首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phage display technology is commonly applied for high-throughput screening of single-domain antibodies (sdAbs), and the problem of non-specific adsorption caused by carrier proteins seriously affects the biopanning of single-domain antibodies specific to haptens. In this paper, enrofloxacin (ENR)-functionalized cryogels were prepared by the ethylenediamine (EDA) and carbodiimide methods for application in the biopanning of ENR-specific phages. To improve the efficiency of biopanning, double blocking, a wash solution flow rate of 1 mL/min, and phage pre-incubation were applied to the biopanning process through single-factor experiments. Results of flat colony counting showed that the phage output of AG-ENR cryogels was 15 times higher than that of AG cryogels for the same input amount. And seven complete sequences of ENR-specific shark sdAbs were obtained by monoclonal phage ELISA and sequence alignment. All these results indicate that functionalized cryogels could be used as a novel and efficient method for phage biopanning for single-domain antibodies to haptens.  相似文献   

2.
Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant‐ and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell‐penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell‐specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb‐DNA or –protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic.  相似文献   

3.
Single‐domain antibodies (sdAbs), the variable domains of camelid heavy chain‐only antibodies, are generally thought to poorly recognize nonproteinaceous small molecules and carbohydrates in comparison with conventional antibodies. However, the structures of anti‐methotrexate, anti‐triclocarban and anti‐cortisol sdAbs revealed unexpected contributions of the non‐hypervariable “CDR4” loop, formed between β‐strands D and E of framework region 3, in binding. Here, we investigated the potential role of CDR4 in sdAb binding to a hapten, 15‐acetyl‐deoxynivalenol (15‐AcDON), and to carbohydrates. We constructed and panned a phage‐displayed library in which CDR4 of the 15‐AcDON‐specific sdAb, NAT‐267, was extended and randomized. From this library, we identified one sdAb, MA‐232, bearing a 14‐residue insertion in CDR4 and showing improved binding to 15‐AcDON by ELISA and surface plasmon resonance. On the basis of these results, we constructed a second set of phage‐displayed libraries in which the CDR4 and other regions of three hapten‐ or carbohydrate‐binding sdAbs were diversified. With the goal of identifying sdAbs with novel glycan‐binding specificities, we panned the library against four tumor‐associated carbohydrate antigens but were unable to enrich binding phages. Thus, we conclude that while CDR4 may play a role in binding of some rare hapten‐specific sdAbs, diversifying this region through molecular engineering is probably not a general solution to sdAb carbohydrate recognition in the absence of a paired VL domain.  相似文献   

4.
To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors, etc.). Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nanomaterials.  相似文献   

5.
The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions.  相似文献   

6.
Naive libraries of single domain antibodies (sdAbs) enable rapid isolation of binders to nearly any target. These binders, however, lack the benefits bestowed by in vivo affinity maturation and typically have low affinity toward their targets. We expressed five low-affinity toxin binding sdAbs, previously selected from a naive library derived from variable regions of llama heavy chain-only antibodies, as fusions with a hyperactive mutant Escherichia coli alkaline phosphatase (AP) and examined the impact on apparent affinity and utility. AP spontaneously dimerizes in solution, effectively dimerizing the fused sdAbs, imparting avidity in place of the lower affinity monomeric interactions. The sdAb-AP fusion also combines the target recognition domain with a signal transduction domain, commonly used in enzyme-linked immunosorbent assays (ELISAs). The functional affinity of the sdAb-AP fusions, often increased by a factor of 10 over unfused sdAbs, and their utility as tracer reagents in ELISAs was dramatically improved, giving limits of detection of 300 ng/ml or less, whereas parental sdAbs gave no discernible signal at the toxin concentrations tested. The fusion of sdAbs to AP presents a valuable route to facilitate the implementation of sdAb-based immunoreagents rapidly selected from existing naive libraries toward new or emerging threats.  相似文献   

7.
Applied Microbiology and Biotechnology - Camelid single-domain antibodies (sdAbs, VHHs, or Nanobodies®) are types of antibody fragments that are composed of the heavy-chain variable domain...  相似文献   

8.
We describe a novel type of molecule in which single-domain antibodies (sdAbs) isolated from a nai;ve llama single domain antibody library are linked to an oligomerization domain to generate high-avidity, antigen-binding reagents. An sdAb is fused to the B-subunit of Escherichia coli verotoxin, or shiga-like toxin, which self-assembles to form a homopentamer and results in simultaneous sdAb pentamerization and introduction of avidity. Molecular modeling indicated that this fusion protein (PDB: 1OJF), termed pentabody, has structural flexibility for binding to surface-presented antigen. In the instance of an sdAb specific for a peptide antigen, pentamerization resulted in a dramatic increase in functional affinity for immobilized antigen. The pentabody was expressed in high yield in E.coli in a non-aggregated state, and exhibited excellent thermostability and protease resistance. This technology provides a relatively rapid means of generating novel antigen-binding molecules that bind strongly to immobilized antigen. It is expected that pentavalent sdAbs will have general applicability in proteomics, immunochemical staining, cancer diagnosis and other applications in which antigens are presented multivalently.  相似文献   

9.
BACKGROUND: Profiling the immune responses in patients with cancer is expected to facilitate the design of diagnostic tests and therapeutic vaccines. Such studies usually require the parental antigens. We attempted to profile the immune responses in patients with breast cancer using a peptide phage display selection strategy, which identifies antibody specificities whether or not the antigens are known. MATERIALS AND METHODS: A panel of random peptide phage libraries was panned on serum IgG antibodies from breast cancer patients with stage IV, seeking for disease specific IgG epitopes. ELISA, immunoscreening, and Western blotting techniques were the main approaches used. RESULTS: Phage-displayed peptides were specifically enriched for binding to IgG antibodies from patients with breast cancer. Several peptides have been identified, in particular the SQRIPARIHHFPTSI peptide, which was recognized by IgG antibodies from breast cancer patients, but not from normals (p < 0.0004). In patients who responded to the selected peptides, in particular the SQRIPARIHHFPTSI peptide, antibodies against a 66 kDa cellular protein were found. Interestingly, three out of six patients with the strongest immunoreactivity are still alive, with a mean survival time from first recurrence until now of 2553 days. In contrast, all the nonresponders (n = 10) are deceased. The mean survival time of these patients was 784 days, whereas the mean survival time of the three deceased responders was 1050 days (p < 0.02). CONCLUSIONS: The data provide the first example in which panning of peptide phage display libraries on patient IgG antibodies results in the isolation of breast cancer specific IgG epitopes, some of which correlate with patient survival time. Thus, the identified B-cell epitopes should be of great interest in vaccine development.  相似文献   

10.
Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications.  相似文献   

11.
We describe a novel approach for high-throughput analysis of the immune response in cancer patients using phage-based microarray technology. The recombinant phages used for fabricating phage arrays were initially selected via the use of random peptide phage libraries and breast cancer patient serum antibodies. The peptides displayed by the phages retained their ability to be recognized by serum antibodies after immobilization. The recombinant phage microarrays were screened against either breast cancer or healthy donor serum antibodies. A model-based statistical method is proposed to estimate significant differences in serum antibody reactivity between patients and normals. A significant tumor effect was found with most of the selected phage-displayed peptides, suggesting that recombinant phage microarrays can serve as a tool in monitoring humoral responses towards phage-displayed peptides.  相似文献   

12.
Grb7 is an adapter-type signaling protein, which is recruited via its SH2 domain to a variety of receptor tyrosine kinases (RTKs), including ErbB2 and ErbB3. It is overexpressed in breast, esophageal, and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention. We have utilized phage display random peptide libraries as a source of small peptide ligands to the SH2 domain of Grb7. Screening these libraries against purified Grb7 SH2 resulted in the identification of Grb7-binding peptide phage clones that contained a non-phosphorylated Tyr-X-Asn (YXN) motif. The tyrosine-phosphorylated form of this motif is characteristic of Grb7 SH2 domain binding sites identified in RTKs and other signaling proteins such as Shc. Peptides that are non-phosphorylated have greater potential in the development of therapeutics because of the instability of a phosphate group in vivo. Using a biased library approach with this conserved YXN motif, we identified seven different peptide phage clones, which bind specifically to the SH2 domain of Grb7. These peptides did not bind to the SH2 domain of Grb2 (which also selects for Asn at pY(+2)) or Grb14, a closely related family member. The cyclic structure of the peptides was required to bind to the Grb7 SH2 domain. Importantly, the synthetic Grb7-binding peptide G7-18 in cell lysates was able to specifically inhibit the association of Grb7 with the ErbB family of RTKs, in particular ErbB3, in a dose-dependent manner. These peptides will be useful in the development of targeted molecular therapeutics for cancers overexpressing Grb7 and in the development of Grb7-specific inhibitors to gain a complete understanding of the physiological role of Grb7.  相似文献   

13.
To discover new specific antibodies directed against disseminated carcinoma cells in breast cancer patients, a strategy combining single-chain variable fragment (scFv) phage display and immunomagnetic cell sorting was developed. A selection model, in which ErbB2-expressing breast carcinoma SKBR3 cells are spiked into a 50-fold excess of lymphocytes, was setup. Selection conditions, optimized using the previously characterized ErbB2-specific F5 phage scFv, led to an outstanding phage enrichment yield of 25,000 after only one round. This protocol applied to human nai ve and synthetic phage display antibody libraries led to the selection, in only two rounds, of individual scFv clones (43 out of 46 tested) specific for non-epithelial carcinoma antigens expressed on SKBR3 cells. This strategy is fully applicable to metastatic cells in effusions from breast carcinoma patients and shall lead to the discovery of immunotools crucial for novel diagnostic and therapeutic approaches.  相似文献   

14.
Phage display is a well-known technique that facilitates the selection of peptides or proteins that bind to a desired target. Using this tool, binding elements contained in the natural immune repertoires of the source animal or from a synthetically generated collection may be selected. The unpaired variable domain of the llama's heavy-chain-only classes of immunoglobulins represents an ideal source of genetic material to create phage display libraries. Initial panning of a semi-synthetic llama library yielded only one binder to the toxin ricin. In an effort to increase the number of monoclonal phage binders selected, the Luminex xMAP technology (Luminex, Austin, TX, USA) was used in addition to the enzyme-linked immunosorbent assay (ELISA) to screen clonal populations of phage after three rounds of selection. The xMAP technology detected phage displayed single domain antibody (sdAb) bound to ricin immobilized on the surface of microspheres under equilibrium conditions. This enhanced capability led directly to the identification of additional single domain antibodies of interest. The selected sdAbs were expressed, purified, and then evaluated for their specificity as well as enhanced thermal stability in comparison to conventional immunoglobulin G (IgG). We determined equilibrium dissociation constants and demonstrated their use as effective capture molecules in sandwich immunoassays.  相似文献   

15.
In the post-genomic era, validation of candidate gene targets frequently requires proteinbased strategies. Phage display is a powerful tool to define protein-protein interactions by generating peptide binders against target antigens. Epitope phage display libraries have the potential to enrich coding exon sequences from human genomic loci. We evaluated genomic and cDNA phage display strategies to identify genes in the 5q31 Interleukin gene cluster and to enrich cell surface receptor tyrosine kinase genes from a breast cancer cDNA library. A genomic display library containing 2 x 106 clones with exon-sized inserts was selected with antibodies specific for human Interleukin-4 (IL-4) and Interleukin-13. The library was enriched significantly after two selection rounds and DNA sequencing revealed unique clones. One clone matched a cognate IL-4 epitope; however, the majority of clone insert sequences corresponded to E. coli genomic DNA. These bacterial sequences act as 'mimotopes' (mimetic sequences of the true epitope), correspond to open reading frames, generate displayed peptides, and compete for binding during phage selection. The specificity of these mimotopes for IL-4 was confirmed by competition ELISA. Other E. coli mimotopes were generated using additional antibodies. Mimotopes for a receptor tyrosine kinase gene were also selected using a breast cancer SKBR-3 cDNA phage display library, screened against an anti-erbB2 monoclonal antibody. Identification of mimotopes in genomic and cDNA phage libraries is essential for phage display-based protein validation assays and two-hybrid phage approaches that examine protein-protein interactions. The predominance of E. coli mimotopes suggests that the E. coli genome may be useful to generate peptide diversity biased towards protein coding sequences.ABBREVIATIONS USED: IL, interleukin; ELISA, enzyme linked immunoabsorbant assay; PBS, phospho-buffered saline; cfu, colony forming units.  相似文献   

16.
Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs) were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.  相似文献   

17.
Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.  相似文献   

18.
Post-exposure prophylactic (PEP) neutralizing antibodies against Rabies are the most effective way to prevent infection-related fatality. The outer envelope glycoprotein of the Rabies virus (RABV) is the most significant surface antigen for generating virus-neutralizing antibodies. The small size and uncompromised functional specificity of single domain antibodies (sdAbs) can be exploited in the fields of experimental therapeutic applications for infectious diseases through formatting flexibilities to increase their avidity towards target antigens. In this study, we used phage display technique to select and identify sdAbs that were specific for the RABV glycoprotein from a naïve llama-derived antibody library. To increase their neutralizing potencies, the sdAbs were fused with a coiled-coil peptide derived from the human cartilage oligomeric matrix protein (COMP48) to form homogenous pentavalent multimers, known as combodies. Compared to monovalent sdAbs, the combodies, namely 26424 and 26434, exhibited high avidity and were able to neutralize 85-fold higher input of RABV (CVS-11 strain) pseudotypes in vitro, as a result of multimerization, while retaining their specificities for target antigen. 26424 and 26434 were capable of neutralizing CVS-11 pseudotypes in vitro by 90–95% as compared to human rabies immunoglobulin (HRIG), currently used for PEP in Rabies. The multimeric sdAbs were also demonstrated to be partially protective for mice that were infected with lethal doses of rabies virus in vivo. The results demonstrate that the combodies could be valuable tools in understanding viral mechanisms, diagnosis and possible anti-viral candidate for RABV infection.  相似文献   

19.
Compact single-domain antibodies (sdAbs) are nearly 13 times smaller than full-size monoclonal antibodies (mAbs) and have a number of advantages for biotechnological applications, such as small size, high specificity, solubility, stability, and great refolding capacity. Carcinoembryonic antigen (CEA) is a tumor-associated glycoprotein expressed in a variety of cancers. Detection of CEA on the tumor cell surface may be carried out using anti-CEA antibodies and conventional fluorescent dyes. Semiconductor quantum dots (QDs) are brighter and more photostable than organic dyes; they provide the possibility for labeling of different recognition molecules with QDs of different colors but excitable with the same wavelength of excitation. In this study, the abilities for specific detection of CEA expressed by tumor cells with anti-CEA sdAbs biotinylated in vitro and in vivo, as well as with anti-CEA mAbs biotinylated in vitro, were compared using flow cytometry and the conjugates of streptavidin with QDs (SA-QDs). The results demonstrated that either in vitro or in vivo biotinylated anti-CEA sdAbs are more sensitive for cell staining compared to biotinylated anti-CEA mAbs. The data also show that simultaneous use of biotinylated sdAbs with highly fluorescent SA-QDs can considerably improve the sensitivity of detection of CEA on tumor cell surfaces.  相似文献   

20.
Phage display antibody (PDA) libraries, allows the rapid isolation and characterization of high specificity monoclonal antibodies for therapeutic and diagnostic applications. However, selection of positive binding clones from synthetic and semi-synthetic libraries has an inherent bias towards clones containing randomly generated amber stop codons, complicating the identification of high affinity binding antibodies. We screened Tomlinson I and J library against receptor binding domain (RBD) of SARS CoV2, eight clones which showed positive binding in phage ELISA, contained one or more amber stop codons in their single-chain antibody fragment (scFv) gene sequences. The presence of amber stop codons within the antibody sequence causes the premature termination of soluble form of scFv expression in nonsuppressor Escherichia coli strain. In the present study, we have used a novel strategy that allows soluble expression of scFvs having amber stop codon in their gene sequences (without phage PIII protein fusion), in the suppressor strain. This strategy of introduction of Ochre (TAA) codon at the junction of scFv and PIII gene, speeds up the initial screening process which is critical for selecting the right scFvs for further studies. Present strategy leads to the identification of a scFv, B8 that binds specifically with nanomolar affinity toward SARS CoV 2 RBD, which otherwise lost in terms of traditional methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号