首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
商陆抗病毒蛋白基因导入百合愈伤组织初报   总被引:3,自引:0,他引:3  
利用美洲商陆抗病毒蛋白(Pokeweed antiviral protein,PAP)具有广谱的抗病毒特性,通过冻融法将含有PAP基因的重组表达载体PBll21转入土壤农杆菌LBA4404中,利用叶盘法在农杆菌的介导下转比麝香百合愈伤组织,通过抗性筛选和PCR输测获得了转PAP基因的百合植株。  相似文献   

2.
Hepatitis C virus non-structural protein 3 contains a serine protease and an RNA helicase. Protease cleaves the genome-encoded polyprotein and inactivates cellular proteins required for innate immunity. Protease has emerged as an important target for the development of antiviral therapeutics, but drug resistance has turned out to be an obstacle in the clinic. Helicase is required for both genome replication and virus assembly. Mechanistic and structural studies of helicase have hurled this enzyme into a prominent position in the field of helicase enzymology. Nevertheless, studies of helicase as an antiviral target remain in their infancy.  相似文献   

3.
Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. Because this positively charged region, but not the active site, is blocked by RTB, we mutated arginine residues at or near the interface of RTB to determine if they are critical for ribosome binding. These variants were structurally similar to wild type RTA but could not bind ribosomes. Their Km values and catalytic rates (kcat) for an SRL mimic RNA were similar to those of wild type, indicating that their activity was not altered. However, they showed an up to 5-fold increase in Km and up to 38-fold decrease in kcat toward ribosomes. These results suggest that the stalk binding stimulates the catalysis of ribosome depurination by RTA. The mutated arginines have side chains behind the active site cleft, indicating that the ribosome binding surface of RTA is on the opposite side of the surface that interacts with the SRL. We propose that stalk binding stimulates the catalysis of ribosome depurination by orienting the active site of RTA toward the SRL and thereby allows docking of the target adenine into the active site. This model may apply to the translation factors that interact with the stalk.  相似文献   

4.
Viruses have evolved a variety of mechanisms to usurp the host cell translation machinery to enable translation of the viral genome in the presence of high levels of cellular mRNAs. Noroviruses, a major cause of gastroenteritis in man, have evolved a mechanism that relies on the interaction of translation initiation factors with the virus-encoded VPg protein covalently linked to the 5′ end of the viral RNA. To further characterize this novel mechanism of translation initiation, we have used proteomics to identify the components of the norovirus translation initiation factor complex. This approach revealed that VPg binds directly to the eIF4F complex, with a high affinity interaction occurring between VPg and eIF4G. Mutational analyses indicated that the C-terminal region of VPg is important for the VPg-eIF4G interaction; viruses with mutations that alter or disrupt this interaction are debilitated or non-viable. Our results shed new light on the unusual mechanisms of protein-directed translation initiation.  相似文献   

5.
The hepatitis C virus (HCV) non-structural protein 5B (NS5B) is an RNA-dependent RNA polymerase that is essentially required for viral replication. Although previous studies revealed important properties of static NS5B-RNA complexes, the nature and relevance of dynamic interactions have yet to be elucidated. Here, we devised a single molecule Förster Resonance Energy Transfer (SM-FRET) assay to monitor temporal changes upon binding of NS5B to surface immobilized RNA templates. The data show enzyme association-dissociation events that occur within the time resolution of our setup as well as FRET-fluctuations in association with stable binary complexes that extend over prolonged periods of time. Fluctuations are shown to be dependent on the length of the RNA substrate, and enzyme concentration. Mutations in close proximity to the template entrance (K98E, K100E), and in the center of the RNA binding channel (R394E), reduce both the population of RNA-bound enzyme and the fluctuations associated to the binary complex. Similar observations are reported with an allosteric nonnucleoside NS5B inhibitor. Our assay enables for the first time the visualization of association-dissociation events of HCV-NS5B with RNA, and also the direct monitoring of the interaction between HCV NS5B, its RNA template, and finger loop inhibitors. We observe both a remarkably low dissociation rate for wild type HCV NS5B, and a highly dynamic enzyme-RNA binary complex. These results provide a plausible mechanism for formation of a productive binary NS5B-RNA complex, here NS5B slides along the RNA template facilitating positioning of its 3′ terminus at the enzyme active site.  相似文献   

6.
IFNγ and TNFα are potent inhibitors of hematopoiesis and have been implicated in the pathophysiology of bone marrow failure and myelodysplastic syndromes (MDS). We examined the role of protein kinase R (PKR) in the generation of the inhibitory effects of these myelosuppressive cytokines on hematopoiesis. Our data demonstrate that PKR is rapidly phosphorylated/activated in response to engagement of IFNγ or TNFα receptors in normal human hematopoietic progenitors. Such engagement of PKR is important for the suppressive effects of these cytokines on normal hematopoiesis. Pharmacological targeting of PKR using a specific inhibitor or siRNA-mediated PKR knockdown results in partial reversal of the suppressive effects of IFNγ and TNFα on normal human CD34+-derived myeloid (colony-forming unit-granulocyte-monocytic) and erythroid (burst-forming unit-erythroid) progenitors. Importantly, inhibition of PKR activity or expression increases hematopoietic colony formation from human MDS progenitors, suggesting that drugs that target PKR may provide a novel approach for the treatment of MDS and marrow failure syndromes. Altogether, our data establish that beyond its key role in the induction of IFN-antiviral responses, PKR plays important roles in signaling for IFNγ and other myelosuppressive cytokine receptors as a common mediator of signals for hematopoietic suppression.  相似文献   

7.
8.
9.
10.
tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction.  相似文献   

11.
Antibodies are important for the study of pokeweed antiviral protein (PAP), an important antiviral agent against many plant, animal and human viruses. As PAP is expressed only at a low level in pokeweed plants (Phytolacca americana L.), it is complex and time‐consuming to extract PAP from pokeweed plants for antibody preparation. Here, we describe an antigen‐designed method according to the amino acid sequence that translated from PAP gene cleaving the C‐terminus toxic region and N‐terminus signal peptide (Genbank No. AF338910 ); the two peptides, DC15: DISGTERQDVETTLC and CR15: CRYPTLESKAGVKSR, were synthesized for generation of antibodies. The design strategy enabled straightforward antigen production and antibody generation. The antibodies can be used to detect PAP in transgenic petunia plants (Petunia hybrida Vilm.), pokeweed plants (P. americana) and transformed yeast (Pachia pastoris), which can express the PAP gene by western blotting. These antibodies generated against synthetic peptides will be useful for various assays such as for PAP detection, immunoprecipitation, protein purification and western blot analysis.  相似文献   

12.
Signal peptide peptidase (SPP), its homologs, the SPP-like proteases SPPL2a/b/c and SPPL3, as well as presenilin, the catalytic subunit of the γ-secretase complex, are intramembrane-cleaving aspartyl proteases of the GxGD type. In this study, we identified the 18-kDa leader peptide (LP18) of the foamy virus envelope protein (FVenv) as a new substrate for intramembrane proteolysis by human SPPL3 and SPPL2a/b. In contrast to SPPL2a/b and γ-secretase, which require substrates with an ectodomain shorter than 60 amino acids for efficient intramembrane proteolysis, SPPL3 cleaves mutant FVenv lacking the proprotein convertase cleavage site necessary for the prior shedding. Moreover, the cleavage product of FVenv generated by SPPL3 serves as a new substrate for consecutive intramembrane cleavage by SPPL2a/b. Thus, human SPPL3 is the first GxGD-type aspartyl protease shown to be capable of acting like a sheddase, similar to members of the rhomboid family, which belong to the class of intramembrane-cleaving serine proteases.  相似文献   

13.
IFNγ exhibits potent antitumor effects and plays important roles in the innate immunity against cancer. However, the mechanisms accounting for the antiproliferative effects of IFNγ still remain to be elucidated. We examined the role of Mnk1 (MAPK-interacting protein kinase 1) in IFNγ signaling. Our data demonstrate that IFNγ treatment of sensitive cells results in engagement of Mnk1, activation of its kinase domain, and downstream phosphorylation of the cap-binding protein eIF4E on Ser-209. Such engagement of Mnk1 plays an important role in IFNγ-induced IRF-1 (IFN regulatory factor 1) gene mRNA translation/protein expression and is essential for generation of antiproliferative responses. In studies aimed to determine the role of Mnk1 in the induction of the suppressive effects of IFNs on primitive hematopoietic progenitors, we found that siRNA-mediated Mnk1/2 knockdown results in partial reversal of the suppressive effects of IFNγ on human CD34+-derived myeloid (CFU-GM) and erythroid (BFU-E) progenitors. These findings establish a key role for the Mnk/eIF4E pathway in the regulatory effects of IFNγ on normal hematopoiesis and identify Mnk kinases as important elements in the control of IFNγ-inducible ISG mRNA translation.  相似文献   

14.
Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells.  相似文献   

15.
16.
Hsp104 solubilizes protein aggregates in cooperation with Hsp70/40. Although the framework of the disaggregase function has been elucidated, the actual process of aggregate solubilization by Hsp104-Hsp70/40 remains poorly understood. Here we developed several methods to investigate the functions of Hsp104 and Hsp70/40 from Saccharomyces cerevisiae, at single-molecule levels. The single-molecule methods, which provide the size distribution of the aggregates, revealed that Hsp70/40 prevented the formation of large aggregates from small aggregates and that the solubilization of the small aggregates required both Hsp104 and Hsp70/40. We directly visualized the individual association-dissociation dynamics of Hsp104 on immobilized aggregates and found that the lifetimes of the Hsp104-aggregate complex are divided into two groups: short (∼4 s) and long (∼30 s). Hsp70/40 stimulated the association of Hsp104 with aggregates and increased the duration of this association. The single-molecule data provide novel insights into the functional mechanism of the Hsp104 disaggregation machine.  相似文献   

17.
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Our previous report indicates that IBDV VP5 induces apoptosis via interaction with voltage-dependent anion channel 2 (VDAC2). However, the underlying molecular mechanism is still unclear. We report here that receptor of activated protein kinase C 1 (RACK1) interacts with both VDAC2 and VP5 and that they could form a complex. We found that overexpression of RACK1 inhibited IBDV-induced apoptosis in DF-1 cells and that knockdown of RACK1 by small interfering RNA induced apoptosis associated with activation of caspases 9 and 3 and suppressed IBDV growth. These results indicate that RACK1 plays an antiapoptotic role during IBDV infection via interaction with VDAC2 and VP5, suggesting that VP5 sequesters RACK1 and VDAC2 in the apoptosis-inducing process.  相似文献   

18.
The human proteome contains myriad intrinsically disordered proteins. Within intrinsically disordered proteins, polyproline-II motifs are often located near sites of phosphorylation. We have used an unconventional experimental paradigm to discover that phosphorylation by protein kinase A (PKA) occurs in the intrinsically disordered domain of hepatitis C virus non-structural protein 5A (NS5A) on Thr-2332 near one of its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A intrinsically disordered domain to a state that permits detection of the polyproline motif by using 15N-, 13C-based multidimensional NMR spectroscopy. PKA-dependent proline resonances were lost in the presence of the Src homology 3 domain of c-Src, consistent with formation of a complex. Changing Thr-2332 to alanine in hepatitis C virus genotype 1b reduced the steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal phenotype could be rescued by changing Thr-2332 to glutamic acid, a phosphomimetic substitution. Immunofluorescence and transmission electron microscopy showed that the inability to produce Thr(P)-2332-NS5A caused loss of integrity of the virus-induced membranous web/replication organelle. An even more extreme phenotype was observed in the presence of small molecule inhibitors of PKA. We conclude that the PKA-phosphorylated form of NS5A exhibits unique structure and function relative to the unphosphorylated protein. We suggest that post-translational modification of viral proteins containing intrinsic disorder may be a general mechanism to expand the viral proteome without a corresponding expansion of the genome.  相似文献   

19.
Metformin (Met), an AMP-activated protein kinase (AMPK) inducer, is primarily transported by organic cation transporters expressed at the surface of renal proximal tubular epithelial cells. However, the implication of Met in renal function remains poorly understood. Interestingly, AICAR, another AMPK inducer, has been shown to inhibit the Unfolded Protein Response (UPR) generated by tunicamycin in cardiomyocytes in an AMPK-kinase dependent fashion suggesting metformin may also block the UPR. In this work, we have examined the effect of metformin on the expression of UPR-related markers (GRP94 and CHOP) induced by glucosamine (GlcN), 2-deoxyglucose (2-DOG) and tunicamycin (TUNI) in renal proximal tubular epithelial cells and in murine mesangial cells. Met attenuated GRP94 and CHOP expression induced by GlcN and 2-DOG, but not TUNI only in renal epithelial cells, even though the AMPK activation was observed in both renal epithelial and mesangial cells. Met did not require the contribution of its AMPK kinase inducing activity to block UPR markers expression. This report has identified a novel inhibitory function of metformin on UPR, which may have a beneficial impact on kidney homeostatic function.  相似文献   

20.
In a previous study, we identified the E3 ubiquitin ligase Gp78 by RNAi high-throughput screening as a gene whose depletion restricted enterovirus infection. In the current study, we show that Gp78, which localizes to the ER-mitochondria interface, is a regulator of RIG-I-like receptor (RLR) antiviral signaling. We show that depletion of Gp78 results in a robust decrease of vesicular stomatitis virus (VSV) infection and a corresponding enhancement of type I interferon (IFN) signaling. Mechanistically, we show that Gp78 modulates type I IFN induction by altering both the expression and signaling of the mitochondria-localized RLR adaptor mitochondrial antiviral signaling (MAVS). Expression of mutants of Gp78 that abolish its E3 ubiquitin ligase and its participation in ER-associated degradation (ERAD) lost their ability to degrade MAVS, but surprisingly maintained their ability to repress RLR signaling. In contrast, Gp78 lacking its entire C terminus lost both its ability to degrade MAVS and repress RLR signaling. We show that Gp78 interacts with both the N- and C-terminal domains of MAVS via its C-terminal RING domain, and that this interaction is required to abrogate Gp78-mediated attenuation of MAVS signaling. Our data thus implicate two parallel pathways by which Gp78 regulates MAVS signaling; one pathway requires its E3 ubiquitin ligase and ERAD activity to directly degrade MAVS, whereas the other pathway occurs independently of these activities, but requires the Gp78 RING domain and occurs via a direct association between this region and MAVS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号