首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The biocatalytic conversion of 5-mono-substituted hydantoins to the corresponding d-amino acids or l-amino acids involves first the hydrolysis of hydantoin to a N-carbamoylamino acid by an hydantoinase or dihydropyrimidinase, followed by the conversion of the N-carbamoylamino acid to the amino acid by N-carbamylamino acid amidohydrolase (N-carbamoylase). Pseudomonas putida strain RU-KM3S, with high levels of hydantoin-hydrolysing activity, has been shown to exhibit non-stereoselective hydantoinase and l-selective N-carbamoylase activity. This study focused on identifying the hydantoinase and N-carbamoylase-encoding genes in this strain, using transposon mutagenesis and selection for altered growth phenotypes on minimal medium with hydantoin as a nitrogen source. Insertional inactivation of two genes, dhp and bup, encoding a dihydropyrimidinase and -ureidopropionase, respectively, resulted in loss of hydantoinase and N-carbamoylase activity, indicating that these gene products were responsible for hydantoin hydrolysis in this strain. dhp and bup are linked to an open reading frame encoding a putative transport protein, which probably shares a promoter with bup. Two mutant strains were isolated with increased levels of dihydropyrimidinase but not -ureidopropionase activity. Transposon mutants in which key elements of the nitrogen regulatory pathway were inactivated were unable to utilize hydantoin or uracil as a nitrogen source. However, these mutations had no effect on either the dihydropyrimidinase or -ureidopropionase activity. Disruption of the gene encoding dihydrolipoamide succinyltransferase resulted in a significant reduction in the activity of both enzymes, suggesting a role for carbon catabolite repression in the regulation of hydantoin hydrolysis in P. putida RU-KM3S cells.  相似文献   

3.
4.
N-nitrosamine is a class of carcinogenic, mutagenic, and teratogenic compounds, which can be produced from N-nitrosation of amine by nitrosating agents. N-nitrosation of 19 amines (eight acyclic amines, five heterocyclic amines, and six amines with unsaturated groups) by N2O3 was investigated at the CBS-QB3 level of theory. The results indicate that generally the heterocyclic amines have the highest reactivities among the three kinds of amines, whereas the reactivities of the amines with unsaturated and electron-withdrawing groups are relatively low. Frontier molecular orbital analysis indicates that the energy gap between the HOMO of an amine and the LUMO of N2O3 has a close connection with the reactivity of an amine. A structure-reactivity relationship of amines in the N-nitrosation reactions by N2O3 was established using the stepwise multivariate linear regression. The results indicate that the reactivity of an amine has a definite relationship (Radj2 = 0.947) with the heterolytic bond dissociation energy of R1R2N-H bond, energy of HOMO, NBO occupancy of the natural lone pair orbital of N atom, the NBO charge of the N atom, and the pyramidalization angle of an amine. This work will be helpful to gain more insight into the N-nitrosation reactions.  相似文献   

5.

Abstract  

When synthesizing arylpiperazine library modified with N-acylated amino acid derivatives (e.g., cyclized aspartic acid, cyclized glutamic acid, proline) we wished to rapidly determine the way of cyclization of N-acylated glutamic acid derivatives. During concomitant cleavage and cyclization two alternative routes were possible—either formation of six-member imide (glutarimide) or five-member lactam. Application of MS/MS and 1H NMR method allowed us to establish that cyclization of N-acylated glutamic acid derivatives preceded to lactams—N-acylated pyroglutamic acid derivatives.  相似文献   

6.

Background

The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in large area of marginal lands are rather sparse and how soil temperature and moisture affect the emission potential remains unknown. Therefore, we sought to estimate the regional GHG emission based on N2O and CH4 releases from the energy crop fields.

Results

Here we sampled the top soils from two Miscanthus fields and incubated them using a short-term laboratory microcosm approach under different conditions of typical soil temperatures and moistures. Based on the emission measurements of N2O and CH4, we developed a model to estimate annual regional GHG emission of Miscanthus production in the infertile Loess Plateau of China. The results showed that the N2O emission potential was 0.27 kg N ha?1 year?1 and clearly lower than that of croplands and grasslands. The CH4 uptake potential was 1.06 kg C ha?1 year?1 and was slightly higher than that of croplands. Integrated with our previous study on the emission of CO2, the net greenhouse effect of three major GHGs (N2O, CH4 and CO2) from Miscanthus fields was 4.08 t CO2eq ha?1 year?1 in the Loess Plateau, which was lower than that of croplands, grasslands and shrub lands.

Conclusions

Our study revealed that Miscanthus production may hold a great potential for GHG mitigation in the vast infertile land in the Loess Plateau of China and could contribute to the sustainable energy utilization and have positive environmental impact on the region.
  相似文献   

7.
Summary.  This review article focuses on the synthesis and reactions of N,N-di-Boc glutamate and aspartate semialdehydes as well as related aldehydes. These building blocks are prepared according to various strategies from glutamic and aspartic acids and find interesting synthetic applications. In the first part, the methods for the synthesis of N,N-di-Boc-amino aldehydes are summarized. The applications of these chiral synthons for the synthesis of unnatural amino acids and other bioactive compounds are discussed in the second section. Received April 24, 2002 Accepted August 13, 2002 Published online January 30, 2003 Authors' address: Prof. Violetta Constantinou-Kokotou, Chemical Laboratories, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece, E-mail: vikon@aua.gr Abbreviations: AcNH-TEMPO, 4-acetamido-2,2,6,6-tetramethyl-1-piperidinyloxy free radical; AIBN, 2,2′-azobis(2-methylpropionitrile); Aliquat, methyltrioctylammonium chloride; Bn, benzyl; Boc, tert-butoxycarbonyl; But, tert-butyl; m-CPBA, 3-chloroperoxybenzoic acid; DAST, diethylaminosulfur trifluoride; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; (R,R)-(+)-DET, (R,R)-(+)-diethyltartrate; DIBALH, diisobutyl aluminium hydride; DMAP, 4-dimethylaminopyridine; DMF, dimethylformamide; Et3N, triethylamine; KHMDS, potassium bis(trimethylsilyl)amide; (S)-LLB, lanthanium-lithium-bis-metallic binaphthol catalyst; MsCl, methanesulfonyl chloride; NEM, N-ethylmorpholine; NMO, 4-methylmorpholine N-oxide; PPA, propylphosphonic acid anhydride; TBHP, tert-butyl hydroperoxide; TFA, trifluoroacetic acid; THF, tetrahydrofuran; TMSI, 1-(trimethylsilyl)imidazole; Trt, trityl.  相似文献   

8.
Nitrous oxide (N2O) is one of the three main biogenic greenhouse gases (GHGs) and agriculture represents close to 30 % of the total N2O net emissions. In agricultural soils, N2O is emitted by two main microbial processes, nitrification and denitrification, both of which can convert synthetic nitrogen fertilizer into N2O. Legume-rhizobia symbiosis could be an effective and environmental-friendly alternative to nitrogen fertilization and hence, to mitigate soil N2O emissions. However, legume crops also contribute to N2O emissions. A better understanding of the environmental factors involved in the emission of N2O from nodules would be instrumental for mitigating the release of this GHG gas. In this work, in vivo N2O emissions from nodulated soybean roots in response to nitrate (0, 1, 2 and 4 mM) and flooding have been measured. To investigate the contribution of rhizobial denitrification in N2O emission from nodules, plants were inoculated with B. japonicum USDA110 and napA and nosZ denitrification mutants. The results showed that nitrate was essential for N2O emissions and its concentration enhanced N2O fluxes showing a statistical linear correlation, being the highest N2O fluxes obtained with 4 mM nitrate. When inoculated plants grown with 4 mM nitrate were subjected to flooding, a 150- and 830-fold induction of N2O emission rates from USDA110 and nosZ nodulated roots, respectively, was observed compared to non-flooded plants, especially during long-term flooding. Under these conditions, N2O emissions from detached nodules produced by the napA mutant were significantly lower (p?<?0.05) than those produced by the wild-type strain (382 versus 1120 nmol N2O h?1 g?1 NFW, respectively). In contrast, nodules from plants inoculated with the nosZ mutant accumulated statistically higher levels of N2O compared to wild-type nodules (2522 versus nmol 1120 N2O h?1 g?1 NFW, p?<?0.05). These results demonstrate that flooding is an important environmental factor for N2O emissions from soybean nodules and that B. japonicum denitrification is involved in such emission.  相似文献   

9.
A bacterial strain, KM1S, was isolated from a Malaysian rainforest soil sample by using a defined enrichment medium that specifically facilitates selection of quorum quenching bacteria. KM1S was clustered closely to Bacillus cereus by 16S ribosomal DNA sequence analysis. It degraded N-3-oxo-hexanoyl homoserine lactone and N-3-oxo-octanoyl homoserine lactone in vitro rapidly at 4.98 and 6.56 μg AHL h−1 per 109 CFU/ml, respectively, as determined by the Rapid Resolution Liquid Chromatography. The aiiA homologue, encoding an autoinducer inactivation enzyme catalyzing the degradation of N-acylhomoserine lactones, of KM1S was amplified and cloned. Sequence analysis indicated the presence of the motif 106HXDH-59 amino acids-H169-21 amino acids-D191 for N-acylhomoserine lactone lactonases.  相似文献   

10.
A new method of the chlorophyll (Chl) a fluorescence quenching analysis is described, which allows the calculation of values of (at least) three components of the non-photochemical quenching of the variable Chl a fluorescence (q N) using a non-linear regression of a multi-exponential function within experimental data. Formulae for coefficients of the “energy”-dependent (ΔpH-dependent) quenching (q E), the state-transition quenching (q T) and the photo/inhibitory quenching (q I) of Chl a fluorescence were found on the basis of three assumptions: (i) the dark relaxation kinetics of q N, as well as of all its components, is of an exponential nature, (ii) the superposition principle is valid for individual Chl a fluorescence quenching processes and (iii) the same reference fluorescence level (namely the maximum variable Chl a fluorescence yield in the dark-adapted state, F V) is used to define both q N and its components. All definitions as well as the algorithms for analytical recognition of the q N components are theoretically clarified and experimentally tested. The described theory results in a rather simple equation allowing to compute values for all q N components (q E, q T, q I) as well as the half-times of relaxation (τ1/2) of corresponding quenching processes. It is demonstrated that under the above assumptions it holds: q N = q E + q T + q I. The theoretically derived equations are tested, and the results obtained are discussed for non-stressed and stressed photosynthetically active samples. Semi-empirical formulae for a fast estimation of values of the q N components from experimental data are also given.  相似文献   

11.

Background

The first line of pharmacological treatment for severe depressive disorders in young people is selective serotonin reuptake inhibitors (SSRIs). However, beneficial clinical effects are rarely observed before several weeks into treatment. Nitrous oxide (N2O) has a long-standing safety record for pain relief and has been used in adults and young people. In adults with severe treatment-resistant depression, a single dose of N2O had significant antidepressant effects, with maximum antidepressant effects observed 24 h after administration. However, the antidepressant effects of N2O have never been investigated in adolescents with a confirmed diagnosis of depression in a prospective trial. The aims of this study are to (1) investigate whether a single inhaled N2O administration leads to antidepressant effects in adolescents with depression at 24 h, (2) determine whether combined N2O and SSRI administration (commenced after N2O intervention) provides a clinically significant improvement in mood over and above the benefits from SSRI administration alone, and, (3) investigate whether the effect seen following N2O administration can be used as a predictor of SSRI treatment response.

Methods/design

In this study, we will use a single-blind, randomised, placebo-controlled design. Patients aged between 12 and 17 years with major depressive disorder will be recruited. This study will consist of two phases: phase A and phase B. During phase A, participants will be randomised to receive either inhaled N2O or placebo (air) for 1 h. In phase B, participants will receive open-label pharmacological treatment with the SSRI fluoxetine and will be followed over a 12-week period. Participants will undertake mood assessments at 2 and 24 h after N2O or placebo administration (phase A) and weekly during the 12-week follow up in phase B.

Discussion

We expect an antidepressant effect from a single dose of inhaled N2O compared with placebo at 24 h after administration. Additionally, we expect that subjects treated with N2O will also show greater improvements than the placebo group after 6 and 12 weeks into fluoxetine treatment because of potential additive antidepressant effects. Such findings would be of clinical importance because currently children and adolescents often do not experience any symptom alleviation for several weeks following the initiation of SSRIs.

Trial registration

Australian and New Zealand Clinical Trials Registry, ACTRN12616001568404. Registered on 14 November 2016.
  相似文献   

12.
A Mastigocladus species was isolated from the hot spring of Jakrem (Meghalaya) India. Uptake and utilization of nitrate, nitrite, ammonium and amino acids (glutamine, asparagine, arginine, alanine) were studied in this cyanobacterium grown at different temperatures (25°C, 45°C). There was 2–3 fold increase in the heterocyst formation and nitrogenase activity in N-free medium at higher temperature (45°C). Growth and uptake and assimilation of various nitrogen sources were also 2–3 fold higher at 45°C indicating that it is a thermophile. The extent of induction and repression of nitrate uptake by NO3 and NH4 +, respectively, differed from that of nitrite. It appeared that Mastigocladus had two independent nitrate/nitrite transport systems. Nitrate reductase and nitrite reductase activitiy was not NO3 -inducible and ammonium or amino acids caused only partial repression. Presence of various amino acids in the media partially repressed glutamine synthetase activity. Ammonium (methylammonium) and amino acid uptake showed a biphasic pattern, was energy-dependent and the induction of uptake required de novo protein synthesis. Ammonium transport was substrate (NH4 +)-repressible, while the amino acid uptake was substrate inducible. When grown at 25°C, the cyanobacterium formed maximum akinetes that remained viable upto 5 years under dry conditions.  相似文献   

13.
Activity of the A3 adenosine receptor (AR) allosteric modulators LUF6000 (2-cyclohexyl-N-(3,4-dichlorophenyl)-1H-imidazo [4,5-c]quinolin-4-amine) and LUF6096 (N-{2-[(3,4-dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarbox-amide) was compared at four A3AR species homologs used in preclinical drug development. In guanosine 5′-[γ-[35S]thio]triphosphate ([35S]GTPγS) binding assays with cell membranes isolated from human embryonic kidney cells stably expressing recombinant A3ARs, both modulators substantially enhanced agonist efficacy at human, dog, and rabbit A3ARs but provided only weak activity at mouse A3ARs. For human, dog, and rabbit, both modulators increased the maximal efficacy of the A3AR agonist 2-chloro-N 6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide as well as adenosine > 2-fold, while slightly reducing potency in human and dog. Based on results from N 6-(4-amino-3-[125I]iodobenzyl)adenosine-5′-N-methylcarboxamide ([125I]I-AB-MECA) binding assays, we hypothesize that potency reduction is explained by an allosterically induced slowing in orthosteric ligand binding kinetics that reduces the rate of formation of ligand-receptor complexes. Mutation of four amino acid residues of the human A3AR to the murine sequence identified the extracellular loop 1 (EL1) region as being important in selectively controlling the allosteric actions of LUF6096 on [125I]I-AB-MECA binding kinetics. Homology modeling suggested interaction between species-variable EL1 and agonist-contacting EL2. These results indicate that A3AR allostery is species-dependent and provide mechanistic insights into this therapeutically promising class of agents.  相似文献   

14.
Others have shown that exposing oocytes to high levels of (10–20 mM) causes a paradoxical fall in intracellular pH (pHi), whereas low levels (e.g., 0.5 mM) cause little pHi change. Here we monitored pHi and extracellular surface pH (pHS) while exposing oocytes to 5 or 0.5 mM NH3/NH4 +. We confirm that 5 mM causes a paradoxical pHi fall (−ΔpHi ≅ 0.2), but also observe an abrupt pHS fall (−ΔpHS ≅ 0.2)—indicative of NH3 influx—followed by a slow decay. Reducing [NH3/NH4 +] to 0.5 mM minimizes pHi changes but maintains pHS changes at a reduced magnitude. Expressing AmtB (bacterial Rh homologue) exaggerates −ΔpHS at both levels. During removal of 0.5 or 5 mM NH3/NH4 +, failure of pHS to markedly overshoot bulk extracellular pH implies little NH3 efflux and, thus, little free cytosolic NH3/NH4 +. A new analysis of the effects of NH3 vs. NH4 + fluxes on pHS and pHi indicates that (a) NH3 rather than NH4 + fluxes dominate pHi and pHS changes and (b) oocytes dispose of most incoming NH3. NMR studies of oocytes exposed to 15N-labeled show no significant formation of glutamine but substantial accumulation in what is likely an acid intracellular compartment. In conclusion, parallel measurements of pHi and pHS demonstrate that NH3 flows across the plasma membrane and provide new insights into how a protein molecule in the plasma membrane—AmtB—enhances the flux of a gas across a biological membrane.
Walter F. Boron (Corresponding author)Email:
  相似文献   

15.
To explore the adsorption mechanism of NO, NH3, N2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N2 physisorption, and N2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface.
Graphical abstract NH3, N2, NO adsortion on carbon surface
  相似文献   

16.
The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies. Handling editor: Luigi Naselli-Flores  相似文献   

17.
A highly efficient and safe methodology for synthesis of various N-protected amino acid ethyl esters have been established in this study. This methodology employs orthoesters as both esterification reagent and solvent for protected amino acids. The reactions were carried out under microwave irradiation in neutral conditions for only 2 min, resulting in highly pure crude products in most cases. This strategy works with a variety of N-protecting groups, such as acid labile protecting group: BOC and tBu; base labile protecting group: Fmoc; hydrogenation labile protecting group: Z and Na/NH3 labile protecting group: Tos, thus providing facile access to numerous valuable building blocks for solid phase synthesis. Further reduction of the crude protected amino acid ethyl ester by sodium borohydride under mild conditions led to the corresponding protected β-amino alcohols with excellent yield, as demonstrated by three examples.  相似文献   

18.
In this paper, the reactions of bovine insulin and small peptides, such as actin binding domain of thymosin β4 and Growth Hormone Releasing Factor (GRF 1–29 amino acids) with diisopropyloxyphosphite (DIPPH) and dimethyloxyphosphite (DMPH) were studied by modified Todd reaction. The MALDI-TOF or ESI-MS results showed that lysine, histidine and arginine residues in insulin could be phosphorylated under the water/ethanol system. The N,N,N-diisopropyloxyphosphorylated insulin analogues were characterized using MALDI-TOF and 31P NMR. These insulin analogues with different phosphorylation degree were separated and identified through LC-ESI-MS. In addition, circular dichroism (CD) spectra showed that the conformation of N,N,N-dimethyloxyphosphorylated insulin were only changed a little, whereas, that of N,N,N-diisopropyloxyphosphorylated insulin was changed completely.  相似文献   

19.
This study is the first to investigate quantitative effects of plant community composition and diversity on N2 fixation in legumes. N2 fixation in three perennial Trifolium species grown in field plots with varied number of neighbouring species was evaluated with the 15N natural abundance method (two field sites, several growing seasons, no N addition) and the isotope dilution method (one site, one growing season, 5 g N m−2). The proportion of plant N derived from N2 fixation, pNdfa, was generally high, but the N addition decreased pNdfa, especially in species-poor communities. Also following N addition, the presence of grasses in species-rich communities increased pNdfa in T. hybridum and T. repens L., while legume abundance had the opposite effect. In T. repens, competition for light from grasses appeared to limit growth and thereby the amount of N2 fixed at the plant level, expressed as mg N2 fixed per sown seed. We conclude that the occurrence of diversity effects seems to be largely context dependent, with soil N availability being a major determinant, and that species composition and functional traits are more important than species richness regarding how neighbouring plant species influence N2 fixation in legumes.  相似文献   

20.
A series of N4X (X = O, S, Se) compounds have been examined with ab initio and density functional theory (DFT) methods. To our knowledge, these compounds, except for the C2v ring and the C3v towerlike isomers of N4O, are first reported here. The ring structures are the most energetically favored for N4X (X = O and S) systems. For N4Se, the cagelike structure is the most energetically favored. Several decomposition and isomerization pathways for the N4X species have been investigated. The dissociation of C2v ring N4O and N4S structures via ring breaking and the barrier height are only 1.1 and −0.2 kcal mol−1 at the CCSD(T)/6-311+G*//MP2/6-311+G* level of theory. The dissociation of the cagelike N4X species is at a cost of 12.1–16.2 kcal mol−1. As for the towerlike and triangle bipyramidal isomers, their decomposition or isomerization barrier heights are all lower than 10.0 kcal mol−1. Although the CS cagelike N4S isomer has a moderate isomerization barrier (18.3–29.1 kcal mol−1), the low dissociation barrier (−1.0 kcal mol−1) indicates that it will disappear when going to the higher CCSD(T) level. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号