首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The role of surfactant-associated protein (SP) A in the mediation of pulmonary responses to bacterial lipopolysaccharide (LPS) was assessed in vivo with SP-A gene-targeted [SP-deficient; SP-A(-/-)] and wild-type [SP-A(+/+)] mice. Concentrations of tumor necrosis factor (TNF)-alpha, macrophage inflammatory protein-2, and nitric oxide were determined in recovered bronchoalveolar lavage fluid after intratracheal administration of LPS. SP-A(-/-) mice produced significantly more TNF-alpha and nitric oxide than SP-A(+/+) mice after LPS treatment. Intratracheal administration of human SP-A (1 mg/kg) to SP-A(-/-) mice restored regulation of TNF-alpha, macrophage inflammatory protein-2, and nitric oxide production to that of SP-A(+/+) mice. Other markers of lung injury including bronchoalveolar fluid protein, phospholipid content, and neutrophil numbers were not influenced by SP-A. Data from experiments designed to test possible mechanisms of SP-A-mediated suppression suggest that neither binding of LPS by SP-A nor enhanced LPS clearance are the primary means of inhibition. Our data and others suggest that SP-A acts directly on immune cells to suppress LPS-induced inflammation. These results demonstrate that endogenous or exogenous SP-A inhibits pulmonary LPS-induced cytokine and nitric oxide production in vivo.  相似文献   

2.
Surfactant protein A (SP-A), the most abundant pulmonary soluble collectin, modulates innate and adaptive immunity of the lung, partially via its direct effects on alveolar macrophages (AM), the most predominant intra-alveolar cells under physiological conditions. Enhanced phagocytosis and endocytosis are key functional consequences of AM/SP-A interaction, suggesting a SP-A-mediated modulation of small Rab (Ras related in brain) GTPases that are pivotal membrane organizers in both processes. In this article, we show that SP-A specifically and transiently enhances the protein expression of endogenous Rab7 and Rab7b, but not Rab5 and Rab11, in primary AM from rats and mice. SP-A-enhanced GTPases are functionally active as determined by increased interaction of Rab7 with its downstream effector Rab7 interacting lysosomal protein (RILP) and enhanced maturation of cathepsin-D, a function of Rab7b. In AM and RAW264.7 macrophages, the SP-A-enhanced lysosomal delivery of GFP-Escherichia coli is abolished by the inhibition of Rab7 and Rab7 small interfering RNA transfection, respectively. The constitutive expression of Rab7 in AM from SP-A(-/-) mice is significantly reduced compared with SP-A(+/+) mice and is restored by SP-A. Rab7 blocking peptides antagonize SP-A-rescued lysosomal delivery of GFP-E. coli in AM from SP-A(-/-) mice. Activation of Rab7, but not Rab7b, by SP-A depends on the PI3K/Akt/protein kinase Cζ (PKCζ) signal transduction pathway in AM and RAW264.7 macrophages. SP-A induces a Rab7/PKCζ interaction in these cells, and the disruption of PKCζ by small interfering RNA knockdown abolishes the effect of SP-A on Rab7. The data demonstrate a novel role for SP-A in modulating endolysosomal trafficking via Rab7 in primary AM and define biochemical pathways involved.  相似文献   

3.
4.
Human myometrial cells respond to the endotoxin lipopolysaccharide (LPS) by activation of protein kinase C (PKC) zeta and nuclear translocation of the p65 subunit of NF-kB. Our first objective was to determine the expression of TLR4 in cultured myometrial cells. Positive immunoreactivity observed for TLR4 suggests that myometrial cells have the potential to respond to LPS. To confirm that LPS signals via TLR4, the ability of an anti-TLR4 neutralizing antibody to block LPS-induced translocation of p65 was demonstrated. To determine whether LPS-induced nuclear translocation of p65 is mediated through the PKC pathway, myometrial cells were treated with various inhibitors of the PKC isoforms already characterized in human myometrium. Neither the selective conventional PKC inhibitor nor the inhibitor of PKCdelta affected NF-kB activation. By contrast, we found that treatment of myometrial cells with an antisense against PKCzeta affect LPS-induced nuclear translocation of the p65 subunit of NF-kB. Accordingly, our data support the notion that PKCzeta is essential for LPS-induced NF-kB p65 subunit nuclear translocation in human myometrial cells.  相似文献   

5.
The soluble C-type lectin surfactant protein (SP)-A mediates lung immune responses partially via its direct effects on alveolar macrophages (AM), the main resident leukocytes exposed to antigens. SP-A modulates the AM threshold of lipopolysaccharide (LPS) activity towards an anti-inflammatory phenotype both in vitro and in vivo through various mechanisms. LPS responses are tightly regulated via distinct pathways including subcellular TLR4 localization and thus ligand sensing. The cytosolic scaffold and signaling protein β-arrestin 2 acts as negative regulator of LPS-induced TLR4 activation. Here we show that SP-A neither increases TLR4 abundancy nor co-localizes with TLR4 in primary AM. SP-A significantly reduces the LPS-induced co-localization of TLR4 with the early endosome antigen (EEA) 1 by promoting the co-localization of TLR4 with the post-Golgi compartment marker Vti1b in freshly isolated AM from rats and wild-type (WT) mice, but not in β-arrestin 2−/− AM. Compared to WT mice pulmonary LPS-induced TNF-α release in β-arrestin 2−/− mice is accelerated and enhanced and exogenous SP-A fails to inhibit both lung LPS-induced TNF-α release and TLR4/EEA1 positioning. SP-A, but not LPS, enhances β-arrestin 2 protein expression in a time-dependent manner in primary rat AM. The constitutive expression of β-arrestin 2 in AM from SP-A−/− mice is significantly reduced compared to SP-A+/+ mice and is rescued by SP-A. Prolonged endosome retention of LPS-induced TLR4 in AM from SP-A−/− mice is restored by exogenous SP-A, and is antagonized by β-arrestin 2 blocking peptides. LPS induces β-arrestin 2/TLR4 association in primary AM which is further enhanced by SP-A. The data demonstrate that SP-A modulates LPS-induced TLR4 trafficking and signaling in vitro and in vivo engaging β-arrestin 2.  相似文献   

6.
7.
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandins (PG) synthesis induced by bacterial lipopolysaccharide (LPS) and cytokines. However, the intracellular signaling pathways mediating LPS-induced cPLA2 expression and PGE2 synthesis in canine tracheal smooth muscle cells (TSMCs) remains unknown. LPS-induced expression of cPLA2 and release of PGE2 was attenuated by inhibitors of tyrosine kinase (genistein), phosphatidylcholine-phospholipase C (D609), phosphatidylinositol-phospholipase C (U73122), PKC (GF109203X and staurosporine), removal of Ca2+ by BAPTA/AM plus EDTA, MEK1/2 (PD98059), p38 (SB202190), JNK (SP600125), and phosphatidylinositol 3-kinase (PI3-K; LY294002 and wortmannin). The involvement of MPAKs in LPS-induced responses was further confirmed by transfection of TSMCs with dominant negative mutants of ERK2 and p38. LPS-induced cPLA2 expression and PGE2 synthesis was inhibited by a selective NF-kappaB inhibitor (helenalin) and transfection with dominant negative mutants of NF-kappaB inducing kinase (NIK), IkappaB kinase (IKK)-alpha, and IKK-beta, consistent with that LPS-stimulated both IkappaB-alpha degradation and NF-kappaB translocation into nucleus in these cells. LPS-stimulated cPLA2 phosphorylation was inhibited by PD98059, GF109203X, and staurosporine, indicating the regulation by p42/p44 MAPK and PKC. Moreover, LPS-induced up-regulation of cPLA2 and COX-2 linked to PGE2 synthesis was inhibited by AACOCF3 (a selective cPLA2 inhibitor), implying the involvement of cPLA2 in these responses. These findings suggest that phosphorylation and expression of cPLA2 correlates with the release of PGE2 from LPS-challenged TSMCs, at least in part, mediated through MAPKs and NF-kappaB signaling pathways. LPS-mediated responses were modulated by PLC, Ca2+, PKC, tyrosine kinase, and PI3-K in TSMCs.  相似文献   

8.
The goal of this study was to elucidate whether triggering the sphingomyelin pathway modulates LPS-initiated responses. For this purpose we investigated the effects of N-acetylsphingosine (C(2)-ceramide) on LPS-induced production of NO and PGE(2) in murine RAW 264.7 macrophages and explored the signaling pathways involved. We found that within a range of 10-50 microM, C(2)-ceramide inhibited LPS-elicited NO synthase and cyclooxygenase-2 induction accompanied by a reduction in NO and PGE(2) formation. By contrast, a structural analog of C(2)-ceramide that does not elicit functional activity, C(2)-dihydroceramide, did not affect the LPS response. The nuclear translocation and DNA binding study revealed that ceramide can inhibit LPS-induced NF-kappaB and AP-1 activation. The immunocomplex kinase assay indicated that IkappaB kinase activity stimulated by LPS was inhibited by ceramide, which concomitantly reduced the IkappaBalpha degradation caused by LPS within 1-6 h. In concert with the decreased cytosolic p65 protein level, LPS treatment resulted in rapid nuclear accumulation of NF-kappaB subunit p65 and its association with the cAMP-responsive element binding protein. Ceramide coaddition inhibited all the LPS responses. In addition, LPS-induced PKC and p38 mitogen-activated protein kinase activation were overcome by ceramide. In conclusion, we suggest that ceramide inhibition of LPS-mediated induction of inducible NO synthase and cyclooxygenase-2 is due to reduction of the activation of NF-kappaB and AP-1, which might result from ceramide's inhibition of LPS-stimulated IkappaB kinase, p38 mitogen-activated protein kinase, and protein kinase C.  相似文献   

9.
The Zyxin/Ajuba family of cytosolic LIM domain-containing proteins has the potential to shuttle from sites of cell adhesion into the nucleus and thus can be candidate transducers of environmental signals. To understand Ajuba's role in signal transduction pathways, we performed a yeast two-hybrid screen with the LIM domain region of Ajuba. We identified the atypical protein kinase C (aPKC) scaffold protein p62 as an Ajuba binding partner. A prominent function of p62 is the regulation of NF-kappaB activation in response to interleukin-1 (IL-1) and tumor necrosis factor signaling through the formation of an aPKC/p62/TRAF6 multiprotein signaling complex. In addition to p62, we found that Ajuba also interacted with tumor necrosis factor receptor-associated factor 6 (TRAF6) and PKCzeta. Ajuba recruits TRAF6 to p62 and in vitro activates PKCzeta activity and is a substrate of PKCzeta. Ajuba null mouse embryonic fibroblasts (MEFs) and lungs were defective in NF-kappaB activation following IL-1 stimulation, and in lung IKK activity was inhibited. Overexpression of Ajuba in primary MEFs enhances NF-kappaB activity following IL-1 stimulation. We propose that Ajuba is a new cytosolic component of the IL-1 signaling pathway modulating IL-1-induced NF-kappaB activation by influencing the assembly and activity of the aPKC/p62/TRAF6 multiprotein signaling complex.  相似文献   

10.
Expression of a dominant negative atypical protein kinase C (aPKC), PKCzeta, prevents nuclear translocation of extracellular regulated kinase 2 (ERK-2), p27 nuclear reduction, and DNA synthesis induced by estradiol in human mammary cancer-derived MCF-7 cells. aPKC action upstream of these events has been analyzed. In hormone-stimulated NIH 3T3 and Cos cells ectopically expressing human estrogen receptor alpha (hERalpha), aPKC is activated by phosphatidylinositol 3-kinase (PI 3-kinase) and, in turn, controls the Ras/MEK-1/ERK cascade. In MCF-7 and Cos cells stimulated by hormone, PI 3-kinase activates PKCzeta by Thr410 phosphorylation. Serine phosphorylation of PKCzeta is simultaneously induced. PKCzeta activation leads to recruitment of Ras to a multimolecular complex that also includes hERalpha, Src, PI 3-kinase, and aPKC. We propose that PKCzeta pushes Ras and the signaling complex close together in such a way that it facilitates the Src-dependent Ras activation. This activation is crucial for the interplay between estradiol-triggered signaling and cell cycle machinery.  相似文献   

11.
12.
Src tyrosine kinases (TKs) are signaling proteins involved in cell signaling pathways toward cytoskeletal, membrane and nuclear targets. In the present study, using a selective Src TK inhibitor, PP1, we investigated the roles of Src TKs in the key pulmonary responses, NF-kappaB activation, and integrin signaling during acute lung injury in BALB/C mice intratracheally treated with LPS. LPS resulted in c-Src phosphorylation in lung tissue and the phospho-c-Src was predominantly localized in recruited neutrophils and alveolar macrophages. PP1 inhibited LPS-induced increases in total protein content in bronchoalveolar lavage fluid, neutrophil recruitment, and increases in the production or activity of TNF-alpha and matrix metalloproteinase-9. PP1 also blocked LPS-induced NF-kappaB activation, and phosphorylation and degradation of IkappaB-alpha. The inhibition of NF-kappaB activation by PP1 correlated with a depression of LPS-induced integrin signaling, which included increases in the phosphorylations of integrin beta(3), and of the focal adhesion kinase (FAK) family members, FAK and Pyk2, in lung tissue, and reductions in the fibrinogen-binding activity of alveolar macrophages. Moreover, treatment with anti-alpha(v), anti-beta(3), or Arg-Gly-Asp-Ser (RGDS), inhibited LPS-induced NF-kappaB activation. Taken together, our findings suggest that Src TKs play a critical role in LPS-induced activations of NF-kappaB and integrin (alpha(v)beta(3)) signaling during acute lung injury. Therefore, Src TK inhibition may provide a potential means of ameliorating inflammatory cascade-associated lung injury.  相似文献   

13.
Mannose-capped lipoarabinomannans (Man-LAMs) are members of the repertoire of Mycobacterium tuberculosis modulins that the bacillus uses to subvert the host innate immune response. Interleukin-12 (IL-12) production is critical for mounting an effective immune response by the host against M. tuberculosis. We demonstrate that Man-LAM inhibits IL-12 p40 production mediated by subsequent challenge with lipopolysaccharide (LPS). Man-LAM inhibits LPS-induced IL-12 p40 expression in an IL-10-independent manner. It attenuates LPS-induced NF-kappaB-driven luciferase gene expression, suggesting that its effects are likely directly related to inhibition of NF-kappaB. This is probably because of dampening of the Toll-like receptor signaling. Man-LAM inhibits IL-1 receptor-associated kinase (IRAK)-TRAF6 interaction as well as IkappaB-alpha phosphorylation. It directly attenuates nuclear translocation and DNA binding of c-Rel and p50. Man-LAM exerts these effects by inducing the expression of Irak-M, a negative regulator of TLR signaling. Knockdown of Irak-M expression by RNA interference reinstates LPS-induced IL-12 production in Man-LAM-pretreated cells. The fact that Irak-M expression could be elicited by yeast mannan suggested that ligation of the mannose receptor by the mannooligosaccharide caps of LAM was the probable trigger for IRAK-M induction.  相似文献   

14.
Lipopolysaccharide (LPS) was found to induce inflammatory responses in the airways and exerted as a potent stimulus for PG synthesis. This study was to determine the mechanisms of LPS-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). LPS markedly increased the expression of COX-2 and release of PGE(2) in a time- and concentration-dependent manner, whereas COX-1 remained unaltered. Both the expression of COX-2 and the generation of PGE(2) in response to LPS were attenuated by a tyrosine kinase inhibitor genistein, a phosphatidylcholine-phospholipase C inhibitor D609, a phosphatidylinositol-phospholipase C inhibitor U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. Furthermore, LPS-induced NF-kappaB activation correlated with the degradation of IkappaB-alpha, COX-2 expression, and PGE(2) synthesis, was inhibited by transfection with dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. LPS-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK inhibitor), but these two inhibitors had no effect on LPS-induced NF-kappaB activation, indicating that NF-kappaB is activated by LPS independently of activation of p42/p44 MAPK and p38 MAPK pathways in TSMCs. Taken together, these findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from LPS-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways. LPS-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.  相似文献   

15.
16.
17.
Nitric oxide (NO) produced by macrophages plays an important role in host defense and inflammation. We found that two agrochemicals, alachlor and carbaryl, inhibit lipopolysaccharide (LPS)-induced NO production by macrophages. In the present study, we investigated this inhibitory mechanism in RAW 264 cells. Both chemicals inhibited LPS-induced iNOS protein and mRNA expression as well as murine iNOS promoter activity. When treating these chemicals with reducing agents, the inhibition by carbaryl was reversed, but not the inhibition by alachlor. These chemicals also inhibited LPS-induced interferon-beta (IFN-beta) expression, an indispensable factor for LPS-induced iNOS expression. The inhibited iNOS expression, however, was not restored by exogenous IFN-beta supplementation. LPS-induced nuclear translocation of NF-kappaB, which is necessary for the expression of IFN-beta and iNOS, was inhibited by these chemicals: however, the LPS-induced degradation of IkappaB-alpha and IkappaB-beta was inhibited only by alachlor. These results indicate that alachlor and carbaryl differentially impair the LPS-induced NF-kappaB activation, leading to the inhibition of NO production.  相似文献   

18.
19.
Surfactant protein A (SP-A) is an important lung innate immune protein that kills microbial pathogens by opsonization and membrane permeabilization. We investigated the basis of SP-A-mediated pulmonary clearance of Pseudomonas aeruginosa using genetically-engineered SP-A mice and a library of signature-tagged P. aeruginosa mutants. A mutant with an insertion into flgE, the gene that encodes flagellar hook protein, was preferentially cleared by the SP-A(+/+) mice, but survived in the SP-A(-/-) mice. Opsonization by SP-A did not play a role in flgE clearance. However, exposure to SP-A directly permeabilized and killed the flgE mutant, but not the wild-type parental strain. P. aeruginosa strains with mutation in other flagellar genes, as well as mucoid, nonmotile isolates from cystic fibrosis patients, were also permeabilized by SP-A. Provision of the wild-type fliC gene restored the resistance to SP-A-mediated membrane permeabilization in the fliC-deficient bacteria. In addition, non-mucoid, motile revertants of CF isolates reacquired resistance to SP-A-mediated membrane permeability. Resistance to SP-A was dependent on the presence of an intact flagellar structure, and independent of flagellar-dependent motility. We provide evidence that flagellar-deficient mutants harbor inadequate amounts of LPS required to resist membrane permeabilization by SP-A and cellular lysis by detergent targeting bacterial outer membranes. Thus, the flagellum of P. aeruginosa plays an indirect but important role resisting SP-A-mediated clearance and membrane permeabilization.  相似文献   

20.
Lgl (lethal giant larvae) plays an important role in cell polarity. Atypical protein kinase C (aPKC) binds to and phosphorylates Lgl, and the phosphorylation negatively regulates Lgl activity. In this study, we identify p32 as a novel Lgl binding protein that directly binds to a domain on mammalian Lgl2 (mLgl2), which contains the aPKC phosphorylation site. p32 also binds to PKCzeta, and the three proteins form a transient ternary complex. When p32 is bound, PKCzeta is stimulated to phosphorylate mLgl2 more efficiently. p32 overexpression in Madin-Darby canine kidney cells cultured in a 3D matrix induces an expansion of the actin-enriched apical membrane domain and disrupts cell polarity. Addition of PKCzeta inhibitor blocks apical actin accumulation, which is rescued by p32 overexpression. p32 knockdown by short hairpin RNA also induces cell polarity defects. Collectively, our data indicate that p32 is a novel regulator of cell polarity that forms a complex with mLgl2 and aPKC and enhances aPKC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号