCT) is a light‐based imaging modality with high resolution, which employs near‐infrared light to provide tomographic intracoronary images. Morbidity caused by coronary heart disease is a substantial cause of acute coronary syndrome and sudden cardiac death. The most common intracoronay complications caused by coronary artery disease are intimal hyperplasia, calcification, fibrosis, neovascularization and macrophage accumulation, which require efficient prevention strategies. OCT can provide discriminative information of the intracoronary tissues, which can be used to train a robust fully automatic tissue characterization model based on deep learning. In this study, we aimed to design a diagnostic model of coronary artery lesions. Particularly, we trained a random forest using convolutional neural network features to distinguish between normal and diseased arterial wall structure. Then, based on the arterial wall structure, fully convolutional network is designed to extract the tissue layers in normal cases, and pathological tissues regardless of lesion type in pathological cases. Then, the type of the lesions can be characterized with high precision using our previous model. The results demonstrate the robustness of the model with the approximate overall accuracy up to 90%. 相似文献
15.
Steoporosis is a skeletal disorder that compromises bone resistance and its diagnosis is usually performed using dual energy X‐ray absorptiometry. Thus, the search for efficient diagnostic methods that do not involve the emission of ionizing radiation is necessary. This study proposed to use the Optical Coherence Tomography (OCT) to evaluate osteoporosis in alveolar bone. Osteoporosis lesions is simulated in vitro in porcine bones, and imaging is performed by OCT and micro‐computed tomography (micro‐CT). A developed algorithm is proposed to calculate the optical attenuation coefficient ( μ t), mean optical attenuation coefficient (), integrated reflectivity (ΔR) and bone density ( BD). The , ΔR and BD parameters shows a good correlation to micro‐CT parameters (bone volume/tissue volume and total porosity). The μ t and methods are negatively impacted by non‐uniform intensities distribution in osteoporosis images. In conclusion, BD and ΔR analysis demonstrates to be potential techniques for diagnosis and monitoring of osteoporosis using OCT. 相似文献
16.
Daniel M. de Bruin Martin J. C. van Gemert Michal Heger Jean J. de la Rosette Ton G. Van Leeuwen Dirk J. Faber 《Journal of biophotonics》2016,9(9):913-923
The aim of this study is to identify changes in scattering with optical coherence tomography (OCT) and relate these measurements with mitochondrial changes during the initiation of apoptosis. Human retinal pigment epithelial cells were cultured and apoptosis was induced using 10% alcohol. Using the attenuation coefficient and backscattering, changes were measured during cell death in a cell‐pellet and monolayer respectively. To confirm apoptosis, fluorescent activated cell sorting was used. Mitochondrial activity during apoptosis was assessed using an oxidative stress assay and fluorescent confocal microscopy. Pelleted apoptotic cells measured with OCT showed a clear rise while untreated cells showed a very small increase in attenuation coefficient. Monolayered apoptotic cells displayed a distinct increase, while untreated cells showed a small increase in the backscattering. Apoptosis was confirmed by FACS experiments. Mitochondrial changes during the onset of apoptosis were also measured. The results demonstrate that apoptotic cell death could be monitored in real‐time by OCT. Changes in the scattering after induction of apoptosis are likely to be related to changes in the intracellular morphology. Oxidative stress‐induced mitochondrial swelling could be responsible for the initial increase, while cell blebbing and secondary necrosis subsequently for the observed decrease in scattering.
17.
Imaging depth extension of optical coherence tomography in rabbit eyes using optical clearing agents
Ruiming Kong Wenjuan Wu Rui Qiu Lei Gao Fengxian Du Ailin Liu Xuan Cai Cuixia Dai 《Experimental biology and medicine (Maywood, N.J.)》2020,245(18):1629
Optical coherence tomography has become an indispensable diagnostic tool in ophthalmology for imaging the retina and the anterior segment of the eye. However, the imaging depth of optical coherence tomography is limited by light attenuation in tissues due to optical scattering and absorption. In this study of rabbit eye both ex vivo and in vivo, optical coherence tomography imaging depth of the anterior and posterior segments of the eye was extended by using optical clearing agents to reduce multiple scattering. The sclera, the iris, and the ciliary body were clearly visualized by direct application of glycerol at an incision on the conjunctiva, and the posterior boundary of sclera and even the deeper tissues were detected by submerging the posterior segment of eye in glycerol solution ex vivo or by retro-bulbar injection of glycerol in vivo. The ex vivo rabbit eyes recovered to their original state in 60 s after saline-wash treatment, and normal optical coherence tomography images of the posterior segment of the sample eyes proved the self-recovery of in vivo performance. Signal intensities of optical coherence tomography images obtained before and after glycerol treatment were compared to analysis of the effect of optical clearing. To the best of our knowledge, this is the first study for imaging depth extension of optical coherence tomography in both the anterior and posterior segments of eye by using optical clearing agents. 相似文献
18.
Juan Pablo Gallo-Reynoso 《Marine and Freshwater Behaviour and Physiology》2013,45(6):455-467
The Guadalupe fur seal (Arctocephalus townsendi) is a specialist predator feeding on prey present in one trophic level. Data related to the diet of the Guadalupe fur seal are few. It is still unknown where most of the individuals forage or the composition of their diet. On Isla Guadalupe, the San Benito Archipelago and the Farallon Islands, fur seals primarily feed on pelagic and coastal squids. However, differences between colonies were found probably caused by differences in diversity and abundance of prey species over the continental shelf and the pelagic environment, and maybe due to the plasticity of the species in their foraging behavior. Diet composition of the Guadalupe fur seal might reflect adaptations to local and temporal environmental conditions. The aim of this work was to consider historical information, add new information, identify main prey species, and determine where in the marine regions the Guadalupe fur seals feed. 相似文献
19.
Van Phuc Nguyen Jeff Folz Yanxiu Li Jessica Henry Wei Zhang Thomas Qian Xueding Wang Yannis M. Paulus 《Journal of biophotonics》2021,14(5):e202000458
Photoacoustic microscopy (PAM) has great potential for visualization of the microvasculature with high spatial resolution and contrast. Early detection and differentiation of newly developed blood vessels named choroidal neovascularization (CNV) from normal vasculature remains a challenge in ophthalmology. Exogenous contrast agents can assist with improving PAM sensitivity, leading to differentiation of CNV. Here, an FDA-approved indocyanine green (ICG) was utilized as a PAM contrast agent. ICG was conjugated with RGD peptides, allowing the ICG to bind to the integrin expressed in CNV. Molecular PAM imaging showed that ICG-RGD can target CNV for up to 5 days post intravenous administration in living rabbits with a model of CNV. The PAM image sensitivity and image contrast were significantly enhanced by 15-fold at 24 h post-injection. Overall, the presented approach demonstrates the possibility of targeted ICG to be employed in PAM molecular imaging, allowing more precise evaluation of neovascularization. 相似文献
20.
《Cytotherapy》2023,25(2):120-124
Background aimsWe evaluated a commercially available instrument, OCTiCell (chromologic.com/octicell), for monitoring cell growth in suspended agitated bioreactors based on optical coherence tomography. OCTiCell is an in-line, completely non-invasive instrument that can operate on any suspended-cell bioreactor with a window or transparent wall. In traditional optical coherence tomography, the imaging beam is rastered over the sample to form a three-dimensional image. OCTiCell, instead uses a fixed imaging beam and takes advantage of the motion of the media to move the cells across the interrogating optical beam.ResultsWe found strong correlations between the non-invasive, non-contact, reagent-free OCTiCell measurements of cell concentration and viability and those obtained from the automated cell counter, and the XTT viability assay, which is a colorimetric assay for quantifying metabolic activity.ConclusionsThis novel cell monitoring method can adapt to different bioreactor form factors and could reduce the labor cost and contamination risks associated with cell growth monitoring. 相似文献