首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glial activation contiguous to deposits of amyloid peptide (Abeta) is a characteristic feature in Alzheimer's disease. We performed complementary in vitro and in vivo experiments to study the extent, kinetics, and mechanisms of microglial generation of nitric oxide (NO) induced by challenge with Abeta. We showed that Abeta fibrils dose-dependently induced a marked release of stable metabolites of NO in vivo that was strikingly similar regarding extent and temporal profile to the one in the parallel designed microglial cell culture experiments. However, costimulation with interferon gamma, which was a prerequisite for Abeta-induced NO generation in vitro, was not required in vivo, demonstrating that factors are present in the living brain that activate glial cells synergistically with Abeta. Therefore, in Alzheimer's disease, deposits of Abeta fibrils alone may be sufficient to induce a chronic release of neurotoxic microglial products, explaining the progressive neurodegeneration associated with this disease. Our observation that systemic administration of selective iNOS inhibitors abolishes Abeta-induced NO generation in vivo may have implications for therapy of Alzheimer's disease.  相似文献   

2.
beta-Amyloid (Abeta) is the primary protein component of senile plaques associated with Alzheimer's disease and has been implicated in the neurotoxicity associated with the disease. A variety of evidence points to the importance of Abeta-membrane interactions in the mechanism of Abeta neurotoxicity and indicates that cholesterol and gangliosides are particularly important for Abeta aggregation and binding to membranes. We investigated the effects of cholesterol and sialic acid depletion on Abeta-induced GTPase activity in cells, a step implicated in the mechanism of Abeta toxicity, and Abeta-induced cell toxicity. Cholesterol reduction and depletion of membrane-associated sialic acid residues both significantly reduced the Abeta-induced GTPase activity. In addition, cholesterol and membrane-associated sialic acid residue depletion or inhibition of cholesterol and ganglioside synthesis protected PC12 cells from Abeta-induced toxicity. These results indicate the importance of Abeta-membrane interactions in the mechanism of Abeta toxicity. In addition, these results suggest that control of cellular cholesterol and/or ganglioside content may prove useful in the prevention or treatment of Alzheimer's disease.  相似文献   

3.
Amyloid-beta accumulation in brains of Alzheimer's disease (AD) victims is accompanied by glial inflammatory reactions and preferential loss of cholinergic neurons. Therefore, the aim of this study was to find out whether proinflamatory cytokine interleukin 1beta (IL1beta) modifies effects of amyloid-beta (Abeta) on viability and cholinergic phenotype of septum derived T17 cholinergic neuroblastoma cells. In nondifferentiated T17 cells (NC) Abeta(25-35) (1 microg/ml) caused no changes in choline acetyltransferase (ChAT) activity, acetylcholine (ACh) release, subcellular distribution of acetyl-CoA, but doubled content of trypan blue positive cells. IL1beta (10 ng/ml) increased ACh release (125%) but did not change other parameters of NC. In the presence of Abeta IL1beta also increased ChAT activity (47%), ACh release (100%) but had no effect on acetyl-CoA distribution and cell viability. Differentiation with retinoic acid and dibutyryl cyclic AMP caused over two-fold increase of ChAT activity and ACh content, four-fold increase of ACh release and about 50% decrease of acetyl-CoA level in the mitochondria. In differentiated cells (DC), Abeta decreased ChAT activity (31%), ACh release (47%) and content of acetyl-CoA (80%) in cell cytoplasmic compartment, whereas IL1beta elevated ChAT activity (54%) and ACh release (32%). IL1beta totally reversed Abeta-evoked inhibition of ChAT activity and ACh release and restored control level of cytoplasmic acetyl-CoA but increased fraction of nonviable cells to 25%. Thus, IL1beta could compensate Abeta-evoked cholinergic deficits through the restoration of adequate expression of ChAT and provision of acetyl-CoA to cytoplasmic compartment in cholinergic neurons that survive under such pathologic conditions. These data indicate that IL1beta possess independent cholinotrophic and cholinotoxic activities that may modify Abeta effects on cholinergic neurons.  相似文献   

4.
Alzheimer's disease pathology is characterized by the presence of neuritic plaques and the loss of cholinergic neurons in the brain. The underlying mechanisms leading to these events are unclear, but the 42-amino acid beta-amyloid peptide (Abeta(1-42)) is involved. Immunohistochemical studies on human sporadic Alzheimer's disease brains demonstrate that Abeta(1-42) and a neuronal pentameric cation channel, the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), are both present in neuritic plaques and co-localize in individual cortical neurons. Using human brain tissues and cells that overexpress either alpha7nAChR or amyloid precursor protein as the starting material, Abeta(1-42) and alpha7nAChR can be co-immunoprecipitated by the respective specific antibodies, suggesting that they are tightly associated. The formation of the alpha7nAChR.Abeta(1-42) complex can be efficiently suppressed by Abeta(12-28), implying that this Abeta sequence region contains the binding epitope. Receptor binding experiments show that Abeta(1-42) and alpha7nAChR bind with high affinity, and this interaction can be inhibited by alpha7nAChR ligands. Human neuroblastoma cells overexpressing alpha7nAChR are readily killed by Abeta(1-42), whereas alpha7nAChR agonists such as nicotine and epibatidine offered protection. Because Abeta(1-42) inhibits alpha7nAChR-dependent calcium activation and acetylcholine release, two processes critically involved in memory and cognitive functions, and the distribution of alpha7nAChR correlates with neuritic plaques in Alzheimer's disease brains, we propose that interaction of the alpha7nAChR and Abeta(1-42) is a pivotal mechanism involved in the pathophysiology of Alzheimer's disease.  相似文献   

5.
6.
7.
The brains of Alzheimer's disease (AD) patients are characterized by large deposits of amyloid beta peptide (Abeta). Abeta is known to increase free radical production in nerve cells, leading to cell death that is characterized by lipid peroxidation, free radical formation, protein oxi-dation, and DNA/RNA oxidation. In this study, we selected an extract of Gardenia jasminoides by screening, and investigated its ameliorating effects on Abeta-induced oxidative stress using PC12 cells. The effects of the extract were evaluated using the 2,7 -dichlorofluorescein diacetate (DCF-DA) assay and the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. To find the active component, the ethanol extract was partitioned with hexane, chloroform, and ethyl acetate, respectively, and the active component was purified by silica-gel column chromatography and HPLC. The results suggested that Gardenia jasminoides extract can reduce the cytotoxicity of Abeta in PC 12 cells, possibly by reducing oxidative stress.  相似文献   

8.
Recent studies indicated that the formation of a major constituent of Alzheimer's disease (AD) senile plaques, called beta A4-peptide, does not result from normal processing of its precursor, amyloid precursor protein (APP). Since proteolytic cleavage of APP inside its beta A4 sequence was found to be part of APP processing the formation of the beta A4-peptide seems to be prevented under normal conditions. We considered whether in AD one of the endogenous proteinase inhibitors might interfere with APP processing. After we had recently found that cultured human neuronal cells synthesize the most potent of the known human proteinase inhibitors, alpha-2-macroglobulin (alpha 2M), upon stimulation with the inflammatory mediator interleukin-6 (IL-6) we now investigated whether alpha 2M and IL-6 could be detected in AD brains. Here we report that AD cortical senile plaques display strong alpha 2M and IL-6 immunoreactivity while no such immunoreactivity was found in age-matched control brains. Strong perinuclear alpha 2M immunoreactivity in hippocampal CA1 neurons of Alzheimer's disease brains indicates that neuronal cells are the site of alpha 2M synthesis in AD brains. We did not detect elevated IL-6 or alpha 2M levels in the cerebrospinal fluid of AD patients. Our data indicate that a sequence of immunological events which seem to be restricted to the local cortical environment is part of AD pathology.  相似文献   

9.
Robustness of G Proteins in Alzheimer''s Disease: An Immunoblot Study   总被引:4,自引:3,他引:1  
Many of the neurotransmitter systems that are altered in senile dementia of the Alzheimer type are known to mediate their effects via G proteins, yet the integrity of guanine nucleotide-binding proteins (G proteins) in Alzheimer's diseased brains has received minimal investigation. The aim of this study was to establish whether the level of G alpha subunits of five G proteins was altered in Alzheimer's disease. We used immunoblotting (Western blotting) to compare the amounts of Gi1, Gi2, GsH (heavy molecular weight), GsL (light molecular weight), and Go in the frontal cortex and hippocampus, two regions severely affected by the disease, and the cerebellum, which is less severely affected. The number of senile plaques was also quantified. We report that there was no significant difference in the level of these G alpha subunits between Alzheimer's diseased and age-matched postmortem brains. These results suggest that alterations in the amount of G protein alpha subunits are not a feature of Alzheimer's disease.  相似文献   

10.
Alzheimer's disease (AD) brains are characterized by extensive oxidative stress. Additionally, large depositions of amyloid beta-peptide (Abeta) are observed, and many researchers opine that Abeta is central to the pathogenesis of AD. Our laboratory combined these two observations in a comprehensive model for neurodegeneration in AD brains centered around Abeta-induced oxidative stress. Given the oxidative stress in AD and its potentially important role in neurodegeneration, considerable research has been conducted on the use of antioxidants to slow or reverse the pathology and course of AD. One source of antioxidants is the diet. This review examines the literature of the effects of endogenous and exogenous, nutritionally-derived antioxidants in relation to AD. In particular, studies of glutathione and other SH-containing antioxidants, vitamins, and polyphenolic compounds and their use in AD and modulation of Abeta-induced oxidative stress and neurotoxicity are reviewed.  相似文献   

11.
Neuronal nicotinic acetylcholine receptors (nAChRs) are thought to be involved in the pathogenesis of Alzheimer's disease (AD). Interestingly, in the brains of patients with this disease, losses of several subtypes of nAChRs on neurons have been reported, while an increase in alpha7 nAChRs was recently detected in the astrocytes. However, little is presently known about the expressions of individual subunits of nAChR on rat astrocytes in primary culture or the possible influence of exposure to beta-amyloid peptide (Abeta), a neuropathological hallmark of AD, on this expression. Thus, in the present investigation the levels of individual nAChR subunits on primary rat astrocytes and the possible direct influence of Abetas on the receptors were examined by RT-PCR, Western blotting, monitoring intracellular free calcium and immunohistochemistry. The alpha4, alpha7, beta2 and beta3 subunits and related calcium channel responses were found in these cells, whereas neither alpha2 nor alpha3 could be detected. Elevation in the levels of alpha7, alpha4 and beta2 mRNAs and proteins were observed in astrocytes exposed to 0.1-100nM Abeta(1-42). In contrast, incubation with 1muM Abeta(1-42) or Abeta(35-25) did not affect these levels. We propose that the enhanced expression of alpha7, alpha4 and beta2 nAChRs by astrocytes stimulated directly by nanomolar concentrations of Abeta(1-42) might be related to ongoing defensive or compensative mechanisms.  相似文献   

12.
Amyloid beta (Abeta) is a main component of senile plaques in Alzheimer's disease and induces neuronal cell death. Reactive oxygen species (ROS), nitric oxide and endoplasmic reticulum (ER) stress have been implicated in Abeta-induced neurotoxicity. We have reported that apoptosis signal-regulating kinase 1 (ASK1) is required for ROS- and ER stress-induced JNK activation and apoptosis. Here we show the involvement of ASK1 in Abeta-induced neuronal cell death. Abeta activated ASK1 mainly through production of ROS but not through ER stress in cultured neuronal cells. Importantly, ASK1-/- neurons were defective in Abeta-induced JNK activation and cell death. These results indicate that ROS-mediated ASK1 activation is a key mechanism for Abeta-induced neurotoxicity, which plays a central role in Alzheimer's disease.  相似文献   

13.
Growing evidence implicates CD40, a member of the TNFR superfamily, as contributing to the pathogenesis of many neurodegenerative diseases. Thus, strategies to suppress its expression may be of benefit in those disorders. To this aim, we investigated the effect of guanosine, a purine nucleoside that exerts neurotrophic and neuroprotective effects. CD40 expression and function are increased by exposure of mouse microglia cultures or the N9 microglia cell line to IFN-gamma (10 ng/ml) plus TNF-alpha (50 ng/ml) or beta amyloid (Abeta) peptide (Abeta(1-42); 500 nM). Culture pretreatment with guanosine (10-300 microM), starting 1 h before cytokine or Abeta addition, dose-dependently inhibited the CD40-induced expression as well as functional CD40 signaling by suppressing IL-6 production promoted by IFN-gamma/TNF-alpha challenge in the presence of CD40 cross-linking. Moreover, guanosine abrogated IFN-gamma-induced phosphorylation on Ser(727) and translocation of STAT-1alpha to the nucleus as well as TNF-alpha-/Abeta-induced IkappaBalpha and NF-kappaB p65/RelA subunit phosphorylation, thus inhibiting NF-kappaB-induced nuclear translocation. Guanosine effects were mediated by an increased phosphorylation of Akt, a PI3K downstream effector, as well as of ERK1/2 and p38 in the MAPK system, because culture pretreatment with selective ERK1/2, p38 MAPK, and PI3K antagonists (U0126, SB203580, or LY294002, respectively) counteracted guanosine inhibition on IFN-gamma/TNF-alpha-induced CD40 expression and function as well as on STAT-1alpha or NF-kappaB nuclear translocation. These findings suggest a role for guanosine as a potential drug in the experimental therapy of neuroinflammatory/neurodegenerative diseases, particularly Alzheimer's disease.  相似文献   

14.
Amyloid beta-peptide (Abeta) is a major constituent of senile plaques in the brains of Alzheimer's disease (AD) patients. We have previously demonstrated ceramide production secondary to Abeta-induced activation of neutral sphingomyelinase (nSMase) in cerebral endothelial cells and oligodendrocytes, which may contribute to cellular injury during progression of AD. In this study, we first established the "Abeta --> nSMase --> ceramide --> free radical --> cell death" pathway in primary cultures of fetal rat cortical neurons. We also provided experimental evidence showing that S-nitrosoglutathione (GSNO), a potent endogenous antioxidant derived from the interaction between nitric oxide (NO) and glutathione, caused dose-dependent protective effects against Abeta/ceramide neurotoxicity via inhibition of caspase activation and production of reactive oxygen species (ROS). This GSNO-mediated neuroprotection appeared to involve activation of cGMP-dependent protein kinase (PKG), phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated kinase (ERK). Activation of the cGMP/PKG pathway induced expression of thioredoxin and Bcl-2 that were beneficial to cortical neurons in antagonizing Abeta/ceramide toxicity. Consistently, exogenous application of thioredoxin exerted remarkable neuroprotective efficacy in our experimental paradigm. Results derived from the present study establish a neuroprotective role of GSNO, an endogenous NO carrier, against Abeta toxicity via multiple signaling pathways.  相似文献   

15.
Amyloid-beta (Abeta) is a major constituent of the neuritic plaque found in the brain of Alzheimer's disease patients, and a great deal of evidence suggests that the neuronal loss that is associated with the disease is a consequence of the actions of Abeta. In the past few years, it has become apparent that activation of c-Jun N-terminal kinase (JNK) mediates some of the effects of Abeta on cultured cells; in particular, the evidence suggests that Abeta-triggered JNK activation leads to cell death. In this study, we investigated the effect of intracerebroventricular injection of Abeta(1-40) on signaling events in the hippocampus and on long term potentiation in Schaffer collateral CA1 pyramidal cell synapses in vivo. We report that Abeta(1-40) induced activation of JNK in CA1 and that this was coupled with expression of the proapoptotic protein, Bax, cytosolic cytochrome c, poly-(ADP-ribose) polymerase cleavage, and Fas ligand expression in the hippocampus. These data indicate that Abeta(1-40) inhibited expression of long term potentiation, and this effect was abrogated by administration of the JNK inhibitor peptide, D-JNKI1. In parallel with these findings, we observed that Abeta-induced changes in caspase-3 activation and TdT-mediated dUTP nick-end labeling staining in neuronal cultured cells were inhibited by D-JNKI1. We present evidence suggesting that interleukin (IL)-1beta plays a significant role in mediating the effects of Abeta(1-40) because Abeta(1-40) increased hippocampal IL-1beta and because several effects of Abeta(1-40) were inhibited by the caspase-1 inhibitor Ac-YVAD-CMK. On the basis of our findings, we propose that Abeta-induced changes in hippocampal plasticity are likely to be dependent upon IL-1beta-triggered activation of JNK.  相似文献   

16.
To explore the direct role of beta-amyloid (Abeta) and carboxyl-terminal fragments of amyloid precursor protein in the inflammatory processes possibly linked to neurodegeneration associated with Alzheimer's disease, the effects of the 105-amino acid carboxyl-terminal fragment (CT(105)) of amyloid precursor protein on the production of tumor necrosis factor-alpha (TNF-alpha) and matrix metalloproteinase-9 (MMP-9) were examined in a human monocytic THP-1 cell line and compared with that of Abeta. CT(105) elicited a marked increase in TNF-alpha and MMP-9 production in the presence of interferon-gamma in a dose- and time-dependent manner. Similar patterns were obtained with Abeta despite its low magnitude of induction. Autocrine TNF-alpha is likely to be a main mediator of the induction of MMP-9 because the neutralizing antibody to TNF-alpha inhibits MMP-9 production. Genistein, a specific inhibitor of tyrosine kinase, dramatically diminished both TNF-alpha secretion and subsequent MMP-9 release in response to CT(105) or Abeta. Furthermore, PD98059 and SB202190, specific inhibitors of ERK or p38 MAPK respectively, efficiently suppressed CT(105)-induced effects whereas only PD98059 was effective at reducing Abeta-induced effects. Our results suggest that CT(105) in combination with interferon-gamma might serve as a more potent activator than Abeta in triggering inflammatory processes and that both tyrosine kinase and MAPK signaling pathways may represent potential therapeutic targets for the control of Alzheimer's disease progression.  相似文献   

17.
Differential regulation and function of Fas expression on glial cells   总被引:8,自引:0,他引:8  
Fas/Apo-1 is a member of the TNF receptor superfamily that signals apoptotic cell death in susceptible target cells. Fas or Fas ligand (FasL)-deficient mice are relatively resistant to the induction of experimental allergic encephalomyelitis, implying the involvement of Fas/FasL in this disease process. We have examined the regulation and function of Fas expression in glial cells (astrocytes and microglia). Fas is constitutively expressed by primary murine microglia at a low level and significantly up-regulated by TNF-alpha or IFN-gamma stimulation. Primary astrocytes express high constitutive levels of Fas, which are not further affected by cytokine treatment. In microglia, Fas expression is regulated at the level of mRNA expression; TNF-alpha and IFN-gamma induced Fas mRNA by approximately 20-fold. STAT-1alpha and NF-kappaB activation are involved in IFN-gamma- or TNF-alpha-mediated Fas up-regulation in microglia, respectively. The cytokine TGF-beta inhibits basal expression of Fas as well as cytokine-mediated Fas expression by microglia. Upon incubation of microglial cells with FasL-expressing cells, approximately 20% of cells underwent Fas-mediated cell death, which increased to approximately 60% when cells were pretreated with either TNF-alpha or IFN-gamma. TGF-beta treatment inhibited Fas-mediated cell death of TNF-alpha- or IFN-gamma-stimulated microglial cells. In contrast, astrocytes are resistant to Fas-mediated cell death, however, ligation of Fas induces expression of the chemokines macrophage inflammatory protein-1beta (MIP-1beta), MIP-1alpha, and MIP-2. These data demonstrate that Fas transmits different signals in the two glial cell populations: a cytotoxic signal in microglia and an inflammatory signal in the astrocyte.  相似文献   

18.
CD40 is a type I membrane-bound molecule belonging to the TNFR superfamily that is expressed on various immune cells including macrophages and microglia. The aberrant expression of CD40 is involved in the initiation and maintenance of various human diseases including multiple sclerosis, arthritis, atherosclerosis, and Alzheimer's disease. Inhibition of CD40 signaling has been shown to provide a significant beneficial effect in a number of animal models of human diseases including the aforementioned examples. We have previously shown that IFN-gamma induces CD40 expression in macrophages and microglia. IFN-gamma leads to STAT-1alpha activation directly and up-regulation of NF-kappaB activity due to the secretion and subsequent autocrine signaling of TNF-alpha. However, TNF-alpha alone is not capable of inducing CD40 expression in these cells. Suppressor of cytokine signaling 1 protein (SOCS-1) is a cytokine-inducible Src homology 2-containing protein that regulates cytokine receptor signaling by inhibiting STAT-1alpha activation via a specific interaction with activated Janus kinase 2. Given the important role of CD40 in inflammatory events in the CNS as well as other organ systems, it is imperative to understand the molecular mechanisms contributing to both CD40 induction and repression. We show that ectopic expression of SOCS-1 abrogates IFN-gamma-induced CD40 protein expression, mRNA levels, and promoter activity. Additionally, IFN-gamma-induced TNF-alpha secretion, as well as STAT-1alpha and NF-kappaB activation, are inhibited in the presence of SOCS-1. We conclude that SOCS-1 inhibits cytokine-induced CD40 expression by blocking IFN-gamma-mediated STAT-1alpha activation, which also then results in suppression of IFN-gamma-induced TNF-alpha secretion and subsequent NF-kappaB activation.  相似文献   

19.
20.
Accumulation of beta-amyloid peptide (Abeta), which is a landmark of Alzheimer's disease, may alter astrocyte functions before any visible symptoms of the disease occur. Here, we examined the effects of Abeta on biosynthesis and release of diazepam-binding inhibitor (DBI), a polypeptide primarily expressed by astroglial cells in the CNS. Quantitative RT-PCR and specific radioimmunoassay demonstrated that aggregated Abeta(25-35), at concentrations up to 10(-4) m, induced a dose-dependent increase in DBI mRNA expression and DBI-related peptide release from cultured rat astrocytes. These effects were totally suppressed when aggregation of Abeta(25-35) was prevented by Congo red. Measurement of the number of living cells revealed that Abeta(25-35) induced a trophic rather than a toxic effect on astrocytes. Administration of cycloheximide blocked Abeta(25-35)-induced increase of DBI gene expression and endozepine accumulation in astrocytes, indicating that protein synthesis is required for DBI gene expression. Altogether, the present data suggest that Abeta-induced activation of endozepine biosynthesis and release may contribute to astrocyte proliferation associated with Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号