首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang CC  Hall AC  Lim PH 《Life sciences》2004,75(3):329-338
The agent hemin has been demonstrated to be able to initiate a coordinated differentiation program in several cell types. In the present study, we examined the ability of hemin on inducing cell differentiation and Ca(2+)-activated K(+) channel activity in erythroleukemic K562 cells. Treating undifferentiated K562 cells with hemin (0.1 mM) for five days caused these cells to display differentiation-like characteristics including chromatin aggregation, nuclear degradation, pseudopod extension of the membrane and increased hemoglobin production. However, overall cell viability was not significantly changed by the presence of hemin. After hemin treatment for different periods, the Ca(2+)-activated K(+) channel was activated by the addition of ionomycin (1 microM), and was inhibited by either clotrimazole, charybdotoxin, or EGTA. Before hemin treatment there was no significant Ca(2+)-activated K(+) channel activity present in undifferentiated K562 cells. After hemin treatment for 5 days, a significant Ca(2+)-activated K(+) channel activity was detected. This increasing Ca(2+)-activated K(+) channel activity may be contributed from a subtype of Ca(2+)-activated K(+) channel, KCNN4. These results suggest that the ability of hemin to induce increasing Ca(2+)-activated K(+) channel activity may contribute to the mechanism of hemin-induced K562 cell differentiation.  相似文献   

2.
Trypsin premature activation has been thought to be a key event in the initiation phase of acute pancreatitis. Here we test a hypothesis that a sustained increase of cytosolic Ca(2+) concentration ([Ca(2+)](C)) can trigger K(+) influx into pancreas acinar zymogen granules (ZGs) via a Ca(2+)-activated K(+) channel (K(Ca)), and this influx of K(+) then mobilizes bound-Ca(2+) by K(+)/Ca(2+) ion-exchange to increase free Ca(2+) concentration in the ZGs ([Ca(2+)](G)) and release bound-H(+) by K(+)/H(+) ion-exchange to decrease the pH in ZGs (pH(G)). Both the increase of [Ca(2+)](G) and the decrease of pH(G) will facilitate trypsinogen autoactivation and stabilize active trypsin inside ZGs that could lead to acute pancreatitis. The experimental results are consistent with our hypothesis, suggesting that K(+) induced ion-exchanges play a critical role in the initiation of trypsin premature activation in ZGs.  相似文献   

3.
The pathways for the efflux of K(+) from osmotically-swollen HTC rat hepatoma cells were investigated using (86)Rb(+) as a tracer for K(+). Exposure of HTC cells to a hypotonic solution (<250 mOsm kg(-1)) resulted in a transient efflux of (86)Rb(+) that reached a maximal value after approximately 1 min, and inactivated within 3 min. This initial (86)Rb(+) efflux was inhibited by charybdotoxin, clotrimazole and Ba(2+), but not by apamin or paxilline, consistent with it being via an intermediate-conductance Ca(2+)-activated K(+) channel. For cells exposed to an extracellular osmolality < 180 mOsm kg(-1) there was an additional (86)Rb(+) efflux component which was slower to activate, taking 4 - 6 min to reach a maximum, and remaining active for > 20 min. The second (86)Rb(+) efflux component was not inhibited by K(+) channel blockers but was inhibited by the anion channel blockers, tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumate. The time-courses for its activation and inactivation, as well as its dependence on the extracellular osmolality, were very similar to those observed for the hypotonically-activated efflux of the organic osmolyte, taurine. The data are consistent with the second component of (86)Rb(+) efflux and the efflux of taurine from osmotically-swollen cells occurring via a common pathway having a marked selectivity for taurine over (86)Rb(+).  相似文献   

4.
Two types of Na(+)-independent Mg(2+) efflux exist in erythrocytes: (1) Mg(2+) efflux in sucrose medium and (2) Mg(2+) efflux in high Cl(-) media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na(+)-independent Mg(2+) efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K(+),Cl(-)- and Na(+),K(+),Cl(-)-symport, Na(+)/H(+)-, Na(+)/Mg(2+)-, Na(+)/Ca(2+)- and K(+)(Na(+))/H(+) antiport, Ca(2+)-activated K(+) channel and Mg(2+) leak flux. We suggest that, in choline Cl medium, Na(+)-independent Mg(2+) efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg(2+) efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg(2+) to the same degree. The K(d) value for inhibition of [(14)C]choline efflux and for inhibition of Mg(2+) efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg(2+) efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg(2+) efflux was reduced to the same degree by these inhibitors as was the [(14)C]choline efflux.  相似文献   

5.
The effects of hypotonic shock on cell volume, taurine influx and efflux were examined in the human erythroleukemic cell line K562. Cells exposed to hypotonic solutions exhibited a regulatory volume decrease (RVD) following rapid increases in cell volume. Cell swelling was associated with a increased taurine influx and efflux. The volume-activated taurine pathway was Na+-independent, and increased in parallel with increasing cell volume. The chloride channel blocker, 2,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), completely blocked the volume-activated taurine influx and efflux, while [dihydroin-denyl]oxy]alkanoic acids (DIOA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), an anion exchanger and anion channel blocker, respectively, also inhibited significantly. These results suggest that taurine transport is increased in response to hypotonic stress, which may be mediated via a volume-activated, DCDPC-sensitive anion channel. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The mechanism of mediator secretion from mast cells in disease is likely to include modulation of ion channel activity. Several distinct Ca(2+), K(+), and Cl(-) conductances have been identified in rodent mast cells, but there are no data on human mast cells. We have used the whole-cell variant of the patch clamp technique to characterize for the first time macroscopic ion currents in purified human lung mast cells and human peripheral blood-derived mast cells at rest and following IgE-dependent activation. The majority of both mast cell types were electrically silent at rest with a resting membrane potential of around 0 mV. Following IgE-dependent activation, >90% of human peripheral blood-derived mast cells responded within 2 min with the development of a Ca(2+)-activated K(+) current exhibiting weak inward rectification, which polarized the cells to around -40 mV and a smaller outwardly rectifying Ca(2+)-independent Cl(-) conductance. Human lung mast cells showed more heterogeneity in their response to anti-IgE, with Ca(2+)-activated K(+) currents and Ca(2+)-independent Cl(-) currents developing in approximately 50% of cells. In both cell types, the K(+) current was blocked reversibly by charybdotoxin, which along with its electrophysiological properties suggests it is carried by a channel similar to the intermediate conductance Ca(2+)-activated K(+) channel. Charybdotoxin did not consistently attenuate histamine or leukotriene C(4) release, indicating that the Ca(2+)-activated K(+) current may enhance, but is not essential for, the release of these mediators.  相似文献   

7.
To maintain Ca(2+) entry during T lymphocyte activation, a balancing efflux of cations is necessary. Using three approaches, we demonstrate that this cation efflux is mediated by Ca(2+)-activated K(+) (K(Ca)) channels, hSKCa2 in the human leukemic T cell line Jurkat and hIKCa1 in mitogen-activated human T cells. First, several recently developed, selective and potent pharmacological inhibitors of K(Ca) channels but not K(V) channels reduce Ca(2+) entry in Jurkat and in mitogen-activated human T cells. Second, dominant-negative suppression of the native K(Ca) channel in Jurkat T cells by overexpression of a truncated fragment of the cloned hSKCa2 channel decreases Ca(2+) influx. Finally, introduction of the hIKCa1 channel into Jurkat T cells maintains rapid Ca(2+) entry despite pharmacological inhibition of the native small conductance K(Ca) channel. Thus, K(Ca) channels play a vital role in T cell Ca(2+) signaling.  相似文献   

8.
We examined the effects of the mitochondrial Ca(2+)-activated K(+) (mitoBK(Ca)) channel activator NS 1619 on L-type Ca(2+) channels in rat ventricular myocytes. NS 1619 inhibited the Ca(2+) current in a dose-dependent manner. NS 1619 shifted the activation curve to more positive potentials, but did not have a significant effect on the inactivation curve. Pretreatment with inhibitors of membrane BK(Ca) channel, mitoBK(Ca) channel, protein kinase C, protein kinase A, and protein kinase G had little effect on the Ca(2+) current and did not alter the inhibitory effect of NS 1619 significantly. The application of additional NS 1619 in the presence of isoproterenol, a selective beta-adrenoreceptor agonist, reduced the Ca(2+) current to approximately the same level as a single application of NS 1619. In conclusion, our results suggest that NS 1619 inhibits the Ca(2+) current independent of the mitoBK(Ca) channel and protein kinases. Since NS 1619 is widely used to study mitoBK(Ca) channel function, it is essential to verify these unexpected effects of NS 1619 before experimental data can be interpreted accurately.  相似文献   

9.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

10.
We have applied the perforated patch whole-cell technique to beta cells within intact pancreatic islets to identify the current underlying the glucose-induced rhythmic firing of action potentials. Trains of depolarizations (to simulate glucose-induced electrical activity) resulted in the gradual (time constant: 2.3 s) development of a small (<0.8 nS) K(+) conductance. The current was dependent on Ca(2+) influx but unaffected by apamin and charybdotoxin, two blockers of Ca(2+)-activated K(+) channels, and was insensitive to tolbutamide (a blocker of ATP-regulated K(+) channels) but partially (>60%) blocked by high (10-20 mM) concentrations of tetraethylammonium. Upon cessation of electrical stimulation, the current deactivated exponentially with a time constant of 6.5 s. This is similar to the interval between two successive bursts of action potentials. We propose that this Ca(2+)-activated K(+) current plays an important role in the generation of oscillatory electrical activity in the beta cell.  相似文献   

11.
We report here a combination of site-directed mutations that eliminate the high-affinity Ca(2+) response of the large-conductance Ca(2+)-activated K(+) channel (BK(Ca)), leaving only a low-affinity response blocked by high concentrations of Mg(2+). Mutations at two sites are required, the "Ca(2+) bowl," which has been implicated previously in Ca(2+) binding, and M513, at the end of the channel's seventh hydrophobic segment. Energetic analyses of mutations at these positions, alone and in combination, argue that the BK(Ca) channel contains three types of Ca(2+) binding sites, one of low affinity that is Mg(2+) sensitive (as has been suggested previously) and two of higher affinity that have similar binding characteristics and contribute approximately equally to the power of Ca(2+) to influence channel opening. Estimates of the binding characteristics of the BK(Ca) channel's high-affinity Ca(2+)-binding sites are provided.  相似文献   

12.
The effects of calcium, calmodulin, protein kinase C (PKC) and protein tyrosine kinase (PTK) modulators were examined on the volume-activated taurine efflux in the erythroleukemia cell line K562. Exposure to hypoosmotic solution significantly increased taurine efflux and intracellular calcium concentration ([Ca2+]i). The Ca2+ channel blockers La3+ (1 mM), verapamil (200 microM) and nifedipine (100 microM) inhibited the hypoosmotically-induced [Ca2+]i increase by more than 90%, while the volume-activated taurine efflux was inhibited by 61.3 +/- 9.5, 74.1 +/- 9.3 and 38.0 +/- 1.5%, respectively. Furthermore, the calmodulin inhibitors W7 (50 microM) and trifluoperazine (10 microM) and the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62 (2 microM) significantly blocked the volume-activated taurine efflux by 93.4 +/- 2.7, 77.9 +/- 3.5 and 61.3 +/- 15.8%, respectively. In contrast, the PKC inhibitor staurosporine (200 nM) or the PKC activator phorbol 12-myristate 13-acetate (100 nM) did not have significant effects on the volume-activated taurine efflux. However, pretreatment with PTK inhibitors genistein, tyrphostin A25, and tyrphostin A47 blocked the volume-activated taurine efflux. These results suggest that the volume-activated taurine efflux in K562 cells may not directly involve Ca2+, but may require the presence of calmodulin and/or PTK.  相似文献   

13.
Our understanding of the signalling mechanisms involved in the process of stomatal closure is reviewed. Work has concentrated on the mechanisms by which abscisic acid (ABA) induces changes in specific ion channels at both the plasmalemma and the tonoplast, leading to efflux of both K+ and anions at both membranes, requiring four essential changes. For each we need to identify the specific channels concerned, and the detailed signalling chains by which each is linked through signalling intermediates to ABA. There are two global changes that are identified following ABA treatment: an increase in cytoplasmic pH and an increase in cytoplasmic Ca2+, although stomata can close without any measurable global increase in cytoplasmic Ca2+. There is also evidence for the importance of several protein phosphatases and protein kinases in the regulation of channel activity. At the plasmalemma, loss of K+ requires depolarization of the membrane potential into the range at which the outward K+ channel is open. ABA-induced activation of a non-specific cation channel, permeable to Ca2+, may contribute to the necessary depolarization, together with ABA-induced activation of S-type anion channels in the plasmalemma, which are then responsible for the necessary anion efflux. The anion channels are activated by Ca2+ and by phosphorylation, but the precise mechanism of their activation by ABA is not yet clear. ABA also up-regulates the outward K+ current at any given membrane potential; this activation is Ca(2+)-independent and is attributed to the increase in cytoplasmic pH, perhaps through the marked pH-sensitivity of protein phosphatase type 2C. Our understanding of mechanisms at the tonoplast is much less complete. A total of two channels, both Ca(2+)-activated, have been identified which are capable of K+ efflux; these are the voltage-independent VK channel specific to K+, and the slow vacuolar (SV) channel which opens only at non-physiological tonoplast potentials (cytoplasm positive). The SV channel is permeable to K+ and Ca2+, and although it has been argued that it could be responsible for Ca(2+)-induced Ca2+ release, it now seems likely that it opens only under conditions where Ca2+ will flow from cytoplasm to vacuole. Although tracer measurements show unequivocally that ABA does activate efflux of Cl- from vacuole to cytoplasm, no vacuolar anion channel has yet been identified. There is clear evidence that ABA activates release of Ca2+ from internal stores, but the source and trigger for ABA-induced increase in cytoplasmic Ca2+ are uncertain. The tonoplast and another membrane, probably ER, have IP3-sensitive Ca2+ release channels, and the tonoplast has also cADPR-activated Ca2+ channels. Their relative contributions to ABA-induced release of Ca2+ from internal stores remain to be established. There is some evidence for activation of phospholipase C by ABA, by an unknown mechanism; plant phospholipase C may be activated by Ca2+ rather than by the G-proteins used in many animal cell signalling systems. A further ABA-induced channel modulation is the inhibition of the inward K+ channel, which is not essential for closing but will prevent opening. It is suggested that this is mediated through the Ca(2+)-activated protein phosphatase, calcineurin. The question of Ca(2+)-independent stomatal closure remains controversial. At the plasmalemma the stimulation of K+ efflux is Ca(2+)-independent and, at least in Arabidopsis, activation of anion efflux by ABA may also be Ca(2+)-independent. But there are no indications of Ca(2+)-independent mechanisms for K+ efflux at the tonoplast, and the appropriate anion channel at the tonoplast is still to be found. There is also evidence that ABA interferes with a control system in the guard cell, resetting its set-point to lower contents, suggesting that stretch-activated channels also feature in the regulation of guard cell ion channels, perhaps through interactions with cytoskeletal proteins. (ABSTRACT TRUN  相似文献   

14.
Ca(2+) influx appears to be important for triggering myoblast fusion. It remains, however, unclear how Ca(2+) influx rises prior to myoblast fusion. The present study examines a possible involvement of the voltage-dependent Ca(2+) influx pathways. Treatment with the L-type Ca(2+) channel blockers, diltiazem, and nifedipine did not alter cytosolic Ca(2+) levels. Depolarization with high K(+) solution and activation of Ca(2+) channel with Bay K 8644, and agonist of voltage dependent Ca(2+) channels, failed to elicit increases intracellular Ca(2+) level, indicating the absence of depolarization-operated mechanisms. In contrast, phloretin, an agonist of Ca(2+)-activated potassium (K(Ca)) channels, was able to hyperpolarize membrane potential and promoted Ca(2+) influx. These effects were completely abolished by treatment of charybdotoxin, a specific inhibitor of K(Ca) channels. In addition, gadolinium, a potent stretch-activated channel (SAC) blocker, prevented the phloretin-mediated Ca(2+) increase, indicating the involvement of SACs in Ca(2+) influx. Furthermore, phloretin stimulated precocious myoblast fusion and this effect was blocked with gadolinium or charybdotoxin. Taken together, these results suggest that induced hyperpolarization, but not depolarization increases Ca(2+) influx through stretch-activated channels, and in turn triggers myoblast fusion.  相似文献   

15.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP.  相似文献   

16.
The COOH-terminal S9-S10 tail domain of large conductance Ca(2+)-activated K(+) (BK) channels is a major determinant of Ca(2+) sensitivity (Schreiber, M., A. Wei, A. Yuan, J. Gaut, M. Saito, and L. Salkoff. 1999. Nat. Neurosci. 2:416-421). To investigate whether the tail domain also modulates Ca(2+)-independent properties of BK channels, we explored the functional differences between the BK channel mSlo1 and another member of the Slo family, mSlo3 (Schreiber, M., A. Yuan, and L. Salkoff. 1998. J. Biol. Chem. 273:3509-3516). Compared with mSlo1 channels, mSlo3 channels showed little Ca(2+) sensitivity, and the mean open time, burst duration, gaps between bursts, and single-channel conductance of mSlo3 channels were only 32, 22, 41, and 37% of that for mSlo1 channels, respectively. To examine which channel properties arise from the tail domain, we coexpressed the core of mSlo1 with either the tail domain of mSlo1 or the tail domain of mSlo3 channels, and studied the single-channel currents. Replacing the mSlo1 tail with the mSlo3 tail resulted in the following: increased open probability in the absence of Ca(2+); reduced the Ca(2+) sensitivity greatly by allowing only partial activation by Ca(2+) and by reducing the Hill coefficient for Ca(2+) activation; decreased the voltage dependence approximately 28%; decreased the mean open time two- to threefold; decreased the mean burst duration three- to ninefold; decreased the single-channel conductance approximately 14%; decreased the K(d) for block by TEA(i) approximately 30%; did not change the minimal numbers of three to four open and five to seven closed states entered during gating; and did not change the major features of the dependency between adjacent interval durations. These observations support a modular construction of the BK channel in which the tail domain modulates the gating kinetics and conductance properties of the voltage-dependent core domain, in addition to determining most of the high affinity Ca(2+) sensitivity.  相似文献   

17.
The mechanism of apoptosis induced by cyclosporin A (CsA) in a human hepatoma cell line was investigated. CsA induced apoptosis in a dose- and time-dependent manner in HepG2 human hepatoma cells. CsA induced Cl- efflux, which was significantly blocked by niflumic acid (NA), a specific inhibitor, and flufenamic acid (FA), 5-nitro-2-(3-phenyl-propylamino)-benzoate (NPPB), and 4,4'-diisothiocyanoto-stibene-2,2'-disulfonic acid (DIDS), non-specific inhibitors of Ca2+-activated Cl- channels (CaCCs), not by calyculin A, an inhibitor of K+,Cl- -cotransport. In addition, CsA did not alter intracellular K+ concentration. Moreover, CsA increased intracellular Ca2+ concentration, and treatment with BAPTA/AM, an intracellular Ca2+ chelator, significantly inhibited the CsA-induced Cl- efflux, indicating that CsA induced Cl- efflux through the activation of CaCCs. Treatment with these CaCC inhibitors (NA, FA, NPPB, and DIDS) markedly prevented the CsA-induced apoptosis. Taken together, these results suggest that CaCCs may mediate apoptosis induced by CsA in HepG2 cells. Furthermore, these results provide a new insight into the novel function of CaCCs in the regulation of cancer cell apoptosis associated with perturbation of intracellular Ca2+ signal.  相似文献   

18.
In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.  相似文献   

19.
The lactogenic hormone prolactin (PRL) has been known to affect Ca(2+) and electrolyte transport in the intestinal epithelium. In the present study we analyzed ion transport in mouse proximal and distal colon, and acute changes induced by PRL. In the proximal colon, carbachol activated a Ca(2+) dependent Cl(-) secretion that was sensitive to DIDS and NFA. In the distal colon, both ATP and carbachol activated K(+) secretion. Ca(2+) -activated KCl transport in proximal and distal colon was inhibited by PRL (200 ng/ml), while amiloride sensitive Na(+) absorption and cAMP induced Cl(-) secretion remained unaffected. Luminal large conductance Ca(2+) -activated K(+) (BK) channels were largely responsible for Ca(2+) -activated K(+) secretion in the distal colon, and basolateral BK channels supported Ca(2+) -activated Cl(-) secretion in the proximal colon. Ca(2+) chelating by BAPTA-AM attenuated effects of carbachol and abolished effects of PRL. Both inhibition of PI3 kinase with wortmannin and blockage of MAP kinases with SB 203580 or U 0126, interfered with the acute inhibitory effect of PRL on ion transport, while blocking of Jak/Stat kinases with AG 490 was without effects. PRL attenuated the increase in intracellular Ca(2+) that was caused by stimulation of isolated colonic crypts with carbachol. Thus PRL inhibits Ca(2+) dependent Cl(-) and K(+) secretion by interfering with intracellular Ca(2+) signaling and probably by activating PI3 kinase and MAP kinase pathways.  相似文献   

20.
Jin M  Berrout J  Chen L  O'Neil RG 《Cell calcium》2012,51(2):131-139
The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca(2+)-activated K(+) channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca(2+)-activated K(+) channels, the small conductance SK3 (K(Ca)2.3) channel and large conductance BKα channel (K(Ca)1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K(+) channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca(2+) influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca(2+) influx on activation of both K(+) channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca(2+) influx would first activate the highly Ca(2+)-sensitive SK3 channel which, in turn, would lead to enhanced Ca(2+) influx and activation of the less Ca(2+)-sensitive BK channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号