首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compensating changes in the pigment apparatus of photosynthesis that resulted from a complete loss of phycobilisomes (PBS) were investigated in the cells of a PAL mutant of cyanobacterium Synechocystis sp. PCC 6803. The ratio PBS/chlorophyll calculated on the basis of the intensity of bands in the action spectra of photosynthetic activity of two photosystems in the wild strain was 1: 70 for PSII and 1: 300 for PSI. Taking into consideration the number of chlorophyll molecules per reaction center in each photosystem, these ratios could be interpreted as association of PBS with dimers of PSII and trimers of PSI as well as greater dependence of PSII as compared with PSI on light absorption by PBS. The ratio PSI/PSII determined by photochemical cross-section of the reactions of two photosystems was 3.5: 1.0 for wild strain of Synechocystis sp. PCC 6803 and 0.7: 1.0 for the PAL mutant. A fivefold increase in the relative content of PSII in pigment apparatus corresponds to a 5-fold increase in the intensity of bands at 685 and 695 nm as related to the band of PSI at 726 nm recorded in low-temperature fluorescence spectrum of the PAL mutant. Inhibition of PSII with diuron resulted in a pronounced stimulation of chlorophyll fluorescence in the PAL mutant as compared to the wild strain of Synechocystis sp. PCC 6803; these data suggested an activation of electron transfer between PSII and PSI in the mutant cells. Thus, the lack of PBS in the mutant strain of Synechocystis sp. PCC 6803 was compensated for by the higher relative content of PSII in the pigment apparatus of photosynthesis and by a rise in the rate of linear electron transport.  相似文献   

2.
Simultaneous measurements of 9-aminoacridine (9-AA) fluorescence quenching, O2-uptake and chlorophyll fluorescence of intact spinach chloroplasts were carried out to assess the relationship between the transthylakoidal pH and linear electron flux passing through Photosystem II. Three different types of O2-dependent electron flow were investigated: (1) Catalysed by methyl viologen; (2) in the absence of a catalyst and presence of an active ascorbate peroxidase (Mehler-peroxidase reaction); (3) in the absence of a catalyst and with the ascorbate peroxidase being inhibited by KCN (Mehler reaction). The aim of this study was to assess the relative contribution of pH-formation which is not associated with electron flow through Photosystem II and, which should reflect Photosystem I cyclic flow under the different conditions. The relationship between the extent of 9-AA fluorescence quenching and O2-uptake rate was found to be almost linear when methyl viologen was present. In the absence of methyl viologen (Mehler reaction) an increase of 9-AA fluorescence quenching to a value of 20% at low light intensities was associated with considerably less O2-uptake than in the presence of methyl viologen, indicating the involvement of cyclic flow. These findings are in agreement with a preceding study of Kobayashi and Heber (1994). However, when no KCN was added, such that the complete Mehler-peroxidase reaction sequence was operative, the relationship between 9-AA fluorescence quenching and the flux through PS II, as measured via the chlorophyll fluorescence parameter F/Fm × PAR, was identical to that observed in the presence of methyl viologen. Under the assumption that methyl viologen prevents cyclic flow, it is concluded that there is no significant contribution of cyclic electron flow to pH-generation in intact spinach chloroplasts.  相似文献   

3.
Photosystem II cyclic electron transport was investigated at low pH in spinach thylakoids and PS II preparations from the cyanobacteriumPhormidium laminosum. Variable fluorescence (Fv) quenching at a very low light intensity was examined as an indicator of cyclic electron flow. A progressive quenching of Fv was observed as the pH was lowered; however, this was shown to be mainly due to an inhibition of oxygen evolution. Cyclic electron flow in the uninhibited centres was estimated to occur at a rate comparable to or smaller than 1 mole O2 mg Chl–1 h–1 in the pH range 5.0 to 7.8.The quantum yeeld of oxygen production is known to decrease at low pH and has been taken to indicate cyclic electron flow (Crofts and Horton (1991) Biochim Biophys Acta 1058: 187–193). However, a direct all-or-none inhibition of oxygen production at low pH has also been reported (Meyer et al. (1989) Biochim Biophys Acta 974: 36–43). We have analysed the effects of light intensity on the rates of oxygen evolution in order to calculate U, the quantum yield of open and uninhibited centres. U was found to be constant over a broad pH range, and by using ferricyanide and phenyl-p-benzoquinone as electron acceptors the maximum possible rate of cyclic electron transport was equivalent to no more than 1 mole O2 mg Chl–1 h–1. The rate was no greater when the acceptor was adjusted to provide the most favourable conditions for cyclic flow.  相似文献   

4.
5.
Photoinhibition of photosynthesis in Lemna gibba L. was induced by exposing intact plants to a high photosynthetic photon flux density of 1 750 μmol m−2 s−1 at a low temperature of 3°C. Subsequently isolated chloroplasts showed pronounced reductions in the capacity of whole chain electron transport, measured as Hill activity, and in the efficiency of electron transport to the primary electron acceptor Q of photosystem II, measured as variable chlorophyll fluorescence at 20°C. These changes proceeded with similar kinetics (probably of the first-order reaction), suggesting that the site of photoinhibition is in the electron transfer to Q. A partial uncoupling of the whole chain electron transport also occured. The capacity of electron transport mediated by photosystem I was unaffected. The extent of photoinhibition of photosynthetic electron transport, as produced by a 2 h exposure of L. gibba to three different combinations of photon flux density and temperature was studied. It was shown that intrinsically similar states of photoinhibition, on the evidence of their time courses of recovery, were induced by either a high photon flux density and 25°C or by a moderate photon flux density and 3°C.  相似文献   

6.
Weimin Ma 《BBA》2007,1767(6):742-749
Phycobilisomes (PBS) are the major accessory light-harvesting complexes in cyanobacteria and their mobility affects the light energy distribution between the two photosystems. We investigated the effect of PBS mobility on state transitions, photosynthetic and respiratory electron transport, and various fluorescence parameters in Synechocystis sp. strain PCC 6803, using glycinebetaine to immobilize and couple PBS to photosystem II (PSII) or photosystem I (PSI) by applying under far-red or green light, respectively. The immobilization of PBS at PSII inhibited the increase in cyclic electron flow, photochemical and non-photochemical quenching, and decrease in respiration that occurred during the movement of PBS from PSII to PSI. In contrast, the immobilization of PBS at PSI inhibited the increase in respiration and photochemical quenching and decrease in cyclic electron flow and non-photochemical quenching that occurred when PBS moved from PSI to PSII. Linear electron transport did not change during PBS movement but increased or decreased significantly during longer illumination with far-red or green light, respectively. This implies that PBS movement is completed in a short time but it takes longer for the overall photosynthetic reactions to be tuned to a new state.  相似文献   

7.
Jean Alric  Jérôme Lavergne 《BBA》2010,1797(1):44-51
Assimilation of atmospheric CO2 by photosynthetic organisms such as plants, cyanobacteria and green algae, requires the production of ATP and NADPH in a ratio of 3:2. The oxygenic photosynthetic chain can function following two different modes: the linear electron flow which produces reducing power and ATP, and the cyclic electron flow which only produces ATP. Some regulation between the linear and cyclic flows is required for adjusting the stoichiometric production of high-energy bonds and reducing power. Here we explore, in the green alga Chlamydomonas reinhardtii, the onset of the cyclic electron flow during a continuous illumination under aerobic conditions. In mutants devoid of Rubisco or ATPase, where the reducing power cannot be used for carbon fixation, we observed a stimulation of the cyclic electron flow. The present data show that the cyclic electron flow can operate under aerobic conditions and support a simple competition model where the excess reducing power is recycled to match the demand for ATP.  相似文献   

8.
The relationship between the empirical fluorescence index F/Fm and the quantum yield of linear electron flow, s, was investigated in isolated spinach thylakoids. Conditions were optimised for reliable determination of F/Fm and s with methyl viologen or ferricyanide as electron acceptors under coupled and uncoupled conditions. Ascorbate in combination with methyl viologen was found to stimulate light-induced O2-uptake which is not reflected in F/Fm and interpreted to reflect superoxide reduction by ascorbate. In the absence of ascorbate, the plot of F/Fm vs. s was mostly linear, except for the range of high quantum yields, i.e. at rather low photon flux densities. With ferricyanide as acceptor, use of relatively low concentrations (0.1–0.3 mM) was essential for correct Fm-determinations, particularly under uncoupled conditions. Under coupled and uncoupled conditions the same basic relationship between F/Fm and s was observed, irrespective of s being decreased by increasing light intensity or by DCMU-addition. The plots obtained with methyl viologen and ferricyanide as acceptors were almost identical and similar to corresponding plots reported previously by other researchers for intact leaves. It is concluded that the index F/Fm can be used with isolated chloroplasts for characterisation of such types of electron flow which are difficult to assess otherwise, as e.g. O2 dependent flux. The origin of the non-linear part of the relationship is discussed. An involvement of inactive PS II centers with separate units and inefficient QA-QB electron transfer is considered likely.Abbreviations AsA - ascorbate - DCMU - 3-(3,4-dichlorophenyl)-1,1-dimethylurea - MDA - monodehydroascorbate - MV - methyl viologen - PAR - photosynthetically active radiation - SOD - superoxide dismutase This paper is dedicated to David Walker who after 40 years in the field of photosynthesis is now retiring from his duties at Sheffield University.  相似文献   

9.
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.Abbreviations F, FM, F'M, F"M, F0, F'0 chlorophyll fluorescence levels - exc quantum efficiency of excitation energy capture by open Photosystem II - PS II quantum efficiency of electron flow through Photosystem II - P515 field indicating rapid absorbance change peaking at 522 nm - P700 primary donor of Photosystem I - QA primary quinone acceptor in Photosystem II - QN non-photochemical fluorescence quenching - Qq photochemical quenching of chlorophyll fluorescence  相似文献   

10.
Electron transport processes were investigated in barley leaves in which the oxygen-evolution was fully inhibited by a heat pulse (48 °C, 40 s). Under these circumstances, the K peak (∼ F400 μs) appears in the chl a fluorescence (OJIP) transient reflecting partial QA reduction, which is due to a stable charge separation resulting from the donation of one electron by tyrozine Z. Following the K peak additional fluorescence increase (indicating QA accumulation) occurs in the 0.2-2 s time range. Using simultaneous chl a fluorescence and 820 nm transmission measurements it is demonstrated that this QA accumulation is due to naturally occurring alternative electron sources that donate electrons to the donor side of photosystem II. Chl a fluorescence data obtained with 5-ms light pulses (double flashes spaced 2.3-500 ms apart, and trains of several hundred flashes spaced by 100 or 200 ms) show that the electron donation occurs from a large pool with t1/2 ∼ 30 ms. This alternative electron donor is most probably ascorbate.  相似文献   

11.
UV-B and cadmium, alone and together, induced changes in photosynthetic pigment levels, photosynthetic electron transport activity, enzymatic and non-enzymatic (low molecular weight) antioxidants, level of hydrogen peroxide and lipid peroxidation in Riccia sp. were evaluated. Chlorophyll content was found to decrease with the rising concentration of cadmium and UV-B exposure alone and its level further declined when both the stresses were applied together. In contrast to this, carotenoids exhibited varied response, as it showed enhancement with UV-B (15, 30 and 45 min exposure) and low concentration of Cd (1 and 10 μM) treatment alone and in combination. Both the stresses caused strong inhibitory effect on PS II activity (H2O → p-BQ), while PS I activity (DCPIP/ASC → MV) appeared to be less sensitive. Total peroxide content increased with simultaneous increase in lipid peroxidation. The level of non-enzymatic antioxidant ascorbate and enzymatic antioxidants superoxide dismutase and peroxidase activity were found to increase with simultaneous decrease in catalase activity following UV-B and Cd treatments. These results indicate that 45 min of UV-B exposure and 10, 100 and 1000 μM cadmium alone and together, strongly arrested electron flow through PS II which caused accelerated generation of reactive oxygen species (H2O2) and excess accumulation of H2O2 due to significant inhibition of catalase activity, led to the oxidative damage in Riccia sp.  相似文献   

12.
Redox transients of chlorophyll P700, monitored as absorbance changes ΔA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII + PSI− exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET). Pre-excitation with one or more 10 s FR pulses creates conditions for induction of linear electron transport (LET). These converse conditions give rise to totally different, but reproducible responses of P700 oxidation. System analyses of these responses were made based on quantitative solutions of the rate equations dictated by the associated reaction scheme for each of the relevant conditions. These provide the mathematical elements of the P700 induction algorithm (PIA) with which the distinguishable components of the P700+ response can be resolved and interpreted. It enables amongst others the interpretation and understanding of the characteristic kinetic profile of the P700+ response in intact leaves upon 10 s illumination with far-red light under the promotive condition for CET. The system analysis provides evidence that this unique kinetic pattern with a non-responsive delay followed by a steep S-shaped signal increase is caused by a photoelectrochemically controlled suppression of the electron transport from Fd to the PQ-reducing Qr site of the cytb6f complex in the cyclic pathway. The photoelectrochemical control is exerted by the PSI-powered proton pump associated with CET. It shows strong similarities with the photoelectrochemical control of LET at the acceptor side of PSII which is reflected by release of photoelectrochemical quenching of chlorophyll a fluorescence.  相似文献   

13.
After transferring the dark-acclimated cyanobacteria to light, flavodiiron proteins Flv1/Flv3 serve as a main electron acceptor for PSI within the first seconds because Calvin cycle enzymes are inactive in the dark. Synechocystis PCC 6803 mutant Δflv1flv3 devoid of Flv1 and Flv3 retained the PSI chlorophyll P700 in the reduced state over 10?s (Helman et al., 2003; Allahverdiyeva et al., 2013). Study of P700 oxidoreduction transients in dark-acclimated Δflv1flv3 mutant under the action of successive white light pulses separated by dark intervals of various durations indicated that the delayed oxidation of P700 was determined by light activation of electron transport on the acceptor side of PSI. We show that the light-induced redox transients of chlorophyll P700 in dark-acclimated Δflv1flv3 proceed within 2?min, as opposed to 1–3?s in the wild type, and comprise a series of kinetic stages. The release of rate-limiting steps was eliminated by iodoacetamide, an inhibitor of Calvin cycle enzymes. Conversely, the creation with methyl viologen of a bypass electron flow to O2 accelerated P700 oxidation and made its extent comparable to that in the wild-type cells. The lack of major sinks for linear electron flow in iodoacetamide-treated Δflv1flv3 mutant, in which O2- and CO2-dependent electron flows were impaired, facilitated cyclic electron flow, which was evident from the decreased steady-state oxidation of P700 and from rapid dark reduction of P700 during and after illumination with far-red light. The results show that the photosynthetic induction in wild-type Synechocystis PCC 6803 is largely hidden due to the flavodiiron proteins whose operation circumvents the rate-limiting electron transport steps controlled by Calvin cycle reactions.  相似文献   

14.
The light-dependent control of photosynthetic electron transport from plastoquinol (PQH2) through the cytochrome b6f complex (Cyt b6f) to plastocyanin (PC) and P700 (the donor pigment of Photosystem I, PSI) was investigated in laboratory-grown Helianthus annuus L., Nicotiana tabaccum L., and naturally-grown Solidago virgaurea L., Betula pendula Roth, and Tilia cordata P. Mill. leaves. Steady-state illumination was interrupted (light-dark transient) or a high-intensity 10 ms light pulse was applied to reduce PQ and oxidise PC and P700 (pulse-dark transient) and the following re-reduction of P700+ and PC+ was recorded as leaf transmission measured differentially at 810-950 nm. The signal was deconvoluted into PC+ and P700+ components by oxidative (far-red) titration (V. Oja et al., Photosynth. Res. 78 (2003) 1-15) and the PSI density was determined by reductive titration using single-turnover flashes (V. Oja et al., Biochim. Biophys. Acta 1658 (2004) 225-234). These innovations allowed the definition of the full light response curves of electron transport rate through Cyt b6f to the PSI donors. A significant down-regulation of Cyt b6f maximum turnover rate was discovered at low light intensities, which relaxed at medium light intensities, and strengthened again at saturating irradiances. We explain the low-light regulation of Cyt b6f in terms of inactivation of carbon reduction cycle enzymes which increases flux resistance. Cyclic electron transport around PSI was measured as the difference between PSI electron transport (determined from the light-dark transient) and PSII electron transport determined from chlorophyll fluorescence. Cyclic e transport was not detected at limiting light intensities. At saturating light the cyclic electron transport was present in some, but not all, leaves. We explain variations in the magnitude of cyclic electron flow around PSI as resulting from the variable rate of non-photosynthetic ATP-consuming processes in the chloroplast, not as a principle process that corrects imbalances in ATP/NADPH stoichiometry during photosynthesis.  相似文献   

15.
This paper examines the effect of inorganic carbon transport and accumulation in Synechococcus PCC7942 on fluorescence quenching, photosynthetic oxygen reduction and both linear and cyclic electron flow. The data presented support the previous findings of Miller et al. (1991) that the accumulation of Ci by the CO2 concentrating mechanism is able to stimulate oxygen photoreduction, particularly so when CO2 fixation is inhibited by PCR cycle inhibitors such as glycolaldehyde. This effect is found with both high and low-Ci grown cells, but the potential for oxygen photoreduction is about two-fold higher in low-Ci grown cells. This greater potential for O2 photoreduction is also correlated with a higher ability of low-Ci cells to photoreduce H2O2. Experiments with a mutant which transports Ci but does not accumulate it internally, indicates that the stimulation of O2 photoreduction appears to be a direct effect of the internal accumulation of Ci rather than from its participation in the transport process. In the absence of Ci, no specific partial reactions of photosynthetic electron transport appear to be inhibited, and the PS 1 acceptors PNDA and MV as well as the PS 2 acceptor DMQ can all run electron transport at levels approaching those during active CO2 fixation. Measurements of P700+ show that when the cells are depleted of Ci during photosynthesis, P700 becomes more oxidised. This indicates that the resupply of electrons from the intersystem chain is relatively more restricted under conditions of Ci limitation than is the availability of PS 1 electron acceptors. It is proposed that the accumulated Ci pool can directly stimulate the ability of O2 to act as a PS 1 acceptor and that the ability of PS 1 acceptors, such as O2, to relieve restrictions on intersystem electron transfer is perhaps a result of a reduction in cyclic electron flow and a subsequent increase in the oxidation state of the plastoquinone pool.Abbreviations BTP 1,3-bis[tris(hydroxymethyl)-methylaminopropane] - CA carbonic anhydrase' - Ci inorganic carbon (CO2+HCO3 +CO3 2–) - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,6-dimethylbenzoquinone - EZ ethoxyzolamide or 6-ethoxy-2-benzothiazole-sulfonamide - FCCP carbonyl cyanide p-trifluoro methoxyphenyl-hydrazone - F steady-state chlorophyll fluorescence - Fm chlorophyll fluorescence during a saturating light pulse - Fo chlorophyll fluorescence in the dark, prior to illumination by actinic light - MV methyl viologen or 1,1-dimethyl-4,4-bipyridinium dichloride - PCR cycle photosynthetic carbon reduction cycle - PNDA N,N-dimethyl-p-nitrosoaniline - PS 1 the quantum yield of Photosystem 1 - PS 2 the quantum yield of Photosystem 2  相似文献   

16.
Bojko M  Kruk J  Wieckowski S 《Phytochemistry》2003,64(6):1055-1060
The effect of sodium cholate and other detergents (Triton X-100, sodium dodecyl sulphate, octyl glucoside, myristyltrimethylammonium bromide) on the reduction of plastoquinones (PQ) with a different length of the side-chain by spinach ferredoxin:NADP(+) oxidoreductase (FNR) in the presence of NADPH has been studied. Both NADPH oxidation and oxygen uptake due to plastosemiquinone autoxidation were highly stimulated only in the presence of sodium cholate among the used detergents. Sodium cholate at the concentration of 20 mM was found to be the most effective on both PQ-4 and PQ-9-mediated oxygen uptake. The FNR-dependent reduction of plastoquinones incorporated into sodium cholate micelles was stimulated by spinach ferredoxin but inhibited by Mg(2+) ions. It was concluded that the structure of sodium cholate micelles facilitates contact of plastoquinone molecules with the enzyme and creates favourable conditions for the reaction similar to those found in thylakoid membranes for PQ-9 reduction. The obtained results were discussed in terms of the function of FNR as a ferredoxin:plastoquinone reductase both in cyclic electron transport and chlororespiration.  相似文献   

17.
The effects of substrate analogs and energy inhibitors on glucose uptake and phosphorylation by Clostridium beijerinckii provide evidence for the operation of two uptake systems: a previously characterized phosphoenolpyruvate-dependent phosphotransferase system (PTS) and a non-PTS system probably energized by the transmembrane proton gradient. In both wild-type C. beijerinckii NCIMB 8052 and the butanol-hyperproducing mutant BA101, PTS activity declined at the end of exponential growth, while glucokinase activity increased in the later stages of fermentation. The non-PTS uptake system, together with enhanced glucokinase activity, may provide an explanation for the ability of the mutant to utilize glucose more effectively during fermentation despite the fact that it is partially defective in PTS activity.  相似文献   

18.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS IIα and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS IIα centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS IIα component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS IIα contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS IIα and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS IIα and PS IIβ to the fluorescence induction kinetics. PS IIα characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP.  相似文献   

19.
The inhibition patterns of rabbit sera (RS1 & RS2) from two different rabbits on the photosynthetic electron transport of isolated spinach thylakoids were studied. Fifty l of RSI were required for 100% inhibition of a H2O MV/O2 reaction, while only 10 l of a 1:10 dilution of RS2 were needed for 100% inhibition. The RS2 serum was greatly hemolyzed. The -globulin fraction from purified rabbit serum (RS1) did not inhibit photosynthetic electron transport, indicating that the antibody fraction of the rabbit serum does not contain the inhibitor. It appears that the inhibitor is from the hemolyzed red blood cells. Rabbit sera added prior to chloroplast illumination caused no inhibition, while addition of rabbit sera during illumination inhibited a H2O MV/O2 reaction within 1–3s. Aminotriazole, a catalase inhibitor, did not affect the efficacy of the rabbit sera indicating that the unknown rabbit serum inhibitor is not catalase. Various Hill reactions were employed to determine the site of inhibition. Rabbit sera inhibited the following reactions: DHQ/DCMU MV/O2, DAD/Asc/DBMIB MV/O2, and DCIP/Asc/DBMIB MV/O2. Rabbit sera did not inhibit a H2O DADox reaction indicating that inhibition is on the reducing side of PSI. However, a H2O Fd/NADP+ reaction was not inhibited by rabbit sera. NADP did not interfere with the ability of RS2 to inhibit a MV-mediated Mehler reaction. In simultaneously measured assays of Fd-mediated O2 and NADP+ reductions, RS2 serum inhibited the reduction of O2 by ferredoxin without inhibiting the reduction of NADP+. These results indicate the potential involvement of parallel (branched) electron transport of the reducing side of PSI in the reduction of oxygen.Abbreviations RS1 and RS2 Rabbit serum 1 and 2 - MV methylviologen - DCMU 3,4-dichlorophenyl-N,N-dimethylurea - KFeCN potassium ferricyanide - DCIP dichlorophenolindolphenol - DAD 2,3,5,6-tetramethyl-p-phenylenediamine - DHQ tetramethyl-p-hydroquinone (durohydroquinone) - MES [2-(N-morpholino)-esthanesulfonic acid] - HEPES [N-2-hydroxyethyl piperazine-N-2-ethanesulfonic acid] - DBMIB dibromothymoquinone - PSI and PSII photosystem I and II - Fd ferredoxin - Chl chlorophyll - Asc ascorbate - SOD superoxide dismutase  相似文献   

20.
The antithetical relationship of the F and V alleles in British Friesian cattle was found to be imperfect. The presence of another allele was inferred. It was suspected of being native to the British Isles.
Parentage records that contravened the assumption that F +V– and F–V + animals were homozygous were not necessarily erroneous.
Black and white cattle in the Netherlands have received semen from a bull carrying the allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号