首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein A-I (apoA-I) was liberated from human high-density lipoprotein (HDL) without exposure to organic solvents or chaotropic salts by the action of isolated insect hemolymph lipid transfer particle (LTP). LTP-catalyzed lipid redistribution results in transformation of HDL into larger, less dense particles accompanied by an overall decrease in HDL particle surface area:core volume ratio, giving rise to an excess of amphiphilic surface components. Preferential dissociation of apolipoprotein versus phospholipid and unesterified cholesterol from the particle surface results in apolipoprotein recovery in the bottom fraction following ultracentrifugation at a density = 1.23 g/mL. ApoA-I was then isolated from other contaminating HDL apolipoproteins by incubation with additional HDL in the absence of LTP, whereupon apolipoprotein A-II and the C apolipoproteins reassociate with the HDL surface by displacement of apoA-I. After a second density gradient ultracentrifugation, electrophoretically pure apoA-I was obtained. Sedimentation equilibrium experiments revealed that apoA-I isolated via this method exhibits a tendency to self-associate in an aqueous solution while its circular dichroism spectrum was indicative of a significant amount of alpha-helix. Both measurements are consistent with that observed on material prepared by denaturation/renaturation. The ability of apoA-I to activate lecithin:cholesterol acyltransferase was found to be similar to that of apoA-I isolated by conventional methods. The present results illustrate that LTP-mediated alteration in lipoprotein particle surface area leads to dissociation of substantial amounts of surface active apoprotein components, thus providing the opportunity to isolate apoA-I without the denaturation/renaturation steps common to all previous isolation procedures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Zhu HL  Atkinson D 《Biochemistry》2004,43(41):13156-13164
Because of its role in reverse cholesterol transport, human apolipoprotein A-I is the most widely studied exchangeable apolipoprotein. Residues 1-43 of human apoA-I, encoded by exon 3 of the gene, are highly conserved and less well understood than residues 44-243, encoded by exon 4. In contrast to residues 44-243, residues 1-43 do not contain the 22 amino acid tandem repeats thought to form lipid binding amphipathic helices. To understand the structural and functional roles of the N-terminal region, we studied a synthetic peptide representing the first 44 residues of human apoA-I ([1-44]apoA-I). Far-ultraviolet circular dichroism spectra showed that [1-44]apoA-I is unfolded in aqueous solution. However, in the presence of n-octyl beta-d-glucopyranoside, a nonionic lipid mimicking detergent, above its critical micelle concentration ( approximately 0.7% at 25 degrees C), sodium dodecyl sulfate, an ionic detergent, above its CMC ( approximately 0.2%), trimethylamine N-oxide, a folding inducing organic osmolyte, or trifluoroethanol, an alpha-helix inducer, alpha-helical structure was formed in [1-44]apoA-I up to approximately 45%. Characterization by density gradient ultracentrifugation and visualization by negative staining electron microscopy demonstrated that [1-44]apoA-I interacts with dimyristoylphosphatidylcholine (DMPC) over a wide range of lipid:peptide ratios from 1:1 to 12:1 (w/w). At 1:1 DMPC:[1-44]apoA-I (w/w) ratio, discoidal complexes with composition approximately 4:1 (w/w) and approximately 100 A diameter were formed in equilibrium with free peptide. At higher ratios, discoidal complexes were shown to exist together with a heterogeneous population of lipid vesicles with peptide bound also in equilibrium with free peptide. When bound to DMPC, [1-44]apoA-I has approximately 60% helical structure, independent of whether it forms discoidal or vesicular complexes. This helical content is consistent with that of the predicted G helix (residues 8-33). Our data provide the first strong and direct evidence that the N-terminal region of apoA-I binds lipid and can form discoidal structures and a heterogeneous population of vesicles. In doing so, approximately 60% of this region folds into alpha-helix from random coil. The composition of the 100 A discoidal complex is approximately 5 [1-44]apoA-I and approximately 150 DMPC molecules per disk. The helix length of 5 [1-44]apoA-I molecules in lipid-bound form is just long enough to wrap around the DMPC bilayer disk once.  相似文献   

3.
Apolipoprotein A-I (apoA-I) is the major protein in high density lipoprotein (HDL). During lipid metabolism, apoA-I moves among HDL and triacylglycerol-rich lipoproteins. The main structure and the major lipid binding motif of apoA-I is the amphipathic alpha-helix. To understand how apoA-I behaves at hydrophobic lipoprotein interfaces, the interfacial properties of apoA-I and an amphipathic alpha-helical consensus sequence peptide (CSP) were studied at the triolein/water (TO/W) interface. CSP ((PLAEELRARLRAQLEELRERLG)2-NH2) contains two 22-residue tandem repeat sequences that form amphipathic alpha-helices modeling the central part of apoA-I. ApoA-I or CSP added into the aqueous phase surrounding a triolein drop lowered the interfacial tension (gamma) of TO/W in a concentration- and time-dependent fashion. The gamma(TO/W) was lowered approximately 16 millinewtons (mN)/m by apoA-I at 1.4 x 10(-6) m and approximately 15 mN/m by CSP at 2.6 x 10(-6) m. At equilibrium gamma, both apoA-I and CSP desorbed from the interface when compressed and readsorbed when expanded. The maximum surface pressure CSP could withstand without being ejected (PiMAX) was 16 mN/m. The PiMAX) of apoA-I was only 14.8 mN/m, but re-adsorption kinetics suggested that only part of the apoA-I desorbed at Pi between 14.8 and 19 mN/m. However, above approximately 19 mN/m (PiOFF) the entire apoA-I molecule desorbed into the water. ApoA-I was more flexible at the TO/W interface than CSP and showed more elasticity at oscillation periods 4-128 s even at high compression, whereas CSP was elastic only at faster periods (4 and 8 s) and moderate compression. Flexibility and surface pressure-mediated desorption and re-adsorption of apoA-I probably provides lipoprotein stability during metabolic-remodeling reactions in plasma.  相似文献   

4.
Carriers of the apolipoprotein A-IMilano (apoA-IM) variant, R173C, have reduced levels of plasma HDL but no increase in cardiovascular disease. Despite intensive study, it is not clear whether the removal of the arginine or the introduction of the cysteine is responsible for this altered functionality. We investigated this question using two engineered variations of the apoA-IM mutation: R173S apoA-I, similar to apoA-IM but incapable of forming a disulfide bond, and R173K apoA-I, a conservative mutation. Characterization of the lipid-free proteins showed that the order of stability was wild type≈R173K>R173S>R173C. Compared with wild-type apoA-I, apoA-IM had a lower affinity for lipids, while R173S apoA-I displayed intermediate affinity. The in vivo effects of the apoA-I variants were measured by injecting apoA-I-expressing adeno-associated virus into apoA-I-null mice. Mice that expressed the R173S variant again showed an intermediate phenotype. Thus, both the loss of the arginine and its replacement by a cysteine contribute to the altered properties of apoA-IM. The arginine is potentially involved in an intrahelical salt bridge with E169 that is disrupted by the loss of the positively charged arginine and repelled by the cysteine, destabilizing the helix bundle domain in the apoA-I molecule and modifying its lipid binding characteristics.  相似文献   

5.
The structure of apolipoprotein A-I (apoA-I), the major protein of HDL, has been extensively studied in past years. Nevertheless, its corresponding three-dimensional structure has been difficult to obtain due to the frequent conformational changes observed depending on the microenvironment. Although the function of each helical segment of this protein remains unclear, it has been observed that the apoA-I amino (N) and carboxy-end (C) domains are directly involved in receptor-recognition, processes that determine the diameter for HDL particles. In addition, it has been observed that the high structural plasticity of these segments might be related to several amyloidogenic processes. In this work, we studied a series of peptides derived from the N- and C-terminal domains representing the most hydrophobic segments of apoA-I. Measurements carried out using circular dichroism in all tested peptides evidenced that the lipid environment promotes the formation of α-helical structures, whereas an aqueous environment facilitates a strong tendency to adopt β-sheet/disordered conformations. Electron microscopy observations showed the formation of amyloid-like structures similar to those found in other well-defined amyloidogenic proteins. Interestingly, when the apoA-I peptides were incubated under conditions that promote stable globular structures, two of the peptides studied were cytotoxic to microglia and mouse macrophage cells. Our findings provide an insight into the physicochemical properties of key segments contained in apoA-I which may be implicated in disorder-to-order transitions that in turn maintain the delicate equilibrium between both, native and abnormal conformations, and therefore control its propensity to become involved in pathological processes.  相似文献   

6.
Structural features at extra thymidine bulge sites in DNA duplexes have been elucidated from a two-dimensional NMR analysis of through-bond and through-space connectivities in the otherwise self-complementary d(C-C-G-T-G-A-A-T-T-C-C-G-G) (GTG 13-mer) and d(C-C-G-G-A-A-T-T-C-T-C-G-G) (CTC 13-mer) duplexes in aqueous solution. These studies establish that the extra thymidine flanked by guanosines in the GTG 13-mer duplex is in a conformational equilibrium between looped out and stacked states. The looped-out state is favored at low temperature (0 degrees C), whereas the equilibrium shifts in favor of the stacked state at elevated temperatures (35 degrees C) prior to the onset of the duplex-strand transition. By contrast, the extra thymidine flanked by cytidines in the CTC 13-mer duplex is looped out independent of temperature in the duplex state. Our results demonstrate that temperature and flanking sequence modulate the equilibrium between looped-out and stacked conformations of single base thymidine bulges in DNA oligomer duplexes.  相似文献   

7.
Apolipoprotein(apo)A-I(Milano) (R173C) and apoA-I(Paris) (R151C) are rare cysteine variants of wild-type (WT) apoA-I that possess novel antioxidant properties on phospholipid surfaces. Yet, the two variants differ in their ability to inhibit lipid peroxidation. In this study, we used synthetic peptides (18mers) to investigate the structural basis for the difference in antioxidant activity between apoA-I(Milano) and apoA-I(Paris). A peptide (aa 167-R173C-184) based on the amphipathic alpha helix harboring the R173C mutation inhibited superoxide anion-mediated oxidation of phospholipid in a dose-dependent manner, but it failed to directly quench superoxide anions in aqueous solution, indicating that the peptide acted at the level of phospholipid to inhibit lipid peroxidation just like the full-length cysteine variant. Peptide 145-R151C-162 based on the helical segment containing R151C exhibited the same capacity as peptide 167-R173C-184 to inhibit lipid peroxidation. Thus, the difference in antioxidant activity between apoA-I(Milano) and apoA-I(Paris) was not governed by the primary amino acid sequence of their individual amphipathic alpha helices, rather contextual constraints within the full-length variants set the difference in antioxidant activity. Cysteine-free peptides were weak inhibitors of lipid peroxidation. These results suggest that thiol-bearing helical peptides based on apoA-I(Milano) may be useful to combat inflammatory related diseases.  相似文献   

8.
alpha-Hemolysin (alphaHL) is secreted by Staphylococcus aureus as a water-soluble monomer that assembles into a heptamer to form a transmembrane pore on a target membrane. The crystal structures of the LukF water-soluble monomer and the membrane-bound alpha-hemolysin heptamer show that large conformational changes occur during assembly. However, the mechanism of assembly and pore formation is still unclear, primarily because of the difficulty in obtaining structural information on assembly intermediates. Our goal is to use disulfide bonds to selectively arrest and release alphaHL from intermediate stages of the assembly process and to use these mutants to test mechanistic hypotheses. To accomplish this, we created four double cysteine mutants, D108C/K154C (alphaHL-A), M113C/K147C (alphaHL-B), H48C/ N121C (alphaHL-C), I5C/G130C (alphaHL-D), in which disulfide bonds may form between the pre-stem domain and the beta-sandwich domain to prevent pre-stem rearrangement and membrane insertion. Among the four mutants, alphaHL-A is remarkably stable, is produced at a level at least 10-fold greater than that of the wild-type protein, is monomeric in aqueous solution, and has hemolytic activity that can be regulated by the presence or absence of reducing agents. Cross-linking analysis showed that alphaHL-A assembles on a membrane into an oligomer, which is likely to be a heptamer, in the absence of a reducing agent, suggesting that oxidized alphaHL-A is halted at a heptameric prepore state. Therefore, conformational rearrangements at positions 108 and 154 are critical for the completion of alphaHL assembly but are not essential for membrane binding or for formation of an oligomeric prepore intermediate.  相似文献   

9.
Differential regulation has been suggested for cellular cholesterol and phospholipid release mediated by apolipoprotein A-I (apoA-I)/ABCA1. We investigated various factors involved in cholesterol mobilization related to this pathway. ApoA-I induced a rapid decrease of the cellular cholesterol compartment that is in equilibrium with the ACAT-accessible pool in cells that generate cholesterol-rich HDL. Pharmacological and genetic inactivation of ACAT enhanced the apoA-I-mediated cholesterol release through upregulation of ABCA1 and through cholesterol enrichment in the HDL generated. Pharmacological activation of protein kinase C (PKC) also decreased the ACAT-accessible cholesterol pool, not only in the cells that produce cholesterol-rich HDL by apoA-I (i.e., human fibroblast WI-38 cells) but also in the cells that generate cholesterol-poor HDL (mouse fibroblast L929 cells). In L929 cells, the PKC activation caused an increase in apoA-I-mediated cholesterol release without detectable change in phospholipid release and in ABCA1 expression. These results indicate that apoA-I mobilizes intracellular cholesterol for the ABCA1-mediated release from the compartment that is under the control of ACAT. The cholesterol mobilization process is presumably related to PKC activation by apoA-I.  相似文献   

10.
Narayanan S  Reif B 《Biochemistry》2005,44(5):1444-1452
Alzheimer's disease (AD) is characterized by the accumulation of insoluble fibrillar aggregates of beta-amyloid peptides (Abeta), a 39-42 residue peptide, in the brain of AD patients. It is hypothesized that the disease causing form is not the fibrillar species but an oligomeric Abeta molecule, which is often referred to as the "critical oligomer" of Abeta. We show in this paper that Abeta(1-40) undergoes chemical exchange between a monomeric, soluble state and an oligomeric, aggregated state under physiological conditions. In circular dichroism spectroscopy, we observe for this intermediate an alpha-helical structure. The oligomer is assigned a molecular weight of >100 kDa by diffusion-ordered spectroscopy-solution-state NMR spectroscopy (NMR). We can show by saturation transfer difference NMR experiments that the oligomer is related to monomeric Abeta. This experiment also allows us to identify the chemical groups that are involved in interactions between mono- and oligomeric Abeta molecules. Variation of the anionic strength in the buffer induces a shift of equilibrium between mono- and oligomeric states and possibly allows for the stabilization of these intermediate structures.  相似文献   

11.
Zhu K  Brubaker G  Smith JD 《Biochemistry》2007,46(21):6299-6307
Small approximately 8.5 nm disks formed spontaneously when dimyristoylphosphatidylcholine (DMPC) large unilamellar vesicles (LUVs) were incubated with apolipoprotein A-I (apoA-I) (100:1 molar ratio). However, in a time course study, the transient production of approximately 11 nm large disks was detected and isolated by gel filtration. The intermediate large disks contained three apoA-I molecules and were stable over time; however, when additional apoA-I was added, they formed small disks containing two molecules of apoA-I. The reaction kinetics of apoA-I with DMPC LUVs was monitored by fluorescence resonance energy transfer, and two phases were observed, supporting the presence of the intermediate in the formation of small disks. The lipid dynamics of LUVs and disks were assayed, revealing the presence of sequestered lipid-protein domains upon apoA-I binding to DMPC LUVs. In addition, the lipids in the intermediate large disks were more constrained than those in the small disks. We propose that apoA-I binds with DMPC LUVs to form small lipid-protein domains on the LUV; then the domains are released to form large disks, which can mature in the presence of additional apoA-I to form small disks. Thus, the formation of small apoA-I lipid disks proceeds through the formation of a large disk intermediate.  相似文献   

12.
P Pramanik  N Kanhouwa  L S Kan 《Biochemistry》1988,27(8):3024-3031
Three DNA fragments, CCAATTTTGG (1), CCAATTTTTTGG (2), and CCATTTTTGG (3), were studied by proton NMR spectroscopy in aqueous solution. All these oligodeoxyribonucleotides contain common sequences at the 5' and 3' ends (5'-CCA and TGG-3'). 2 as well as 3 forms only hairpin structures with four unpaired thymidylyl units, four and three base pair stems, respectively, in neutral solution under low and high NaCl concentrations. At high salt concentration the oligomer 1 forms a duplex structure with -TT- internal loop. On the other hand, the same oligomer forms a stable hairpin structure at low salt and low strand concentrations at pH 7. The hairpin structure of 1 has a stem containing only three base pairs (CCA.TGG) and a loop containing four nucleotides (-ATTT-) that includes a dissociated A.T base pair. The two secondary structures of 1 coexist in an aqueous solution containing 0.1 M NaCl, at pH 7. The equilibrium shifts to the hairpin side when the temperature is raised. The stabilities and base-stacking modes of all three oligonucleotides in two different structures are reported.  相似文献   

13.
Atherosclerosis is a state of heightened oxidative stress. Oxidized LDL is present in atherosclerotic lesions and used as marker for coronary artery disease, although in human lesions lipids associated with HDL are as oxidized as those of LDL. Here we investigated specific changes occurring to apolipoprotein A-I (apoA-I) and apoA-II, as isolated HDL and human plasma undergo mild, chemically induced oxidation, or autoxidation. During such oxidation, Met residues in apoA-I and apoA-II become selectively and consecutively oxidized to their respective Met sulfoxide (MetO) forms that can be separated by HPLC. Placing plasma at -20 degrees C prevents autoxidation, whereas metal chelators and butylated hydroxytoluene offer partial protection. Independent of the oxidation conditions, apoA-I and apoA-II (dimer) with two MetO residues accumulate as relatively stable oxidation products. Compared to controls, serum samples from subjects with the endothelial cell nitric oxide synthase a/b genotype that is associated with increased coronary artery disease contain increased concentrations of apoA-I with two MetO residues. Our results show that during the early stages, oxidation of HDL gives rise to specifically oxidized forms of apoA-I and apoA-II, some of which may be useful markers of in vivo HDL oxidation, and hence potentially atherosclerosis.  相似文献   

14.
Based on the x-ray crystal structure of lipid-free Delta43 apoA-I, two monomers of apoA-I were suggested to bind to a phospholipid bilayer in an antiparallel paired dimer, or "belt orientation." This hypothesis challenges the currently held model in which each of the two apoA-I monomers fold as antiparallel alpha-helices or "picket fence orientation." When apoA-I is bound to a phospholipid disc, the first model predicts that the glutamine at position 132 on one apoA-I molecule lies within 16 A of glutamine 132 in the second monomer, whereas, the second model predicts glutamines at position 132 to be 104 A apart. To distinguish between these models, glutamine at position 132 was mutated to cysteine in wild-type apoA-I to produce Q132C apoA-I, which were labeled with thiol-reactive fluorescent probes. Q132C apoA-I was labeled with either fluorescein (donor probe) or tetramethylrhodamine (acceptor probe) and then used to make recombinant phospholipid discs (recombinant high density lipoprotein (rHDL)). The rHDL containing donor- and acceptor-labeled Q132C apoA-I were of similar size, composition, and lecithin:cholesterol acyltransferase reactivity when compared to rHDL-containing human plasma apoA-I. Analysis of donor probe fluorescence showed highly efficient quenching in rHDL containing one donor- and one acceptor-labeled Q132C apoA-I. rHDL containing only acceptor probe-labeled Q132C apoA-I showed rhodamine self-quenching. Both of these observations demonstrate that position 132 in two lipid-bound apoA-I monomers were in close proximity, supporting the "belt conformation" hypothesis for apoA-I on rHDL.  相似文献   

15.
The self-associative properties of apolipoprotein A-I(Milano) (apoA-I(M)) were investigated in relationship to its anion exchange behavior on Q-Sepharose-HP with and without the addition of urea as a denaturant. Self-association was dependent on protein and urea concentration and both influenced interactions of the protein with the chromatographic surface. In the absence of urea, apoA-I(M) was highly associated and existed primarily as a mixture of homodimer, tetramer and hexamer forms. Under these conditions, since the binding strength was greater for the oligomer forms, broad, asymmetrical peaks were obtained in both isocratic and gradient elution. Adding urea depressed self-association and caused unfolding. This resulted in sharper peaks but also decreased the binding strength. Thus, under these conditions chromatographic elution occurred at lower salt concentrations. The adsorption isotherms obtained at high protein loadings were also influenced by self-association and by the varying binding strength of the differently associated and unfolded forms. The isotherms were thus dependent on protein, urea, and salt concentration. Maximum binding capacity was obtained in the absence of urea, where adsorption of oligomers was shown to be dominant. Adding urea reduced the apparent binding capacity and weakened the apparent binding strength. A steric mass action model accounting for competitive binding of the multiple associated forms was used to successfully describe the equilibrium binding behavior using parameters determined from isocratic elution and isotherm experiments.  相似文献   

16.
Plasma phospholipid transfer protein (PLTP) is a factor that plays an important role in HDL metabolism. In this study we present data suggesting that PLTP has an inherent protease activity. After incubation of HDL3 in the presence of purified plasma PLTP, the d < 1.25 g/ml particles (fusion particles) contained intact 28.2 kDa apoA-I while the d > 1.25 g/ml fraction (apoA-I-PL complexes) contained, in addition to intact apoA-I, a cleaved 23 kDa form of apoA-I. Purified apoA-I was also cleaved by PLTP and produced a similar 23 kDa apoA-I fragment. The cleavage of apoA-I increased as a function of incubation time and the amount of PLTP added. The process displayed typically an 8-10 h lag or induction period, after which the cleavage proceeded in a time-dependent manner. This lag-phase was necessary for the development of the cleavage activity during incubation at 37 degrees C. The specific apoA-I cleavage activity of different PLTP preparations varied between 0.4-0.8 microg apoA-I degraded/h per 1000 nmol per h of PLTP activity. The 23 kDa apoA-I fragment reacted with monoclonal antibodies specific for the N-terminal part of apoA-I, indicating that the apoA-I cleavage occurred in the C-terminal portion. The apoA-I cleavage products were further characterized by mass spectrometry. The 23 kDa fragment yielded a mass of 22.924 kDa, demonstrating that the cleavage occurs in the C-terminal portion of apoA-I between amino acid residues 196 (alanine) and 197 (threonine). The intact apoA-I and the 23 kDa fragment revealed identical N-terminal amino acid sequences. The cleavage of apoA-I could be inhibited with APMSF and chymostatin, suggesting that it is due to a serine esterase-type of proteolytic activity. Recombinant PLTP produced in CHO cells or using the baculovirus-insect cell system caused an apoA-I cleavage pattern identical to that obtained with plasma PLTP. The present results raise the question of whether PLTP-mediated proteolytic cleavage of apoA-I might affect plasma HDL metabolism by generating a novel kinetic compartment of apoA-I with an increased turnover rate.  相似文献   

17.
Bielicki JK  Oda MN 《Biochemistry》2002,41(6):2089-2096
Apolipoprotein A-I(Milano) (apoA-I(Milano)) and apoA-I(Paris) are rare cysteine variants of apoA-I that produce a HDL deficiency in the absence of cardiovascular disease in humans. This paradox provides the basis for the hypothesis that the cysteine variants possess a beneficial activity not associated with wild-type apoA-I (apoA-I(WT)). In this study, a unique antioxidant activity of apoA-I(Milano) and apoA-I(Paris) is described. ApoA-I(Milano) was twice as effective as apoA-I(Paris) in preventing lipoxygenase-mediated oxidation of phospholipids, whereas apoA-I(WT) was poorly active. Antioxidant activity was observed using the monomeric form of the variants and was equally effective before and after initiation of oxidative events. ApoA-I(Milano) protected phospholipid from reactive oxygen species (ROS) generated via xanthine/xanthine oxidase (X/Xo) but failed to inhibit X/Xo-induced reduction of cytochrome c. These results indicate that apoA-I(Milano) was unable to directly quench ROS in the aqueous phase. There were no differences between lipid-free apoA-I(Milano,) apoA-I(Paris), and apoA-I(WT) in mediating the efflux of cholesterol from macrophages, indicating that the cysteine variants interacted normally with the ABCA1 efflux pathway. The results indicate that incorporation of a free thiol within an amphipathic alpha helix of apoA-I confers an antioxidant activity distinct from that of apoA-I(WT). These studies are the first to relate gain of function to rare cysteine mutations in the apoA-I primary sequence.  相似文献   

18.
The dissociation of the 7 S oligomer of nerve growth factor prepared from mouse submaxillary gland has been studied by sedimentation velocity as a function of added NaCl and/or EDTA at pH 6.8 in phosphate buffer. Dilution with or without EDTA results in a symmetrical dissociation to the 4.5 S protomer, in agreement with previous work. In the presence of increasing NaCl concentration the 7 S nerve growth factor oligomer undergoes limited dissociation which is characterized by complex boundary formation and the presence of a stable intermediate (weight-average s20, w for the system of 4. 1 S at 2 n NaCl). The dissociation mode is probably asymmetrical in NaCl with the system resulting in an equilibrium mixture of γ and α2β complex (s20,w about 4.7 S). The removal of zinc ion by EDTA causes only a small change in the native equilibrium but destabilizes the complex with respect to salt-mediated dissociation, leading to complete dissociation to subunits at relatively low concentrations of NaCl. Zinc ion also promotes reassociation of mixtures of isolated α + β or β + γ subunits. Thus, a structural role of zinc ion in stabilizing subunit interactions, probably α ? β or β ? γ, is proposed. The specificity of the interactions with zinc ion and the specificity of the ionic interactions stabilizing the oligomer are further evidence for a biological specificity, if not function, of the oligomer.  相似文献   

19.
Zhu HL  Atkinson D 《Biochemistry》2007,46(6):1624-1634
Human apolipoprotein A-I (apoA-I) is the principle apolipoprotein of high-density lipoproteins that are critically involved in reverse cholesterol transport. The intrinsically flexibility of apoA-I has hindered studies of the structural and functional details of the protein. Our strategy is to study peptide models representing different regions of apoA-I. Our previous report on [1-44]apoA-I demonstrated that this N-terminal region is unstructured and folds into approximately 60% alpha-helix with a moderate lipid binding affinity. We now present details of the conformation and lipid interaction of a C-terminal 46-residue peptide, [198-243]apoA-I, encompassing putative helix repeats 10 and 9 and the second half of repeat 8 from the C-terminus of apoA-I. Far-ultraviolet circular dichroism spectra show that [198-243]apoA-I is also unfolded in aqueous solution. However, self-association induces approximately 50% alpha-helix in the peptide. The self-associated peptide exists mainly as a tetramer, as determined by native electrophoresis, cross-linking with glutaraldehyde, and unfolding data from circular dichroism (CD) and differential scanning calorimetry (DSC). In the presence of a number of lipid-mimicking detergents, above their CMC, approximately 60% alpha-helix was induced in the peptide. In contrast, SDS, an anionic lipid-mimicking detergent, induced helical folding in the peptide at a concentration of approximately 0.003% (approximately 100 microM), approximately 70-fold below its typical CMC (0.17-0.23% or 6-8 mM). Both monomeric and tetrameric peptide can solubilize dimyristoylphosphatidylcholine (DMPC) liposomes and fold into approximately 60% alpha-helix. Fractionation by density gradient ultracentrifugation and visualization by negative staining electromicroscopy demonstrated that the peptide binds to DMPC with a high affinity to form at least two sizes of relatively homogeneous discoidal HDL-like particles depending on the initial lipid:peptide ratio. The characteristics (lipid:peptide weight ratio, diameter, and density) of both complexes are similar to those of plasma A-I/DMPC complexes formed under similar conditions: small discoidal complexes (approximately 3:1 weight ratio, approximately 110 A, and approximately 1.10 g/cm3) formed at an initial 1:1 weight ratio and larger discoidal complexes (approximately 4.6:1 weight ratio, approximately 165 A, and approximately 1.085 g/cm3) formed at initial 4:1 weight ratio. The cross-linking data for the peptide on the complexes of two sizes is consistent with the calculated peptide numbers per particle. Compared to the approximately 100 A disk-like complex formed by the N-terminal peptide in which helical structure was insufficient to cover the disk edge by a single belt, the compositions of these two types of complexes formed by the C-terminal peptide are more consistent with a "double belt" model, similar to that proposed for full-length apoA-I. Thus, our data provide direct evidence that this C-terminal region of apoA-I is responsible for the self-association of apoA-I, and this C-terminal peptide model can mimic the interaction with the phospholipid of plasma apoA-I to form two sizes of homogeneous discoidal complexes and thus may be responsible for apoA-I function in the formation and maintenance of HDL subspecies in plasma.  相似文献   

20.
J D Hoheisel  H Lehrach 《FEBS letters》1990,274(1-2):103-106
2,6-Diaminopurine and 5-chloro-uracil 2'-deoxynucleoside 5'-triphosphates were synthesized from their 2'-deoxynucleosides. Using a method of creating oligonucleotides by enzymatic primer extension, dodecanucleotides representing an XbaI/SalI site and the complementary SalI/XbaI site were generated containing these base modifications. Their duplex stability was quantitatively compared by thin-layer chromatography to oligomers containing 2'-deoxyadenosine and 2'-deoxythymidine. The two unmodified oligomers already showed significant differences in dissociation temperature and binding equilibrium. Substitution with 5-chloro-2'-deoxyuridine did not affect the dissociation temperature of either oligomer, the 2,6-diaminopurine, however, led to an increase of 1.8 degrees C or 1.5 degrees C per modified base, respectively. While in the XbaI/SalI oligomer both base modifications changed the binding equilibrium, the 2,6-diaminopurine by a factor of 1.32, the 5-chloro-uracil by 0.65, no such effect was found with the complementary oligomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号