首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Malaria can be a very severe disease, particularly in young children, pregnant women (mostly in primipara), and malaria na?ve adults, and currently ranks among the most prevalent infections in tropical and subtropical areas throughout the world. The widespread occurrence and the increased incidence of malaria in many countries, caused by drug-resistant parasites (Plasmodium falciparum and P. vivax) and insecticide-resistant vectors (Anopheles mosquitoes), indicate the need to develop new methods of controlling this disease. Experimental vaccination with irradiated sporozoites can protect animals and humans against the disease, demonstrating the feasibility of developing an effective malaria vaccine. However, developing a universally effective, long lasting vaccine against this parasitic disease has been a difficult task, due to several problems. One difficulty stems from the complexity of the parasite's life cycle. During their life cycle, malaria parasites change their residence within the host, thus avoiding being re-exposed to the same immunological environment. These parasites also possess some distinct antigens, present at different life stages of the parasite, the so-called stage-specific antigens. While some of the stage-specific antigens can induce protective immune responses in the host, these responses are usually genetically restricted, this being another reason for delaying the development of a universally effective vaccine. The stage-specific antigens must be used as immunogens and introduced into the host by using a delivery system that should efficiently induce protective responses against the respective stages. Here we review several research approaches aimed at inducing protective anti-malaria immunity, overcoming the difficulties described above.  相似文献   

2.
There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.  相似文献   

3.
Malaria vaccine development: current status   总被引:9,自引:0,他引:9  
The development of an effective malaria vaccine represents one of the most important approaches that would provide a cost-effective intervention for addition to currently available malaria control strategies. Here, Howard Engers and Tore Godal review recent advances. Over the past decade there has been considerable progress in the understanding of immune mechanisms involved in conferring protection to malaria and in the identification of vaccine candidate antigens and their genes. Several new vaccines have entered Phase I/II trials recently, new adjuvants have been developed for human use and new approaches, such as DNA vaccines and structural modification of antigens to circumvent some of the strategies the parasite uses to avoid the immune response, are being applied. Thus, from the TDR perspective, global malaria vaccine development is entering a crucial period with unprecedented opportunities.  相似文献   

4.
Malaria continues to kill some two million people a year, half of whom are young children. We have no vaccine, the parasite has become resistant to the most effective drugs, and elimination of the mosquito vector through spraying with insecticide is being questioned. Yet research on malaria is — at last — being funded reasonably well. What has been achieved? Scientists gathered at the All India Institute of Medical Sciences (AIIMS) in New Delhi from 13-15 February 2003 to discuss these issues. Because many antima-larial strategies work at the cell surface (see the abstract on Membranes as future therapeutic targets) it seems appropriate to give readers of Bioscience Reports: Molecular and Cellular Biology of the Cell Surface an opportunity to catch a glimpse of the current situation through the (unedited) abstracts of the invited speakers.  相似文献   

5.
Malaria is one of the most frequently occurring infectious diseases worldwide, with almost 1 million deaths and an estimated 243 million clinical cases annually. Several candidate malaria vaccines have reached Phase IIb clinical trials, but results have often been disappointing. As an alternative to these Phase IIb field trials, the efficacy of candidate malaria vaccines can first be assessed through the deliberate exposure of participants to the bites of infectious mosquitoes (sporozoite challenge) or to an inoculum of blood-stage parasites (blood-stage challenge). With an increasing number of malaria vaccine candidates being developed, should human malaria challenge models be more widely used to reduce cost and time investments? This article reviews previous experience with both the sporozoite and blood-stage human malaria challenge models and provides future perspectives for these models in malaria vaccine development.  相似文献   

6.
Malaria kills over 3,000 children each day. Modern molecular and biochemical approaches are being used to help understand and control Plasmodium falciparum, the parasite that causes this deadly disease. New drugs are being invented for both chemoprophylaxis and therapeutic treatments and their use is discussed along side that of the more commonly used treatments. Classical genetic crosses coupled with molecular analysis of gene loci are use to explain the genetics behind the development of specific drug resistances that the parasites have naturally developed. Rapid advances in DNA sequencing techniques have allowed the compete sequencing of the P. falciparum and several other rodent malaria parasite genomes. Proteomics and computational analysis of these vast databanks are being used to model and investigate the three-dimensional structure of many key malaria proteins in an attempt to facilitate drug design. Recombinant protein expression in bacteria and yeast coupled with cGMP purification technologies and conditions have lead to the recent availability of several dozen malaria protein antigens for human-use Phase I and Phase II vaccine trials. Drug companies, private foundations, and key government agencies have contributed to the coordinated efforts needed to test these antigens, adjuvants and delivery methods in an effort to find an effective malaria vaccine that will prevent infection and disease.  相似文献   

7.
Drug resistant malaria was a major factor contributing to the failure of a worldwide campaign to eradicate malaria in the last century, and now threatens the large investment being made by the global community in the rollout of effective new drug combinations to replace failed drugs. Four related papers in this issue of Malaria Journal make the case for creating the World Antimalarial Resistance Network (WARN), which will consist of four linked open-access global databases containing clinical, in vitro, molecular and pharmacological data, and networks of reference laboratories that will support these databases and related surveillance activities. WARN will serve as a public resource to guide antimalarial drug treatment and prevention policies and to help confirm and characterize the new emergence of new resistance to antimalarial drugs and to contain its spread.  相似文献   

8.
疟疾肆虐,对全球公共卫生健康提出了严峻的挑战,疫苗作为一个关键性的预防策略,为消除疟疾提供了新的机遇。随着现代科技的高速发展,科学家们针对疟疾疫苗的研究正如火如荼进行着,其中红细胞前期疟疾疫苗、红细胞内期疟疾疫苗、传播阻断疫苗以及多抗原、多表位重组疟疾疫苗和多阶段融合蛋白疟疾疫苗等的相关研究已取得了重大进展。虽目前尚未有任何一种疟疾疫苗获得上市许可,未来作为可以拯救生命的优质、高效的抗疟疫苗或将成为根除疟疾不可替代的工具。  相似文献   

9.
Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination.  相似文献   

10.
Chen L  He Z  Qin L  Li Q  Shi X  Zhao S  Chen L  Zhong N  Chen X 《PloS one》2011,6(9):e24407

Background

Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer.

Methodology/Principal Findings

Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect.

Conclusions/Significance

Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer immune-based therapy.  相似文献   

11.
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.  相似文献   

12.

Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination.

  相似文献   

13.
Malaria is one of the most life-threatening infectious diseases worldwide. Specific immunity to natural infection is acquired slowly despite a high degree of repeated exposure and rarely continues for a long time even in endemic areas. Malaria parasites have evolved to acquire diverse immune evasion mechanisms that evoke poor immune responses and allow infection of individuals previously exposed. The shrewd schema of malaria parasites also hampers the development of effective vaccines. Furthermore, some of those mechanisms are essential for malaria pathogenesis. In this article, an outline of protective immunity to malaria is given, then strategies used by malaria parasites to evade host immunity, including antigen diversity/polymorphism, antigen variation and total immune suppression, are reviewed. Finally, trials to control malaria based on accumulating insights into the host-parasite relationship are discussed.  相似文献   

14.
Nájera JA 《Parassitologia》2001,43(1-2):1-89
Even if history has not always been the Magistra vitae, Cicero expected it to be, it should provide, as Baas said, a mirror in which to observe and compare the past and present in order to draw therefrom well-grounded conclusions for the future. Based on this belief, this paper aims to provide an overview of the foundations and development of malaria control policies during the XX century. It presents an analysis of the conflicting tendencies which shaped the development of these policies and which appear to have oscillated between calls for frontal attack in an all-out campaign and calls for sustainable gains, even if slow. It discusses the various approaches to the control of malaria, their achievements and their limitations, not only to serve as a background to understand better the foundations of current policies, but also to prevent that simplistic generalisations may again lead to exaggerated expectations and disillusion. The first part of the paper is devoted to the development of malaria control during the first half of the century, characterised by the ups and downs in the reliance on mosquito control as the control measure applicable everywhere. The proliferation of "man-made-malaria", which accompanied the push for economic development in most of the endemic countries, spurred the need for control interventions and, while great successes were obtained in many specific projects, the general campaigns proposed by the enthusiasts of vector control faced increasing difficulties in their practical implementation in the field. Important events, which may be considered representative of this period are, on the campaign approach, the success of Gorgas in the Panama Canal, but also the failure of the Mian Mir project in India; while on the developmental approach, the Italian and Dutch schools of malariology, the Tennessee Valley and the development of malaria sanitation, included the so called species sanitation. The projection of these developments to a global scale was steered by the Malaria Commission of the League of Nations and greatly supported by the Rockefeller Foundation. Perhaps the most important contribution of this period was the development of malaria epidemiology, including the study of the genesis of epidemics and their possible forecasting and prevention. Although the great effectiveness of DDT was perhaps the main determinant for proposing the global eradication of the disease in the 1950s, it was the confidence in the epidemiological knowledge and the prestige of malariology, which gave credibility to the proposal at the political level. The second part deals with the global malaria eradication campaign of the 1950s and 1960s. It recognises the enormous impact of the eradication effort in the consolidation of the control successes of the first half of the century, as well as its influence in the development of planning of health programmes. Nevertheless, it also stresses the negative influence that the failure to achieve its utopian expectations had on the general disappointment and slow progress of malaria control, which characterised the last third of the century. The paper then analyses the evolution of malaria control funding, which often appears out of tune with political statements. The fourth part is devoted to the search for realistic approaches to malaria control, leading to the adoption of the global malaria control strategy in Amsterdam in 1992, and the challenge, at the end of the century, to rally forces commensurate with the magnitude of the problem, while aiming at realistic objectives. After discussing the conflicting views on the relations between malaria and socio-economic development and the desirable integration of malaria control into sustainable development, the paper ends with some considerations on the perspectives of malaria control, as seen by the author in early 1998, just before the launching of the current Roll Back Malaria initiative by WHO.  相似文献   

15.
Malaria is an important human disease and is the target of a global eradication campaign. New technological and informatics advancements in population genomics are being leveraged to identify genetic loci under selection in the malaria parasite and to find variants that are associated with key clinical phenotypes, such as drug resistance. This article provides a timely Review of how population-genetics-based strategies are being applied to Plasmodium falciparum both to identify genetic loci as key targets of interventions and to develop monitoring and surveillance tools that are crucial for the successful elimination and eradication of malaria.  相似文献   

16.
Malaria during pregnancy can be severe in non-immune women, but in areas of stable transmission, where women are semi-immune and often asymptomatic during infection, malaria is an insidious cause of disease and death for mothers and their offspring. Sequelae, such as severe anaemia and hypertension in the mother and low birth weight and infant mortality in the offspring, are often not recognised as consequences of infection. Pregnancy malaria, caused by Plasmodium falciparum, is mediated by infected erythrocytes (IEs) that bind to chondroitin sulphate A and are sequestered in the placenta. These parasites have a unique adhesion phenotype and distinct antigenicity, which indicates that novel targets may be required for development of an effective vaccine. Women become resistant to malaria as they acquire antibodies against placental IE, which leads to higher haemoglobin levels and heavier babies. Proteins exported from the placental parasites have been identified, including both variant and conserved antigens, and some of these are in preclinical development for vaccines. A vaccine that prevents P. falciparum malaria in pregnant mothers is feasible and would potentially save hundreds of thousands of lives each year.  相似文献   

17.
Vaccination is the attempt to mimic certain aspects of an infection for the purpose of causing an immune response that will protect the individual from that infection. Malaria, a disease responsible for immense human suffering, is caused by infection with Plasmodium spp. parasites, which have a very complex life cycle--antigenically unique stages infect different tissues of the body. It is a parasitic disease for which no successful vaccine has been developed so far, despite considerable efforts to develop a subunit vaccine that offers protective immunity. Due to the spread of drug-resistant malaria, efforts to develop an effective vaccine have become increasingly critical. DNA vaccination provides a stable and long-lived source of protein vaccine capable of inducing both antibody- and cell-mediated immune responses to a wide variety of antigens. Injected DNA enters the cells of the host and makes the protein, which triggers the immune response. According to present needs, the flexibility of DNA vaccine technology permits the combination of multiple antigens from both the preerythrocytic and erythrocytic stages of malaria parasite. DNA vaccines with genes coding for different antigenic parts of malaria proteins have been created and presently some of these are undergoing field trials. The results from these trials will help to determine the likelihood of success of this technology in humans. This review presents an update of the studies carried out in malaria using DNA vaccine approach, the challenges, and the future prospects.  相似文献   

18.
Malaria is a significant cause of morbidity and mortality in the developing world. Until recently malaria was winning but with increase in funding particularly from philanthropic groups the ability to control malaria is again possible. There are still many challenges to developing the next generations of anti-malarials. This article will briefly discuss the challenges and the advance that are being made.  相似文献   

19.
20.
Malaria vaccines   总被引:6,自引:0,他引:6  
Although the possibility of a live attenuated malaria vaccine has been considered, current malaria vaccine development activities are dominated by attempts to develop a subunit vaccine. Hence, it is entirely appropriate that a session of the Molecular Approaches to Malaria conference, Lorne, Australia, 2-5 February 2000, was devoted to vaccine development. The oral presentations in this session and the relevant poster presentations are outlined here by Robin Anders and Allan Saul.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号