首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody prepared against beef heart mitochondrial NADH dehydrogenase immunoprecipitated 26 polypeptides from detergent solubilized beef heart mitochondria. All 26 polypeptides co-migrated with those present in the dehydrogenase antigen when resolved side by side on sodium dodecyl sulfateurea polyacrylamide gels. From mixed rat liver-[35S]methionine pulsed hepatoma mitochondria the antibody immunoprecipitated 24 stained liver polypeptides and 19 radio-labelled hepatoma polypeptides. The translation of three of the labelled polypeptides was resistent to inhibition by cycloheximide, indicating these are translated on mitochondrial ribosomes. These same polypeptides, however, wre previously identified as cytochrome c oxidase subunits; and, apparently, non-specifically co-precipitate with dehydrogenase associated polypeptides. We conclude that there are no mitochondrially translated polypeptides specifically associated with NADH dehydrogenase.  相似文献   

2.
The precursor polypeptides of a large subunit of succinate dehydrogenase and ornithine aminotransferase (the enzymes which are located in the mitochondrial inner membrane and matrix respectively) were synthesized as a larger molecular mass than their mature subunits, when rat liver RNA was translated in vitro. These precursor polypeptides were also detected in vivo in ascites hepatoma cells (AH-130 cells). When the 35S-labeled precursor polypeptides were incubated with isolated rat liver mitochondria at 30 degrees C in the presence of an energy-generating system, these two precursors were converted to their mature size and the 35S-labeled mature-size polypeptides associated with mitochondria. Furthermore, these mature-size polypeptides were recovered from their own locations, the inner mitochondrial membrane and the matrix. The precursor of ornithine aminotransferase incubated with rat liver mitochondria at 0 degree C was specifically and tightly bound to the surface of the mitochondria even in the presence of an uncoupler of oxidative phosphorylation. This precursor, bound to the mitochondria, was imported into the matrix when the mitochondria were reisolated and incubated at 30 degrees C in the presence of an energy-generating system, suggesting that a specific receptor may be involved in the binding of the precursor. The processing enzyme for both precursor polypeptides seemed to be located in the mitochondrial matrix and was partially purified from the mitochondria. A metal-chelating agent strongly inhibited the processing enzyme and the inhibition was recovered by the addition of Mn2+ or Co2+.  相似文献   

3.
In higher plants, genes for subunits of respiratory chain complex I (NADH:ubiquinone oxidoreductase) have so far been identified solely in organellar genomes. At least nine subunits are encoded by the mitochondrial DNA and 11 homologues by the plastid DNA. One of the 'key' components of complex I is the subunit binding the substrate NADH. The corresponding gene for the mitochondrial subunit has now been cloned and identified in the nuclear genome from potato ( Solanum tuberosum ). The mature protein consists of 457 amino acids and is preceded by a mitochondrial targeting sequence of 30 amino acids. The protein is evolutionarily related to the NADH-binding subunits of complex I from other eukaryotes and is well conserved in the structural domains predicted for binding the substrate NADH, the FMN and one iron-sulphur cluster. Expression examined in different potato tissues by Northern blot analysis shows the highest steady-state mRNA levels in flowers.
Precursor proteins translated in vitro from the cDNA are imported into isolated potato mitochondria in a ΔΨ-dependent manner. The processed translation product has an apparent molecular mass of 55 kDa, identical to the mature protein present in the purified plant mitochondrial complex I. However, the in-vitro translated protein is not imported into isolated chloroplasts. To further investigate whether the complex I-like enzyme in chloroplasts contains an analogous subunit for binding of NAD(P)H, different plastid protein fractions were tested with a polyclonal antiserum directed against the bovine 51 kDa NADH-binding subunit. In none of the different thylakoid or stroma protein fractions analysed were specific crossreactive polypeptides detected. These results are discussed particularly with respect to the structure of a potential complex I in chloroplasts and the nature of its acceptor site.  相似文献   

4.
Made of more than 40 subunits, the rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) is the most intricate membrane-bound enzyme of the mitochondrial respiratory chain. In vascular plants, fungi, and animals, at least seven complex I subunits (ND1, -2, -3, -4, -4L, -5, and -6; ND is NADH dehydrogenase) are coded by mitochondrial genes. The role of these highly hydrophobic subunits in the enzyme activity and assembly is still poorly understood. In the unicellular green alga Chlamydomonas reinhardtii, the ND3 and ND4L subunits are encoded in the nuclear genome, and we show here that the corresponding genes, called NUO3 and NUO11, respectively, display features that facilitate their expression and allow the proper import of the corresponding proteins into mitochondria. In particular, both polypeptides show lower hydrophobicity compared to their mitochondrion-encoded counterparts. The expression of the NUO3 and NUO11 genes has been suppressed by RNA interference. We demonstrate that the absence of ND3 or ND4L polypeptides prevents the assembly of the 950-kDa whole complex I and suppresses the enzyme activity. The putative role of hydrophobic ND subunits is discussed in relation to the structure of the complex I enzyme. A model for the assembly pathway of the Chlamydomonas enzyme is proposed.  相似文献   

5.
Earlier studies have shown that cytochrome c oxidase from bakers' yeast is an oligomeric enzyme which contains three polypeptides (I to III) synthesized on mitochondrial ribosomes and four polypeptides (IV to VII) synthesized on cytoplasmic ribosomes. These polypeptide subunits have now been isolated by a simple protocol which utilizes differences in polypeptide charge, solubility, and size. Their molecular weights determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, gel filtration in the presence of guanidine hydrochloride, and amino acid analysis were: I, 40,000; II, 33,000; III, 22,000; IV, 14,500; V, 12,700; VI, 12,700; and VII, 4,600. All seven polypeptide subunits exhibited acidic isoelectric points; cytoplasmically made subunits were more acidic than mitochondrially made ones. The amino acid composition of two mitochondrially made subunits and two cytoplasmically made subunits was determined. The two mitochondrial translation products, I and II, contained only 34.7% and 42.1% polar amino acids, respectively, whereas the two cytoplasmic translation products, IV and VI, contained 48.3% and 49.3%, respectively. This agreed with the observation that Subunits I and II are very insoluble, requiring detergents for solubility, whereas Subunits IV and VI are water-soluble in the absence of any added detergent. These results indicate that the cytochrome c oxidase subunits synthesized on mitochondrial and cytoplasmic ribosomes are fundamentally different in size, isoelectric properties, and hydrophobicity. They also suggest the possibility that at least some of the mitochondrially made subunits are buried in the lipid phase of the mitochondrial inner membrane.  相似文献   

6.
The organization of the constituent polypeptides of mitochondrial NADH dehydrogenase was studied by using two membrane-impermeable probes, diazobenzene[35S]sulphonate and lactoperoxidase-catalysed radioiodination. The incorporation of label into the subunits of the isolated enzyme was compared with that obtained with enzyme immunoprecipitated from labelled mitochondria or inverted submitochondrial particles. On the basis of accessibility to these two labels, we divide the polypeptides of Complex I into five groups: those that are apparently buried in the enzyme, those that are accessible to labelling in the isolated enzyme but not in the membrane, those that are exposed on the cytoplasmic face of the membrane, those that are exposed on the matrix face and finally those that are exposed on both faces and are therefore transmembranous. We conclude that NADH dehydrogenase is asymmetrically organized across the inner mitochondrial membrane.  相似文献   

7.
The levels of several enzymes have been studied during sporulation of Saccharomyces cerevisia. The specific activities of ribonuclease and aminopeptidase I raised several-fold after transfer of the cells to sporulation medium, whereas the specific activities of phosphofructokinase, glucose-6-phosphate dehydrogenase, tryptophan synthase and pyruvate decarboxylase were not significantly altered. The specific activities of NAD-dependent glutamate dehydrogenase, isocitrate lyase, malate dehydrogenase and fructose bisphosphatase all decreased from the onset of sporulation. The inactivation of these latter enzymes was inhibited by cycloheximide and by inhibitors of energy metabolism. Hexokinase, alcohol dehydrogenase and glutamate oxaloacetate transaminase were partially lost from the cells during the period of ascus maturation. None of the enzyme changes observed proved to be 'sporulation-specific' in that it occurred exclusively in sporulating diploid yeast cells. Therefore it is postulated that the meiotic events and the metabolic changes required for ascospore formation are under separate genetic control in this organism. During sporulation, the cellular content of cytochromes b, c, and aa3 was reduced to 20% or less of that present in vegetative derepressed cells. Since the relative percentage of total to cycloheximide-insensitive mitochondrial protein synthesis was not significantly altered throughout sporulation, and the pattern of mitochondrially synthesized polypeptides was rather similar both in vegetative and in sporulating cells, it appeared that not only degradation but also synthesis and therefore turnover of the mitochondrially coded polypeptides of cytochromes b and aa3 took place during sporulation. The activity ratio of cytochrome c oxidase to F1-ATPase in submitochondrial particles isolated from vegetative cells and from purified asci was almost identical. This indicates that the loss of membrane-bound mitochondrial cytochromes during sporulation is probably due to a nonselective degradation of inner mitochondrial membrane proteins.  相似文献   

8.
The coherence of mitochondrial biogenesis relies on spatiotemporally coordinated associations of 800-1000 proteins mostly encoded in the nuclear genome. We report the development of new quantitative analyses to assess the role of local protein translation in the construction of molecular complexes. We used real-time PCR to determine the cellular location of 112 mRNAs involved in seven mitochondrial complexes. Five typical cases were examined by an improved FISH protocol. The proteins produced in the vicinity of mitochondria (MLR proteins) were, almost exclusively, of prokaryotic origin and are key elements of the core construction of the molecular complexes; the accessory proteins were translated on free cytoplasmic polysomes. These two classes of proteins correspond, at least as far as intermembrane space (IMS) proteins are concerned, to two different import pathways. Import of MLR proteins involves both TOM and TIM23 complexes whereas non-MLR proteins only interact with the TOM complex. Site-specific translation loci, both outside and inside mitochondria, may coordinate the construction of molecular complexes composed of both nuclearly and mitochondrially encoded subunits.  相似文献   

9.
When anaerobically grown Saccharomyces cerevisiae are aerated under conditions which may deplete them of cytoplasmically translated, mitochondrial inner membrane enzyme precursors, they show no immediate decrease in in vivo mitochondrial translational activity compared with cells which have not been so depleted. Similarly, cells depleted of mitochondrially translanted precursors show no immediate decrease in their cytoplasmic translation of mitochondrial inner membrane proteins. These experiments suggest that the synthesis and nonspecific membrane attachment of mitochondrially and cytoplasmically translated inner membrane proteins are not stringently delimited by a prior depletion of inner membrane precursors elaborated by the “other” genetic system. It is thus possible to demonstrate a degree of uncoupling of the activities of the two genetic systems. The oxygen inductions of reduced CoQ cytochrome c reductase (complex III) and of cytochrome c oxidase (complex IV) activities in cells which have been sequentially exposed first to cycloheximide and then to chloramphenicol, or first to chloramphenicol and then to cycloheximide reflect the levels to which specifically integrated, mitochondrial and cytoplasmic precursors of these complexes can accumulate in the absence of concomitant translational activity by the “other” genetic system. These data again suggest the degree to which the translational activities of the two genetic systems can be uncoupled. A detailed study of the inductions of these two complexes in cells exposed first to chloramphenicol shows that the modes of induction of the two complexes are different. Complex III develops approximately 50% of its activity as an expression of a precursor (presumably mitochondrially translated) which is already present in the anaerobic cells, but which requires oxygen-induced cytoplasmic translation for its expression. The remainder of the induced complex III activity appears to require oxygen-induced mitochondrial translation for its expression. There was no analogous anaerobically present component evident during complex IV induction.  相似文献   

10.
The degradation rates of inner mitochondrial membrane proteins were examined in serum-deprived hepatoma cultures. In those nonproliferating cells, the degradation of composite mitochondrial proteins was a first order process with a half-life of 34 h. The half-lives of specific inner mitochondrial membrane polypeptides were determined by examining the 3H/35S of isolated polypeptides from cells given [3H]methionine and [35S]methionine pulses, respectively, before and after a 2-day chase period. The 33 most abundant polypeptides resolved on a bidirectional polyacrylamide gel system showed half-lives ranging from 20 to 100+ h. The 15 polypeptides translated on mitochondrial ribosomes in the presence of inhibitory concentrations of cycloheximide also displayed heterogeneous rates of degradation (t1/2 = 35-100+ h). None of the isolated adenosine triphosphatase (coupling factor F1) or immunoprecipitated cytochrome c oxidase subunits were significantly turned over during the case period. Five of eight cytochrome b-c1 complex subunits, however, were turned over significantly more rapidly (t1/2 = 39-42 h) than the other three (t1/2 = 94+ h). The results demonstrate heterogeneous degradation rates for inner membrane polypeptides, extending in some cases to those within the same respiratory complex.  相似文献   

11.
The polypeptide composition of isolated mitochondrial NADH:ubiquinone reductase (NADH dehydrogenase) is very similar to that of material immunoprecipitated from detergent-solubilized bovine heart submitochondrial particles by antisera to the holoenzyme. The specificity of the antisera for dehydrogenase polypeptides was determined by immunoblotting, which showed that antisera reacting with only a few proteins were able to immunoprecipitate all others in parallel. The polypeptide compositions of rat, rabbit and human NADH dehydrogenase were determined by immunoprecipitation of the enzyme from solubilized submitochondrial particles and proved to be very similar to that of the bovine heart enzyme, particularly in the high-Mr region. Further homologies in these and other species were explored by immunoblotting with antisera to the holoenzyme and monospecific antisera raised against iron-sulphur-protein subunits of the enzyme.  相似文献   

12.
There are multiple routes of NAD(P)H oxidation associated with the inner membrane of plant mitochondria. These are the phosphorylating NADH dehydrogenase, otherwise known as Complex I, and at least four other nonphosphorylating NAD(P)H dehydrogenases. Complex I has been isolated from beetroot, broad bean, and potato mitochondria. It has at least 32 polypeptides associated with it, contains FMN as its prosthetic group, and the purified enzyme is sensitive to inhibition by rotenone. In terms of subunit complexity it appears similar to the mammalian and fungal enzymes. Some polypeptides display antigenic similarity to subunits fromNeurospora crassa but little cross-reactivity to antisera raised against some beef heart complex I subunits. Plant complex I contains eight mitochondrial encoded subunits with the remainder being nuclear-encoded. Two of these mitochondrial-encoded subunits, nad7 and nad9, show homology to corresponding nuclear-encoded subunits inNeurospora crassa (49 and 30 kDa, respectively) and beef heart CI (49 and 31 kDa, respectively), suggesting a marked difference between the assembly of CI from plants and the fungal and mammalian enzymes. As well as complex I, plant mitochondria contain several type-II NAD(P)H dehydrogenases which mediate rotenone-insensitive oxidation of cytosolic and matrix NADH. We have isolated three of these dehydrogenases from beetroot mitochondria which are similar to enzymes isolated from potato mitochondria. Two of these enzymes are single polypeptides (32 and 55 kDa) and appear similar to those found in maize mitochondria, which have been localized to the outside of the inner membrane. The third enzyme appears to be a dimer comprised of two identical 43-kDa subunits. It is this enzyme that we believe contributes to rotenone-insensitive oxidation of matrix NADH. In addition to this type-II dehydrogenases, several observations suggest the presence of a smaller form of CI present in plant mitochondria which is insensitive to rotenone inhibition. We propose that this represents the peripheral arm of CI in plant mitochondria and may participate in nonphosphorylating matrix NADH oxidation.  相似文献   

13.
Biogenesis of the mitochondrial ATPase from sea urchin embryos   总被引:1,自引:0,他引:1  
The mitochondrial rutamycin-sensitive ATPase from sea urchin eggs was purified to homogeneity. The subunit structure of the enzyme was characterized by SDS-gel electrophoresis. Eight polypeptides were identified with molecular weights of 55,000, 52,000, 39,000, 31,000, 28,000, 23,000, 17,000 and 10,000. Developing sea urchin embryos were incubated with [2H]leucine in the presence of emetine preferentially to label mitochondrially made proteins. Under these conditions sea urchin mitochondria synthesize eight different polypeptides. Two of these proteins, with molecular weights of 31,000 and 23,000, co-purify with the ATPase. Antibody directed against the pure rutamycin-sensitive ATPase precipitated only these two proteins. Therefore, two of the eight sea urchin ATPase subunits appear to be made by mitochondria.  相似文献   

14.
Regulation of mitochondrial protein synthesis by thyroid hormone has been studied in isolated rat hepatocytes and liver mitochondria. Small doses (5 micrograms/100 g body wt) of triiodothyronine (T3) injected into hypothyroid rats increased both state 3 and 4 respiration by approximately 100%, while the ADP:O ratio remained constant. This suggests that T3 increases the numbers of functional respiratory chain units. T3 also induces mitochondrial protein synthesis by 50-100%. Analysis of the mitochondrial translation products show that all of the products were induced. No differential translation of the peptides involved in the respiratory chain was found. Regulation of the cytoplasmically made inner membrane peptides was also investigated in isolated hepatocytes. The majority of these peptides were not influenced by T3, in contrast to the finding with mitochondrial translation products. Those found to be regulated by T3 belong to two subsets, which were either induced or repressed by hormone. Thus, T3 stimulated a general increase in the synthesis of mitochondrially translated inner membrane peptides, but regulates selectively those inner membrane peptides translated on cytoplasmic ribosomes. The findings suggest that hormone regulation of the respiratory chain is exerted through a few selective proteins, perhaps those which require subunits made from both nuclear and mitochondrial genes.  相似文献   

15.
In cattle, 7 of the 30 or more subunits of the respiratory enzyme NADH:ubiquinone reductase (complex I) are encoded in mitochondrial DNA, and potential genes (open reading frames, orfs) for related proteins are found in the chloroplast genomes of Marchantia polymorpha and Nicotiana tabacum. Homologues of the nuclear-coded 49- and 23-kDa subunits are also coded in chloroplast DNA, and these orfs are clustered with four of the homologues of the mammalian mitochondrial genes. These findings have been taken to indicate that chloroplasts contain a relative of complex I. The present work provides further support. The 30-kDa subunit of the bovine enzyme is a component of the iron-sulfur protein fraction. Partial protein sequences have been determined, and synthetic oligonucleotide mixtures based on them have been employed as hybridization probes to identify cognate cDNA clones from a bovine library. Their sequences encode the mitochondrial import precursor of the 30-kDa subunit. The mature protein of 228 amino acids contains a segment of 57 amino acids which is closely related to parts of proteins encoded in orfs 169 and 158 in the chloroplast genomes of M. polymorpha and N. tabacum. Moreover, the chloroplast orfs are found near homologues of the mammalian mitochondrial genes for subunit ND3. Therefore, the plant chloroplast genomes have at least two separate clusters of potential genes encoding homologues of subunits of mitochondrial complex I. The bovine 30-kDa subunit has no extensive sequences of hydrophobic amino acids that could be folded into membrane-spanning alpha-helices, and although it contains two cysteine residues, there is no clear evidence in the sequence that it is an iron-sulfur protein.  相似文献   

16.
The biosynthesis of mammalian mitochondrial cytochromes was explored in primary hepatocyte cultures. When these were pulsed with [35S]methionine in the presence of cycloheximide, eight discrete mitochondrial polypeptides were detected by fluorography after their resolution under denaturing conditions by polyacrylamide gel electrophoresis. Since the pulse labeling of the polypeptides was sensitive to chloramphenicol, an inhibitor of mitochondrial translation, they must be translated on mitochondrial ribosomes. Three were identified as the largest subunits of cytochrome oxidase by their immunoprecipitation with antibody directed against purified rat liver cytochrome oxidase. Another (Mr = 28,000) was identified as one of eight subunits of purified rat liver cytochrome b-c1 complex by its immunoprecipitation with antibody directed against bovine heart b-c1 complex. Since cytochrome b apoprotein is the only product of the mitochondrial genome in the yeast cytochrome b-c1 complex (Krieke, J., Bechmann, H., van Hemert, F. J., Schweyan, R. J., Boer, P. H., Kaudewitz, F., and Groot, G. S. P. (1979) Eur. J. Bio-chem. 101, 607-617), the results strongly suggest that the Mr = 28,000 subunit of liver b-c1 complex is cytochrome b apoprotein. Thus the contribution of the mitochondrial translation system to the cytochrome complexes in liver is identical to that of yeast and Neurospora, and there appears to be no deletion or transfer to the nuclear genome of structural genes for mitochondrially synthesized cytochromes during eukaryotic evolution.  相似文献   

17.
18.
An investigation into the biogenesis of several of the nuclear-encoded subunits of the iron-protein fragment of mitochondrial NADH dehydrogenase was undertaken utilising a bovine kidney cell line (NBL-1). Inhibition of import was achieved by treating the cells with the uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) and it was demonstrated that the 75-kDa, 51-kDa and 49-kDa components of the enzyme were synthesised as larger polypeptides of 76-kDa, 52-kDa and 53-kDa, respectively. The precursors could subsequently be processed to the mature subunits by reversing the FCCP treatment and chasing for 45 min at 37 degrees C. Subcellular localisation studies using the detergent digitonin illustrated that the 76-kDa, 52-kDa and 53-kDa precursor forms were almost exclusively located in the soluble fraction of the cell, whereas the mature and pulse-chased proteins fractionated with the particulate portion of the cell. Although the mature 30-kDa and 24-kDa subunits of NADH dehydrogenase could be visualised, their precursor forms went undetected in this system.  相似文献   

19.
Characterization of cytochrome-c oxidase mutants in human fibroblasts   总被引:2,自引:0,他引:2  
Skin fibroblasts were selected as having cytochrome-c oxidase deficiency by activity measurements in whole cells. Each cell line was cultured in sufficient amount to isolate mitochondria for biochemical characterization. Cytochrome-c oxidase was then examined by activity measurements, by heme determination and by polypeptide analysis using antibodies specific to the enzyme subunits. The cytochrome-c oxidase activity in the different cell lines ranged from 9% to 54% of that of normal fibroblasts. Heme determinations and polypeptide analysis established that the lowered cytochrome-c oxidase activity was due to reduced amounts of the complex in the mitochondrial inner membrane. In all cases, there was defective assembly of the enzyme, with the amounts of mitochondrially coded and nuclear coded subunits being reduced proportionally. These studies show that fibroblasts can be used for prenatal diagnosis of mitochondrial diseases and are a useful system in which to study mitochondrial biogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号