首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mast cell tryptase is stored as an active tetramer in complex with heparin in mast cell secretory granules. Previously, we demonstrated the dependence on heparin for the activation/tetramer formation of a recombinant tryptase. Here we have investigated the structural requirements for this activation process. The ability of heparin-related saccharides to activate a recombinant murine tryptase, mouse mast cell protease-6 (mMCP-6), was strongly dependent on anionic charge density and size. The dose-response curve for heparin-induced mMCP-6 activation displayed a bell-shaped appearance, indicating that heparin acts by binding to more than one tryptase monomer simultaneously. The minimal heparin oligosaccharide required for binding to mMCP-6 was 8-10 saccharide units. Gel filtration analyses showed that such short oligosaccharides were unable to generate tryptase tetramers, but instead gave rise to active mMCP-6 monomers. The active monomers were inhibited by bovine pancreatic trypsin inhibitor, whereas the tetramers were resistant. Furthermore, monomeric (but not tetrameric) mMCP-6 degraded fibronectin. Our results suggest a model for tryptase tetramer formation that involves bridging of tryptase monomers by heparin or other highly sulfated polysaccharides of sufficient chain length. Moreover, our results raise the possibility that some of the reported activities of tryptase may be related to active tryptase monomers that may be formed according to the mechanism described here.  相似文献   

2.
Mouse mast cell protease (mMCP) 6 and mMCP-7 are homologous tryptases stored in granules as macromolecular complexes with heparin and/or chondroitin sulfate E containing serglycin proteoglycans. When pro-mMCP-7 and pseudozymogen forms of this tryptase and mMCP-6 were separately expressed in insect cells, all three recombinant proteins were secreted into the conditioned medium as properly folded, enzymatically inactive 33-kDa monomers. However, when their propeptides were removed, mMCP-6 and mMCP-7 became enzymatically active and spontaneously assumed an approximately 150-kDa tetramer structure. Heparin was not required for this structural change. When incubated at 37 degrees C, recombinant mMCP-7 progressively lost its enzymatic activity in a time-dependent manner. Its N-linked glycans helped regulate the thermal stability of mMCP-7. However, the ability of this tryptase to form the enzymatically active tetramer was more dependent on a highly conserved Trp-rich domain on its surface. Although recombinant mMCP-6 and mMCP-7 preferred to form homotypic tetramers, these tryptases readily formed heterotypic tetramers in vitro. This latter finding indicates that the tetramer structural unit is a novel way the mast cell uses to assemble varied combinations of tryptases.  相似文献   

3.
Mast cell tryptase is a tetrameric serine protease that is stored in complex with negatively charged heparin proteoglycans in the secretory granule. Tryptase has potent proinflammatory properties and has been implicated in diverse pathological conditions such as asthma and fibrosis. Previous studies have shown that tryptase binds tightly to heparin, and that heparin is required in the assembly of the tryptase tetramer as well as for stabilization of the active tetramer. Because the interaction of tryptase with heparin is optimal at acidic pH, we investigated in this study whether His residues are of importance for the heparin binding, tetramerization, and activation of the tryptase mouse mast cell protease 6. Molecular modeling of mouse mast cell protease 6 identified four His residues, H35, H106, H108, and H238, that are conserved among pH-dependent tryptases and are exposed on the molecular surface, and these four His residues were mutated to Ala. In addition, combinations of different mutations were prepared. Generally, the single His-Ala mutations did not cause any major defects in heparin binding, activation, or tetramerization, although some effect of the H106A mutation was observed. However, when several mutations were combined, large defects in all of these parameters were observed. Of the mutants, the triple mutant H106A/H108A/H238A was the most affected with an almost complete inability to bind to heparin and to form active tryptase tetramers. Taken together, this study shows that surface-exposed histidines mediate the interaction of mast cell tryptase with heparin and are of critical importance in the formation of active tryptase tetramers.  相似文献   

4.
Fukuoka Y  Schwartz LB 《Biochemistry》2004,43(33):10757-10764
beta-Tryptase is a trypsin-like serine protease stored in mast cell secretory granules primarily as an enzymatically active tetramer. The current study aims to determine whether monomeric beta-tryptase also can exhibit enzyme activity, as suggested previously. At neutral pH beta-tryptase tetramers in the absence of heparin or dextran sulfate spontaneously convert to inactive monomers. Addition of a polyanion to these monomers at neutral pH fails to convert them back to a tetramer or to an enzymatically active state. In contrast, at acidic pH addition of a polyanion resurrects enzyme activity. Whether this activity is associated with tetramers or monomers depends on the concentration of beta-tryptase. Under the experimental conditions employed at pH 6 in the presence of heparin, the monomer concentration at which 50% conversion to tetramers occurs is 193 ng/mL. Activity against tripeptide substrates by monomers is detected at pH 6 but not at pH 7.4, whereas tetramer activity is greater at pH 7.4 than pH 6.0. Active monomers are inhibited by soybean trypsin inhibitor, bovine pancreatic trypsin inhibitor, antithrombin III, and alpha2-macroglobulin, whereas active tetramers are resistant to these inhibitors. Active monomers form complexes with these inhibitors and cleave both antithrombin III and alpha2-macroglobulin. These inhibitors also prevent reconstitution of monomers to tetramers, indicating that inactive monomers become active monomers before becoming active tetramers. The ability of tryptase monomers to become active at acidic pH raises the possibilities of expanded substrate specificities as well as inhibitor susceptibilities where the low-pH environments associated with inflammation or poor vascularity are encountered in vivo.  相似文献   

5.
Mouse mast cell protease 11 (mMCP-11) is the most recently identified member of the mouse mast cell tryptase family. This tryptase is preferentially produced by basophils in contrast to other members that are expressed by mast cells but not basophils. Although blood-circulating basophils have long been considered as minor and redundant relatives of tissue-resident mast cells, recent studies illustrated that basophils and mast cells play distinct roles in vivo. To explore the in vivo role of basophil-derived mMCP-11, here we prepared recombinant mMCP-11 and its protease-dead mutant. Subcutaneous injection of the wild-type mMCP-11 but not the mutant induced edematous skin swelling with increased microvascular permeability in a dose-dependent manner. No apparent infiltration of proinflammatory cells including neutrophils and eosinophils was detected in the skin lesions. The cutaneous swelling was abolished by the pretreatment of mice with indomethacin, a cyclooxygenase inhibitor, suggesting the major contribution of prostaglandins to the microvascular leakage. Of note, the cutaneous swelling was elicited even in mast cell-deficient mice, indicating that mast cells are dispensable for the mMCP-11-induced cutaneous swelling. Thus, basophil-derived mMCP-11 can induce microvascular leakage via prostaglandins in a mast cell-independent manner, and may contribute to the development of basophil-mediated inflammatory responses.  相似文献   

6.
Tumor cells are surrounded by infiltrating inflammatory cells, such as lymphocytes, neutrophils, macrophages, and mast cells. A body of evidence indicates that mast cells are associated with various types of tumors. Although role of mast cells can be directly related to their granule content, their function in angiogenesis and tumor progression remains obscure. This study aims to understand the role of mast cells in these processes. Tumors were chemically induced in BALB/c mice and tumor progression was divided into Phases I, II and III. Phase I tumors exhibited a large number of mast cells, which increased in phase II and remained unchanged in phase III. The expression of mouse mast cell protease (mMCP)-4, mMCP-5, mMCP-6, mMCP-7, and carboxypeptidase A were analyzed at the 3 stages. Our results show that with the exception of mMCP-4 expression of these mast cell chymase (mMCP-5), tryptases (mMCP-6 and 7), and carboxypeptidase A (mMC-CPA) increased during tumor progression. Chymase and tryptase activity increased at all stages of tumor progression whereas the number of mast cells remained constant from phase II to III. The number of new blood vessels increased significantly in phase I, while in phases II and III an enlargement of existing blood vessels occurred. In vitro, mMCP-6 and 7 are able to induce vessel formation. The present study suggests that mast cells are involved in induction of angiogenesis in the early stages of tumor development and in modulating blood vessel growth in the later stages of tumor progression.  相似文献   

7.
Heparin-deficient mice, generated by gene targeting of N-deacetylase/N-sulfotransferase-2 (NDST-2), display severe mast cell defects, including an absence of stored mast cell proteases. However, the mechanism behind these observations is not clear. Here we show that NDST-2+/+ bone marrow-derived mast cells cultured in the presence of IL-3 synthesise, in addition to highly sulphated chondroitin sulphate (CS), small amounts of equally highly sulphated heparin-like polysaccharide. The corresponding NDST-2-/- cells produced highly sulphated CS only. Carboxypeptidase A (CPA) activity was detected in NDST+/+ cells but was almost absent in the NDST-/- cells, whereas tryptase (mouse mast cell protease 6; mMCP-6) activity and antigen was detected in both cell types. Antigen for the chymase mMCP-5 was detected in NDST-2+/+ cells but not in the heparin-deficient cells. Northern blot analysis revealed mRNA expression of CPA, mMCP-5 and mMCP-6 in both wild-type and NDST-2-/- cells. A approximately 36 kDa CPA band, corresponding to proteolytically processed active CPA, as well as a approximately 50 kDa pro-CPA band was present in NDST-2+/+ cells. The NDST-2-/- mast cells contained similar levels of pro-CPA as the wild-type mast cells, but the approximately 36 kDa band was totally absent. This indicates that the processing of pro-CPA to its active form may require the presence of heparin and provides the first insight into a mechanism by which the absence of heparin may cause disturbed secretory granule organisation in mast cells.  相似文献   

8.
Heparin antagonists are potent inhibitors of mast cell tryptase   总被引:7,自引:0,他引:7  
Tryptase may be a key mediator in mast cell-mediated inflammatory reactions. When mast cells are activated, they release large amounts of these tetrameric trypsin-like serine proteases. Tryptase is present in a macromolecular complex with heparin proteoglycan where the interaction with heparin is known to be essential for maintaining enzymatic activity. Recent investigations have shown that tryptase has potent proinflammatory activity, and inhibitors of tryptase have been shown to modulate allergic reactions in vivo. Many of the tryptase inhibitors investigated previously are directed against the active site. In the present study we have investigated an alternative approach for tryptase regulation. We show that the heparin antagonists Polybrene and protamine are potent inhibitors of both human lung tryptase and of recombinant mouse tryptase (mouse mast cell protease 6). Protamine inhibited tryptase in a competitive manner whereas Polybrene showed noncompetitive inhibition kinetics. Treatment of tetrameric, active tryptase with Polybrene caused dissociation into monomers, accompanied by complete loss of enzymatic activity. The present report thus suggests that heparin antagonists potentially may be used in treatment of mast cell-mediated diseases such as asthma.  相似文献   

9.
Rat mast cell protease 7 (rMCP7) is a neutral serine protease and a component of mast cells, where it is stored in secretory granules. Mast cells express numerous proteases so in order to characterize rMCP7, it was cloned and expressed as a recombinant protein in Pichia pastoris. During expression, rMCP7 protein was cleaved from the alpha-mating factor signal at the engineered KEX2 cleavage site to produce active rMCP7. The protein produced was stable at pH 5.5 and active in the absence of heparin. The rMCP7 was glycosylated and treatment with N-glycosidase F resulted in a protein of the predicted molecular mass of 30 kDa. The rMCP7 was purified via an ammonium sulfate precipitation, using casein as a carrier protein, followed by cation exchange chromatography. The purified protein was assayed using a range of substrates and where possible, k(m) and k(cat) values were determined. The substrate profile displayed by the recombinant rMCP7 was consistent with that of tryptase isolated from rat skin. The expression and purification of recombinant rMCP7 offer an efficient, low-cost method of producing large amounts of protein. It also offers the opportunity of easy manipulation and mutagenesis of rMCP7 for further biochemical, structural, and physiological studies.  相似文献   

10.
The octapeptide angiotensin II (Ang II) exerts a wide range of effects on the cardiovascular system but has also been implicated in the regulation of cell proliferation, fibrosis, and apoptosis. Ang II is formed by cleavage of Ang I by angiotensin-converting enzyme, but there is also evidence for non-angiotensin-converting enzyme-dependent conversion of Ang I to Ang II. Here we address the role of mast cell proteases in Ang II production by using two different mouse strains lacking mast cell heparin or mouse mast cell protease 4 (mMCP-4), the chymase that may be the functional homologue to human chymase. Ang I was added to ex vivo cultures of peritoneal cells, and the generation of Ang II and other metabolites was analyzed. Activation of mast cells resulted in marked increases in both the formation and subsequent degradation of Ang II, and both of these processes were strongly reduced in heparin-deficient peritoneal cells. In the mMCP-4(-/-) cell cultures no reduction in the rate of Ang II generation was seen, but the formation of Ang-(5-10) was completely abrogated. Addition of a carboxypeptidase A (CPA) inhibitor to wild type cells caused complete inhibition of the formation of Ang-(1-9) and Ang-(1-7) but did not inhibit Ang II formation. However, when the CPA inhibitor was added to the mMCP-4(-/-) cultures, essentially complete inhibition of Ang II formation was obtained. Taken together, the results of this study indicate that mast cell chymase and CPA have key roles in both the generation and degradation of Ang II.  相似文献   

11.
12.
We investigated the histochemical characteristics of mast cell tryptase in different mouse tissues. By use of peptide substrates, tryptase activity could be demonstrated in unfixed connective tissue mast cells in different tissues, including the stomach. Tryptase activity was better localized after aldehyde fixation and frozen sectioning, and under such conditions was also demonstrated in mucosal mast cells of the stomach but not in those of the gut mucosa. Double staining by enzyme histochemistry followed by toluidine blue indicated that the tryptase activity was present only in mast cells and that all mast cells in the stomach mucosa contained the enzyme. The peptide substrates z-Ala-Ala-Lys-4-methoxy-2-naphthylamide and z-Gly-Pro-Arg-4-methoxy-2-naphthlyamide, which are substrates of choice for demonstrating tryptase in other species, were most effective for demonstrating mouse tryptase. The use of protease inhibitors further indicated that activity present in all mast cells was tryptase. Safranin O did not stain stomach mucosal mast cells, suggesting that the tryptase present in these cells was active in the absence of heparin sulfate proteoglycan.  相似文献   

13.
14.
Activated mast cells release a variety of potent inflammatory mediators including histamine, cytokines, proteoglycans, and serine proteases. The serine proteases belong to either the chymase (chymotrypsin-like substrate specificity) or tryptase (trypsin-like specificity) family. In this report we have investigated the substrate specificity of a recently identified mast cell protease, rat mast cell protease-4 (rMCP-4). Based on structural homology, rMCP-4 is predicted to belong to the chymase family, although rMCP-4 has previously not been characterized at the protein level. rMCP-4 was expressed with an N-terminal His tag followed by an enterokinase site substituting for the native activation peptide. The enterokinase-cleaved fusion protein was labeled by diisopropyl fluorophosphate, demonstrating that it is an active serine protease. Moreover, rMCP-4 hydrolyzed MeO-Suc-Arg-Ala-Tyr-pNA, thus verifying that this protease belongs to the chymase family. rMCP-4 bound to heparin, and the enzymatic activity toward MeO-Suc-Arg-Ala-Tyr-pNA was strongly enhanced in the presence of heparin. Detailed analysis of the substrate specificity was performed using peptide phage display technique. After six rounds of amplification a consensus sequence, Leu-Val-Trp-Phe-Arg-Gly, was obtained. The corresponding peptide was synthesized, and rMCP-4 was shown to cleave only the Phe-Arg bond in this peptide. This demonstrates that rMCP-4 displays a striking preference for bulky/aromatic amino acid residues in both the P1 and P2 positions.  相似文献   

15.
Dipeptidyl peptidase I (DPPI) is the sole activator in vivo of several granule-associated serine proteases of cytotoxic lymphocytes. In vitro, DPPI also activates mast cell chymases and tryptases. To determine whether DPPI is essential for their activation in vivo, we used enzyme histochemical and immunohistochemical approaches and solution-based activity assays to study these enzymes in tissues and bone marrow-derived mast cells (BMMCs) from DPPI +/+ and DPPI -/- mice. We find that DPPI -/- mast cells contain normal amounts of immunoreactive chymases but no chymase activity, indicating that DPPI is essential for chymase activation and suggesting that DPPI -/- mice are functional chymase knockouts. The absence of DPPI and chymase activity does not affect the growth, granularity, or staining characteristics of BMMCs and, despite prior predictions, does not alter IgE-mediated exocytosis of histamine. In contrast, the level of active tryptase (mMCP-6) in DPPI -/- BMMCs is 25% that of DPPI +/- BMMCs. These findings indicate that DPPI is not essential for mMCP-6 activation but does influence the total amount of active mMCP-6 in mast cells and therefore may be an important, but not exclusive mechanism for tryptase activation.  相似文献   

16.
17.
Tryptase, a serine protease, is the major protein component in mast cells. In an animal model of asthma, tryptase has been established as an important mediator of inflammation and late airway responses induced by antigen challenge. Human tryptase is notable for its tetrameric structure, requirement of heparin for stability, and resistance to endogenous inhibitors. Human protryptase was expressed as a recombinant protein in Pichia pastoris. The recombinant protein consisted of two forms of protryptase, one containing the entire propeptide and the other containing only the Val-Gly dipeptide at its amino terminus. Isolation of active recombinant tryptase required a two column purification protocol and included a heparin- and dipeptidyl peptidase I-dependent activation step. Purified recombinant tryptase migrated as a tetramer on a gel filtration column and displayed kinetic parameters identical to those of a native tryptase obtained from HMC-1 cells, a human mast cell line. Recombinant and HMC-1 tryptase exhibited comparable sensitivities to an array of protein and low-molecular-weight inhibitors, including one that is highly specific for tryptase (APC-1167). Similarly, the recombinant enzyme cleaved both alpha- and beta-chains of fibrinogen to generate fibrinogen fragments indistinguishable from those generated by HMC-1-derived tryptase. Thus, recombinant tryptase expressed in P. pastoris displays physical and enzymatic properties essentially identical to the native enzyme. This system provides a cost-effective and easy to manipulate expression system that will enable the functional characterization of this unique enzyme.  相似文献   

18.
Rat mast cell tryptase   总被引:1,自引:0,他引:1  
Rat mast cell tryptase is located largely if not totally in the cell's secretory granules. When the active site reagent [3H]diisopropyl fluorophosphate was used to label tryptase and chymase simultaneously, the ratio of tryptase:chymase active sites was determined to be 0.05. In comparison to chymase and tryptase in other species and chymase in the rat, rat tryptase is poorly bound to the granule matrix as evidenced by (1) its release parallel to histamine on induction of secretion and (2) its appearance in the supernatant when isolated granules were stripped of their membranes with hypotonic medium. Tryptase on release from the granule is moderately stable at a pH of 5.0 but unstable at pH 7.5, the pH that the enzyme encounters on secretion from the cell. These several properties indicate that the role of rat mast cell tryptase extracellularly is likely to differ greatly from that of chymase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号