首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subnuclear distribution of replication complex proteins is being recognized as an important factor for the control of DNA replication. Herpes simplex virus (HSV) single-strand (ss)DNA-binding protein, ICP8 (infected cell protein 8) accumulates in nuclear replication domains. ICP8 also serves as helper function for the replication of adeno-associated virus (AAV). Using quantitative 3D colocalization analysis we show that upon coinfection of AAV and HSV the AAV replication protein Rep and ICP8 co-reside in HSV replication domains. In contrast, Rep expressed by a recombinant HSV, in the absence of AAV DNA, displayed a nuclear distribution pattern distinct from that of ICP8. Colocal ization of Rep and ICP8 was restored by the reintroduction of single-stranded AAV vector genomes. In vitro, ICP8 displayed direct binding to Rep78. Single-stranded recombinant AAV DNA strongly stimulated this interaction, whereas double-stranded DNA was ineffective. Our findings suggest that ICP8 by its strong ssDNA-binding activity exploits the unique single-strandedness of the AAV genome to form a tripartite complex with Rep78 and AAV ssDNA. This novel mechanism for recruiting components of a functional replication complex directs AAV to subnuclear HSV replication compartments where the HSV replication complex can replicate the AAV genome.  相似文献   

2.
We examined the expression and localization of herpesvirus proteins in monkey cells transfected with recombinant plasmids containing herpes simplex virus (HSV) DNA sequences. Low levels of expression of the major HSV DNA-binding protein ICP8 were observed when ICP8-encoding plasmids were introduced into cells alone. ICP8 expression was greatly increased when a recombinant plasmid encoding the HSV alpha (immediate-early) ICP4 and ICP0 genes was transfected with the ICP8 gene. Deletion and subcloning analysis indicated that two separate functions capable of stimulating ICP8 expression were encoded on the alpha gene plasmid. One mapped in or near the ICP4 gene, and one mapped in or near the ICP0 gene. Their stimulatory effects were synergistic when introduced on two separate plasmids. Thus, two separate viral functions can activate herpesvirus early gene expression in transfected cells.  相似文献   

3.
4.
PML nuclear bodies (NBs) are subnuclear structures whose integrity is compromised in certain human diseases, including leukemia and neurodegenerative disorders. Infection by a number of DNA viruses similarly triggers the reorganization of these structures, suggesting an important role for the NBs in the viral infection process. While expression of the adenovirus E4 ORF3 protein leads to only a moderate redistribution of PML to filamentous structures, the herpes simplex virus (HSV) ICP0 protein and the cytomegalovirus (CMV) IE1 protein both induce a complete disruption of the NB structure. Recently, we and others have shown that the NB proteins PML and Sp100 are posttranslationally modified by covalent linkage with the ubiquitin-related SUMO-1 protein and that this modification may promote the assembly of these structures. Here we show that the HSV ICP0 and CMV IE1 proteins specifically abrogate the SUMO-1 modification of PML and Sp100, whereas the adenovirus E4 ORF3 protein does not affect this process. The potential of ICP0 and IE1 to alter SUMO-1 modification is directly linked to their capacity to disassemble NBs, thus strengthening the role for SUMO-1 conjugation in maintenance of the structural integrity of the NBs. This observation supports a model in which ICP0 and IE1 disrupt the NBs either by preventing the formation or by degrading of the SUMO-1-modified PML and Sp100 protein species. Finally, we show that the IE1 protein itself is a substrate for SUMO-1 modification, thus representing the first viral protein found to undergo this new type of posttranslational modification.  相似文献   

5.
6.
7.
8.
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP27 is an RNA-binding protein that performs multiple functions required for the expression of HSV-1 genes during a productive infection. One essential function involves shuttling between the nucleus and the cytoplasm. Some of the domains identified in ICP27 include a leucine-rich nuclear export sequence (NES), a nuclear localization signal, three KH-like RNA-binding domains, and an RGG-box type RNA-binding motif. To study the contribution of two of the essential domains in ICP27 to HSV gene expression, we generated recombinant herpesviruses carrying deleterious mutations in the NES and KH domains of ICP27. To accomplish this, we fused the green fluorescent protein (GFP) to ICP27 and utilized fluorescence as a marker to isolate recombinant herpesviruses. Fusion of GFP to wild-type ICP27 did not disturb its localization or function or significantly reduce virus yield. Analysis of HSV gene expression in cells infected with a recombinant virus carrying a point mutation in the first KH-like RNA-binding domain revealed that nuclear export of ICP27 was not blocked, and the expression of only a subset of ICP27-dependent late genes was affected. These findings suggest that individual KH-like RNA-binding motifs in ICP27 may be involved in binding distinct RNAs. Analysis of recombinant viruses carrying a lethal mutation in the NES of ICP27 was not accomplished because this mutation results in a strong dominant-negative phenotype. Finally, we demonstrate that shuttling by ICP27 is regulated by an export control sequence adjacent to its NES that functions like the inhibitory sequence element found adjacent to the NES of NS1 from influenza virus.  相似文献   

9.
M Gao  D M Knipe 《Journal of virology》1991,65(5):2666-2675
We have identified a trans-dominant mutant form of the herpes simplex virus (HSV) DNA-binding protein ICP8 which inhibits viral replication. When expressed by the V2.6 cell line, the mutant gene product inhibited wild-type HSV production by 50- to 150-fold when the multiplicity of infection was less than 5. Production of HSV types 1 and 2 but not production of pseudorabies virus was inhibited in V2.6 cells. The inhibitory effect was not due solely to the high levels of expression, because the levels of expression were comparable to those in the permissive wild-type ICP8-expressing S-2 cell line. Experiments designed to define the block in viral production in V2.6 cells demonstrated (i) that viral alpha and beta gene expression was comparable in the different cell lines, (ii) that viral DNA replication proceeded but was reduced to approximately 20% of the control cell level, and (iii) that late gene expression was similar to that in cells in which viral DNA replication was completely blocked. Genetic experiments indicated that the mutant gene product inhibits normal functions of ICP8. Thus, ICP8 may play distinct roles in replication of viral DNA and in stimulation of late gene expression. The dual roles of ICP8 in these two processes could provide a mechanism for controlling the transition from viral DNA synthesis to late gene expression during the viral growth cycle.  相似文献   

10.
The herpes simplex virus (HSV) single-stranded DNA-binding protein, ICP8, is required for viral DNA synthesis. Before viral DNA replication, ICP8 colocalizes with other replication proteins at small punctate foci called prereplicative sites. With the onset of viral genome amplification, these proteins become redistributed into large globular replication compartments. Here we present the results of immunocytochemical and biochemical analysis of ICP8 showing that various antibodies recognize distinct forms of ICP8. Using these ICP8-specific antibodies as probes for ICP8 structure, we detected a time-dependent appearance and disappearance of ICP8 epitopes in immunoprecipitation assays. Immunofluorescence staining of ICP8 in cells infected with different HSV mutant viruses as well as cells transfected with a limited number of viral genes demonstrated that these and other antigenic changes occur coincident with ICP8 assembly at intranuclear replication structures. Genetic analysis has revealed a correlation between the ability of various ICP8 mutant proteins to form the 39S epitope and their ability to bind to DNA. These results support the hypothesis that ICP8 undergoes a conformational change upon binding to other HSV proteins and/or to DNA coincident with assembly into viral DNA replication structures.  相似文献   

11.
We used indirect immunofluorescence to examine the factors determining the intranuclear location of herpes simplex virus (HSV) DNA polymerase (Pol) in infected cells. In the absence of viral DNA replication, HSV Pol colocalized with the HSV DNA-binding protein ICP8 in nuclear framework-associated structures called prereplicative sites. In the presence of viral DNA replication, HSV Pol colocalized with ICP8 in globular intranuclear structures called replication compartments. In cells infected with mutant viruses encoding defective ICP8 molecules, Pol localized within the cell nucleus but showed a general diffuse intranuclear distribution. In uninfected cells transfected with a plasmid expressing Pol, Pol similarly showed a diffuse intranuclear distribution. Therefore, Pol can localize to the cell nucleus without other viral proteins, but functional ICP8 is required for Pol to localize to prereplicative sites. In cells infected with mutant viruses encoding defective Pol molecules, ICP8 localized to prereplicative sites. Thus, Pol or the portions of Pol not expressed by the mutant viruses are not essential for the formation of prereplicative sites or the localization of ICP8 to these structures. These results demonstrate that a specific nuclear protein can influence the intranuclear location of another nuclear protein.  相似文献   

12.
Herpes simplex virus (HSV) helper functions for (AAV) replication comprise HSV ICP8 and helicase-primase UL5/UL52/UL8. Here we show that N-terminal amino acids of AAV Rep78 that contact the Rep-binding site within the AAV inverted terminal repeat (ITR) are required for ternary-complex formation with infected-cell protein 8 (ICP8) on AAV single-strand DNA (ssDNA) in vitro and for colocalization in nuclear replication domains in vivo. Our data suggest that HSV-dependent AAV replication is initiated by Rep contacting the AAV ITR and by cooperative binding of ICP8 on AAV ssDNA.  相似文献   

13.
The herpes simplex virus (HSV) virulence factor ICP34.5, the mouse myeloid differentiation protein MyD116, and the hamster growth arrest and DNA damage protein GADD34 share a 63-amino-acid carboxyl domain which has significant homologies to otherwise divergent proteins. Here we report that both ICP34.5 and its cellular homolog MyD116 complex through the conserved domain with proliferating cell nuclear antigen. In addition, HSV infection induces a novel 70-kDa cellular protein detectable by antisera to both ICP34.5 and GADD34, demonstrating that this novel protein possesses homology with the 63-amino-acid conserved domain.  相似文献   

14.
Herpes simplex virus (HSV) has often been suggested for development as a vector, particularly for the nervous system. Considerable evidence has shown that for use of HSV as a vector, immediate-early (IE) gene expression must be minimized or abolished, otherwise such vectors are likely to be highly cytotoxic. Mutations of vmw65 which abolish IE promoter transactivating activity may also be included to reduce IE gene expression generally. However, when vmw65 mutations are combined with an IE gene deletion, such viruses are hard to propagate, even on cells which otherwise complement the IE gene deletion effectively. We have found that vmw65 mutants can be effectively grown on cell lines expressing equine herpesvirus 1 gene 12, a non-HSV homologue of vmw65 with little sequence similarity to its HSV counterpart. This prevents repair by homologous recombination of vmw65 mutations in the virus, which would occur if mutations were complemented by vmw65 itself. The gene 12 protein is not packaged into HSV virions, which is important if viruses grown on such cells are to be used as vectors. These results not only further strengthen the evidence for direct functional homology between and similar modes of action of the two proteins but have allowed the generation of gene 12-containing cell lines in which ICP4 and ICP27 expression is induced by virus infection (probably by ICP0) and which give efficient growth of viruses deficient in ICP27, ICP4, and vmw65 (the viruses also have ICP34.5/ORFP deleted). Efficient growth of such viruses has not previously been possible. As these viruses are highly deficient in IE gene expression generally, such virus-cell line combinations may provide an alternative to HSV vectors with deletions of all four of the regulatory IE genes which, for optimal growth, require cell lines containing all four IE genes but which are hard to generate due to the intrinsic cytotoxicity of each of the proteins.  相似文献   

15.
Necroptosis is an alternate programmed cell death pathway that is unleashed by caspase-8 compromise and mediated by receptor-interacting protein kinase 3 (RIP3). Murine cytomegalovirus (CMV) and herpes simplex virus (HSV) encode caspase-8 inhibitors that prevent apoptosis together with competitors of RIP homotypic interaction motif (RHIM)-dependent signal transduction to interrupt the necroptosis. Here, we show that pro-necrotic murine CMV M45 mutant virus drives virus-induced necroptosis during nonproductive infection of RIP3-expressing human fibroblasts, whereas WT virus does not. Thus, M45-encoded RHIM competitor, viral inhibitor of RIP activation, sustains viability of human cells like it is known to function in infected mouse cells. Importantly, human CMV is shown to block necroptosis induced by either TNF or M45 mutant murine CMV in RIP3-expressing human cells. Human CMV blocks TNF-induced necroptosis after RIP3 activation and phosphorylation of the mixed lineage kinase domain-like (MLKL) pseudokinase. An early, IE1-regulated viral gene product acts on a necroptosis step that follows MLKL phosphorylation prior to membrane leakage. This suppression strategy is distinct from RHIM signaling competition by murine CMV or HSV and interrupts an execution process that has not yet been fully elaborated.  相似文献   

16.
17.
18.
M Gao  D M Knipe 《Journal of virology》1989,63(12):5258-5267
We have isolated several mutant herpes simplex viruses, specifically mutated in the infected cell protein 8 (ICP8) gene, to define the functional domains of ICP8, the major viral DNA-binding protein. To facilitate the isolation of these mutants, we first isolated a mutant virus, HD-2, with the lacZ gene fused to the ICP8 gene so that an ICP8-beta-galactosidase fusion protein was expressed. This virus formed blue plaques on ICP8-expressing cell lines in the presence of 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside. Mutated ICP8 gene plasmids cotransfected with HD-2 DNA yielded recombinant viruses with the mutant ICP8 gene incorporated into the viral genome. These recombinants were identified by formation of white plaques. Four classes of mutants were defined: (i) some expressed ICP8 that could bind to DNA but could not localize to the cell nucleus; (ii) some expressed ICP8 that did not bind to DNA but localized to the nucleus; (iii) some expressed ICP8 that neither bound to DNA nor localized to the nucleus; and (iv) one expressed ICP8 that localized to the cell nucleus and bound to DNA in vitro, but the mutant virus did not replicate its DNA. These classes of mutants provide genetic evidence that DNA binding and nuclear localization are distinct functions of ICP8 and that ICP8 has nuclear functions other than binding to DNA. Furthermore, the portion of ICP8 needed for a nuclear function(s) distinct from DNA binding is the part of ICP8 showing sequence similarity to that of the cellular protein cyclin or proliferating cell nuclear antigen.  相似文献   

19.
Herpes simplex virus (HSV) entry requires host cell 26S proteasomal degradation activity at a postpenetration step. When expressed in the infected cell, the HSV immediate-early protein ICP0 has E3 ubiquitin ligase activity and interacts with the proteasome. The cell is first exposed to ICP0 during viral entry, since ICP0 is a component of the inner tegument layer of the virion. The function of tegument ICP0 is unknown. Deletion of ICP0 or mutations in the N-terminal RING finger domain of ICP0 results in the absence of ICP0 from the tegument. We show here that these mutations negatively influenced the targeting of incoming capsids to the nucleus. Inhibitors of the chymotrypsin-like activity of the proteasome the blocked entry of virions containing tegument ICP0, including ICP0 mutants that are defective in USP7 binding. However, ICP0-deficient virions were not blocked by proteasomal inhibitors and entered cells via a proteasome-independent mechanism. ICP0 appeared to play a postpenetration role in cells that supported either endocytosis or nonendosomal entry pathways for HSV. The results suggest that ICP0 mutant virions are defective upstream of viral gene expression at a pre-immediate-early step in infection. We propose that proteasome-mediated degradation of a virion or host protein is regulated by ICP0 to allow efficient delivery of entering HSV capsids to the nuclear periphery.  相似文献   

20.
The herpes simplex virus (HSV) virion host shutoff gene (vhs) encodes a protein which nonspecifically accelerates the degradation of mRNA molecules, leading to inhibition of protein synthesis. This ability to inhibit a critical cellular function suggested that vhs could be used as a suicide gene in certain gene therapy applications. To investigate whether vhs might be useful for treatment of AIDS, we tested the ability of both HSV type 1 (HSV-1) and HSV-2 vhs to inhibit replication of human immunodeficiency virus (HIV). Replication of HIV was substantially inhibited when an infectious HIV proviral clone was cotransfected into HeLa cells together with vhs under the control of the cytomegalovirus (CMV) immediate-early promoter. HSV-2 vhs was more active than HSV-1 vhs in these experiments, consistent with previously published studies on these genes. Since expression of vhs from the CMV promoter is essentially unregulated, we also tested the ability of vhs expressed from the HIV long terminal repeat (LTR) promoter to inhibit HIV replication. Wild-type HSV-1 vhs inhibited HIV replication more than 44,000-fold in comparison to a mutant vhs gene encoding a nonfunctional form of the Vhs protein. Production of Vhs in transfected cells was verified by Western blot assays. A larger amount of Vhs was observed in cells transfected with plasmids expressing vhs from the HIV LTR than from the CMV promoter, consistent with the greater inhibition of HIV replication observed with these constructs. Mutant forms of Vhs were expressed at higher levels than wild-type Vhs, most likely due to the ability of wild-type Vhs to degrade its own mRNA. The strong inhibitory activity of the vhs gene and its unique biological properties make vhs an interesting candidate for use as a suicide gene for HIV gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号