首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequence of a polypeptide defines both the folding pathway and the final three-dimensional structure of a protein. Eighteen amino acid substitutions have been identified in bacteriophage P22 coat protein that are defective in folding and cause their folding intermediates to be substrates for GroEL and GroES. These temperature-sensitive folding (tsf) substitutions identify amino acids that are critical for directing the folding of coat protein. Additional amino acid residues that are critical to the folding process of P22 coat protein were identified by isolating second site suppressors of the tsf coat proteins. Suppressor substitutions isolated from the phage carrying the tsf coat protein substitutions included global suppressors, which are substitutions capable of alleviating the folding defects of numerous tsf coat protein mutants. In addition, potential global and site-specific suppressors were isolated, as well as a group of same site amino acid substitutions that had a less severe phenotype than the tsf parent. The global suppressors were located at positions 163, 166, and 170 in the coat protein sequence and were 8-190 amino acid residues away from the tsf parent. Although the folding of coat proteins with tsf amino acid substitutions was improved by the global suppressor substitutions, GroEL remained necessary for folding. Therefore, we believe that the global suppressor sites identify a region that is critical to the folding of coat protein.  相似文献   

2.
Understanding the nature of protein grammar is critical because amino acid substitutions in some proteins cause misfolding and aggregation of the mutant protein resulting in a disease state. Amino acid substitutions in phage P22 coat protein, known as tsf (temperature-sensitive folding) mutations, cause folding defects that result in aggregation at high temperatures. We have isolated global su (suppressor) amino acid substitutions that alleviate the tsf phenotype in coat protein (Aramli, L. A., and Teschke, C. M. (1999) J. Biol. Chem. 274, 22217-22224). Unexpectedly, we found that a global su amino acid substitution in tsf coat proteins made aggregation worse and that the tsf phenotype was suppressed by increasing the rate of subunit assembly, thereby decreasing the concentration of aggregation-prone folding intermediates.  相似文献   

3.
Eighteen single amino acid substitutions in phage P22 coat protein cause temperature-sensitive folding defects (tsf). Three intragenic global suppressor (su) substitutions (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat proteins. Here we investigate the su substitutions in the absence of the original tsf substitutions. None of the su variant coat proteins displayed protein folding defects. Individual su substitutions had little effect on phage production in vivo; yet double and triple combinations resulted in a cold-sensitive (cs) phenotype, consistent with a defect in assembly. During virus assembly and maturation, conformational switching of capsid subunits is required when chemically identical capsid subunits form an icosahedron. Analysis of double- and triple-su phage-infected cell lysates by negative-stain electron microscopy reveals an increase in aberrant structures at the cs temperature. In vitro assembly of F170L coat protein causes production of polyheads, never seen before in phage P22. Purified procapsids composed of all of the su coat proteins showed defects in expansion, which mimics maturation in vitro. Our results suggest that a previously identified surface-exposed loop in coat protein is critical in conformational switching of subunits during both procapsid assembly and maturation.  相似文献   

4.
B. Fane  J. King 《Genetics》1991,127(2):263-277
Within the amino acid sequences of polypeptide chains little is known of the distribution of sites and sequences critical for directing chain folding and assembly. Temperature-sensitive folding (tsf) mutations identifying such sites have been previously isolated and characterized in gene 9 of phage P22 encoding the tailspike endorhamnosidase. We report here the isolation of a set of second-site conformational suppressors which alleviate the defect in such folding mutants. The suppressors were selected for their ability to correct the defects of missense tailspike polypeptide chains, generated by growth of gene 9 amber mutants on Salmonella host strains inserting either tyrosine, serine, glutamine or leucine at the nonsense codons. Second-site suppressors were recovered for 13 of 22 starting sites. The suppressors of defects at six sites mapped within gene 9. (Suppressors for seven other sites were extragenic and distant from gene 9.) The missense polypeptide chains generated from all six suppressible sites displayed ts phenotypes. Temperature-sensitive alleles were isolated at these amber sites by pseudoreversion. The intragenic suppressors restored growth at the restrictive temperature of these presumptive tsf alleles. Characterization of protein maturation in cells infected with mutant phages carrying the intragenic suppressors indicates that the suppression is acting at the level of polypeptide chain folding and assembly.  相似文献   

5.
Single amino acid substitutions in a protein can cause misfolding and aggregation to occur. Protein misfolding can be rescued by second-site amino acid substitutions called suppressor substitutions (su), commonly through stabilizing the native state of the protein or by increasing the rate of folding. Here we report evidence that su substitutions that rescue bacteriophage P22 temperature-sensitive-folding (tsf) coat protein variants function in a novel way. The ability of tsf:su coat proteins to fold and assemble under a variety of cellular conditions was determined by monitoring levels of phage production. The tsf:su coat proteins were found to more effectively utilize P22 scaffolding protein, an assembly chaperone, as compared with their tsf parents. Phage-infected cells were radioactively labelled to quantify the associations between coat protein variants and folding and assembly chaperones. Phage carrying the tsf:su coat proteins induced more GroEL and GroES, and increased formation of protein:chaperone complexes as compared with their tsf parents. We propose that the su substitutions result in coat proteins that are more assembly competent in vivo because of a chaperone-driven kinetic partitioning between aggregation-prone intermediates and the final assembled state. Through more proficient use of this chaperone network, the su substitutions exhibit a novel means of suppression of a folding defect.  相似文献   

6.
Specific amino acid substitutions confer a temperature-sensitive-folding (tsf) phenotype to bacteriophage P22 coat protein. Additional amino acid substitutions, called suppressor substitutions (su), relieve the tsf phenotype. These su substitutions are proposed to increase the efficiency of procapsid assembly, favoring correct folding over improper aggregation. Our recent studies indicate that the molecular chaperones GroEL/ES are more effectively recruited in vivo for the folding of tsf:su coat proteins than their tsf parents. Here, the tsf:su coat proteins are studied with in vitro equilibrium and kinetic techniques to establish a molecular basis for suppression. The tsf:su coat proteins were monomeric, as determined by velocity sedimentation analytical ultracentrifugation. The stability of the tsf:su coat proteins was ascertained by equilibrium urea titrations, which were best described by a three-state folding model, N <--> I <--> U. The tsf:su coat proteins either had stabilized native or intermediate states as compared with their tsf coat protein parents. The kinetics of the I <--> U transition showed a decrease in the rate of unfolding and a small increase in the rate of refolding, thereby increasing the population of the intermediate state. The increased intermediate population may be the reason the tsf:su coat proteins are aggregation-prone and likely enhances GroEL-ES interactions. The N --> I unfolding rate was slower for the tsf:su proteins than their tsf coat parents, resulting in an increase in the native state population, which may allow more competent interactions with scaffolding protein, an assembly chaperone. Thus, the suppressor substitution likely improves folding in vivo through increased efficiency of coat protein-chaperone interactions.  相似文献   

7.
Amino acid (aa) residues (Val-67 and Ala-114) have been suggested as being mainly responsible for actin-binding in human and bovine deoxyribonucleases I (DNase I). This study presents evidence of these two aa mutational mechanisms, not only for actin-binding but also for folding of DNase I in mammals, reptiles and amphibians. Human and viper snake (Agkistrodon blomhoffii) enzymes are inhibited by actin, whereas porcine, rat snake (Elaphe quadrivirgata), and African clawed frog (Xenopus laevis) enzymes are not. To investigate the role of aa at 67, mutants of rat snake (Ile67Val) and viper snake (Val67Ile) enzymes were constructed. After substitution, the rat snake was inhibited by actin, while the viper snake was not. For the role of aa at 114, mutants of viper snake (Phe114Ala), rat snake (Phe114Ala), African clawed frog (Phe114Ala), and porcine (Ser114Ala/Ser114Phe) enzymes were constructed. Strikingly, the substitute mutants for viper snake, rat snake and African clawed frog expressed no protein. The porcine (Ser114Ala) enzyme was inhibited by actin, but not the porcine (Ser114Phe) enzyme. These results suggest that Val-67 may be essential for actin-binding, that Phe-114 may be related to the folding of DNase I in reptiles and amphibians, and that Ala-114 may be indispensable for actin-binding in mammals.  相似文献   

8.
Temperature-sensitive folding (tsf) mutations in the gene for the thermostable P22 tailspike interfere with the polypeptide chain folding and association pathway at restrictive temperature without altering the thermostability of the protein once correctly folded and assembled at permissive temperature. Though the native proteins matured at permissive temperature are biologically active, many of them display alterations in electrophoretic mobility. The native forms of 15 of these tsf mutant proteins have been purified and characterized. The purified proteins differed in electrophoretic mobility and isoelectric point from wild type but did not show evidence of major conformational alterations. The results suggest that the electrophoretic variations conferred by the 15 tsf amino acid substitutions are due to changes in the net charge at solvent-accessible sites in the native form of the mutant protein. During the maturation of the chains at restrictive temperature, these sites influence the conformation of intermediates in chain folding and association. The amino acid sequences at these sites resemble those found at turns in polypeptide chains. The isolation of tsf mutations requires that the mature structure of the tailspike accommodates the mutant amino acid substitution without loss of function. The solvent-accessible sites are probably at the surface of this structural protein. This would explain how bulky mutant substitutions, such as arginines for glycines, are accommodated in the native tailspike structure. Such sites, stabilizing intermediates in the folding pathway and located on the surface of the mature protein, probably represent a general class of conformational substrates for tsf mutations.  相似文献   

9.
A Mitraki  J King 《FEBS letters》1992,307(1):20-25
Though an increasing variety of chaperonins are emerging as important factors in directing polypeptide chain folding off the ribosome, the primary amino acid sequence remains the major determinant of final conformation. The ability to identify cytoplasmic folding intermediates in the formation of the tailspike endorhamnosidase of phage P22 has made it possible to isolate two classes of mutations influencing folding intermediates-temperature-sensitive folding mutations and global suppressors of tsf mutants. These and related amino acid substitutions in eukaryotic proteins are discussed in the context of inclusion body formation and problems in the recovery of correctly folded proteins.  相似文献   

10.
Temperature-sensitive folding (tsf) mutations in gene 9 of bacteriophage P22 interfere with the folding and association of the tailspike polypeptide chain at restrictive temperature. We report here the location and amino acid substitutions for 24 independent tsf mutants. The distribution of these and previously identified mutations is distinctly non-random; all of the 32 unambiguous sites of tsf mutations are located in the central 350 residues of the 666 residue tailspike polypeptide chain. No ts mutation has been found among the N-terminal 140 amino acids, and none among the C-terminal 170 amino acids. Since the physiological defect in these mutants is the destabilization of an early intermediate in the folding pathway, the localization of the mutants suggests that the central region of the chain is critical for formation or stabilization of this early intermediate. The majority of amino acids that served as sites for the tsf mutations were hydrophilic residues. Sixty percent of the replacements of these residues represented charge changes. This probably reflects the selection for mutant sites at the mature protein surface where the substitutions can be best tolerated without interfering with function. None of the sites of tsf mutations were at aromatic residues, and only one proline site was found. Substitutions at these residues may cause lethal folding defects which are not recovered as tsf mutants. The local sequences at tsf sites resemble those reported for turns. Structural studies identify beta-sheet as the dominant secondary structure. These mutations may disrupt the formation of conformational features of beta-sheets which are repeated, such as turns, associations between pairs of strands, or sheet/sheet packing interactions. Such a model accounts for the occurrence of tsf mutations with similar defective phenotypes at multiple positions along the chain.  相似文献   

11.
A glucose dehydrogenase gene was isolated from Bacillus megaterium IWG3, and its nucleotide sequence was identified. The amino acid sequence of the enzyme deduced from the nucleotide sequence is very similar to the protein sequence of the enzyme from B. megaterium M1286 reported by Jany et al. (Jany, K.-D., Ulmer, W., Froschle, M., and Pfleiderer, G. (1984) FEBS Lett. 165, 6-10). The isolated gene was mutagenized with hydrazine, formic acid, or sodium nitrite, and 12 clones (H35, H39, F18, F20, F191, F192, N1, N13, N14, N28, N71, and N72) containing mutant genes for thermostable glucose dehydrogenase were obtained. The nucleotide sequences of the 12 genes show that they include 8 kinds of mutants having the following amino acid substitutions: H35 and H39, Glu-96 to Gly; F18 and F191, Glu-96 to Ala; F20, Gln-252 to Leu; F192, Gln-252 to Leu and Ala-258 to Gly; N1, Glu-96 to Lys and Val-183 to Ile; N13 and N14, Glu-96 to Lys, Val-112 to Ala, Glu-133 to Lys, and Tyr-217 to His; N28, Glu-96 to Lys, Asp-108 to Asn, Pro-194 to Gln, and Glu-210 to Lys; and N71 and N72, Tyr-253 to Cys. These mutant enzymes have higher stability at 60 degrees C than the wild-type enzyme. The results of this study indicate that the tetrameric structure of glucose dehydrogenase is stabilized by several kinds of mutation, and at least one of the following amino acid substitutions stabilizes the enzyme: Glu-96 to Gly, Glu-96 to Ala, Gln-252 to Leu, and Tyr-253 to Cys.  相似文献   

12.
Protein aggregation or misfolding in the cell is connected with many genetic diseases and can result from substitutions in proteins. Substitutions can influence the protein stability and folding rates in both intermediate and native states. The equilibrium urea-induced unfolding was studied for mutant apomyoglobins carrying substitutions of the conserved nonfunctional residues Val10, Trp14, Ile111, Leu115, Met131, and Leu135 with Ala. Conformational transitions were monitored by intrinsic Trp fluorescence and far-UV circular dichroism. Free energy changes upon transition from the native to the intermediate state and from the intermediate to the unfolded state were determined. All substitutions considerably decreased the stability of native apomyoglobin, whereas the effect on the stability of the intermediate state was essentially smaller.  相似文献   

13.
S Niu  S Q Jiang    J Hong 《Journal of bacteriology》1995,177(15):4297-4302
PgtC is one of the three components of the atypical "two-component" pgt regulatory system. To investigate whether functional PgtC required for the induction of pgtP expression could be bypassed in the signal transduction process, we sought, and succeeded in isolating, intergenic suppressors arising in the low-copy mini-F plasmid, pSJ11, bearing the entire pgt system except for a 168-bp deletion near the end of the pgtC gene. By transport assays, these suppressors were found to confer constitutive pgtP expression. Intriguingly, all five mutations reside near the 5' end of the pgtB gene, at codons 19 and 21. One mutation alters Arg-19 to Gln, two alter Ala-21 to Thr, one alters Ala-21 to Val, and one alters Ala-21 to Ile. Appropriate strains in which the pgtP promoter was fused to lacZ and which bore the pgtB mutations with and without mutations in pgtC and pgtA genes were constructed, and the epistatic relationships of the wild-type pgtC allele, a mutant pgtA allele, and an essentially total deletion of pgtC to the constitutive pgtB mutations were determined. In the mutant strains bearing the Ala-21 --> Ile and Ala-21 --> Val substitutions, the level of constitutive pgtP-lacZ reporter expression was not affected by the presence of the wild-type pgtC allele, nor was it affected by the total absence of PgtC in the case of the Ala-21 --> Val alteration examined; however, in the mutant strains bearing the Ala-21 --> Thr and the Arg-19 --> Gln substitutions, the extent of constitutive pgtP-lacZ reporter expression was markedly enhanced by the presence of wild-type pgtC allele and, in the case of the Arg-19 -->Gln change examined, by the total absence of PgtC as well. These results indicate that PgtC contains no domain necessary for the kinase activity; that PgtB can be activated in the absence of PgtC mutational alterations of the protein itself; and that PgtB and PgtC interact in the signaling process, with PgtC functioning to activate and modulate the kinase activity of Pgtb. In all strains, the replacement of the wild type pgtA allele with a mutant pgtA allele completely abolished expression of the pgtP-lacZ reporter, indicating that functional pgtA is essential for the constitutivity. His-457 of PgtB, a potential site of autophosphorylation, is also required for the constitutivity because its change to Val drastically reduced pgtP-lacZ reporter expression. The structural basis for the activation of the altered PgtB is discussed in terms of putative structure of PgtB in the membrane.  相似文献   

14.
Teschke CM 《Biochemistry》1999,38(10):2873-2881
Aggregation is a common side reaction in the folding of proteins which is likely due to inappropriate interactions of folding intermediates. In the in vivo folding of phage P22 coat protein, amino acid substitutions that cause a temperature-sensitive-folding (tsf) phenotype lead to the localization of the mutant coat proteins to inclusion bodies. Investigated here is the aggregation of wild-type (WT) coat protein and 3 tsf mutants of coat protein. The tsf coat proteins aggregated when refolded in vitro at high temperature. If the tsf coat proteins were refolded at 4 degrees C, they were able attain an assembly active state. WT coat protein, on the other hand, did not aggregate significantly even when folded at high temperature. The refolded tsf mutants exhibited altered secondary and tertiary structures and had an increased surface hydrophobicity, which may explain the increased propensity of their folding intermediates to aggregate.  相似文献   

15.
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.  相似文献   

16.
Temperature-sensitive folding mutations (tsf) of the thermostable P22 tailspike protein prevent the mutant polypeptide chain from reaching the native state at the higher end of the temperature range of bacterial growth (37-42 degrees C). At lower temperatures the mutant polypeptide chains fold and associate into native proteins. The melting temperatures of the purified native forms of seven different tsf mutant proteins have been determined by differential scanning calorimetry. Under conditions in which the wild type protein had a melting temperature of 88.4 degrees C, the melting temperatures of the mutant proteins were all above 82 degrees C, more than 40 degrees C higher than the temperature for expression of the folding defect. Because the folding defects were observed in vivo, the thermostability of the native protein was also examined with infected cells. Once matured at 28 degrees C, intracellular tsf mutant tailspikes remained native when the cells were transferred to 42 degrees C, a temperature that prevents newly synthesized tsf chains from folding correctly. These results confirm that the failure of tsf polypeptide chains to reach their native state is not due to a lowered stability of the native state. Such mutants differ from the class of ts mutations which render the native state thermolabile. The intracellular folding defects must reflect decreased stabilities of folding intermediates or alteration in the off-pathway steps leading to aggregation and inclusion body formation. These results indicate that the stability of a native protein within the cells is not sufficient to insure the successful folding of the newly synthesized chains into the native state.  相似文献   

17.
Mutations in the tailspike gene (gene 9) of Salmonella typhimurium phage P22 have been used to identify amino acid interactions during the folding of a polypeptide chain. Since temperature-sensitive folding (tsf) mutations cause folding defects in the P22 tailspike polypeptide chain, it is likely that mutants derived from these and correcting the original tsf defects (second-site intragenic suppressors) identify interactions during the folding pathway. We report the isolation and identification of second-site revertants to tsf mutants.  相似文献   

18.
Site-directed mutations were produced in the distal segments of the Ca(2+)-ATPase (SERCA) transmembrane region. Mutations of Arg-290 (M3-M4 loop), Lys-958, and Thr-960 (M9 - M10 loop) had minor effects on ATPase activity and Ca(2+) transport. On the other hand, Val-304 (M4) mutations to Ile, Thr, Lys, Ala, or Glu inhibited transport by 90-95% while reducing ATP hydrolysis by 83% (Ile, Thr, and Lys), 56% (Ala), or 45% (Glu). Val-304 participates in Ca(2+) coordination with its main-chain carbonyl oxygen, and this function is not expected to be altered by mutations of its side chain. In fact, despite turnover inhibition, the Ca(2+) concentration dependence of residual ATPase activity remained unchanged in Val-304 mutants. However, the rates (but not the final levels) of phosphoenzyme formation, as well the rates of its hydrolytic cleavage, were reduced in proportion to the ATPase activity. Furthermore, with the Val-304 --> Glu mutant, which retained the highest residual ATPase activity, it was possible to show that occlusion of bound Ca(2+) was also impaired, thereby explaining the stronger inhibition of Ca(2+) transport relative to ATPase activity. The effects of Val-304 mutations on phosphoenzyme turnover are attributed to interference with mechanical links that couple movements of transmembrane segments and headpiece domains. The effects of thermal activation energy on reaction rates are thereby reduced. Furthermore, inadequate occlusion of bound Ca(2+) following utilization of ATP in Val-304 side-chain mutations is attributed to inadequate stabilization of the Glu-309 side chain and consequent defect of its gating function.  相似文献   

19.
Oxygen-containing amino acids in the transmembrane region of the Na, K-ATPase alpha subunit were studied to identify residues involved in Na+ and/or K+ coordination by the enzyme. Conserved residues located in the polar face of transmembrane helices were selected using helical wheel and topological models of the enzyme. Alanine substitution of these residues were introduced into an ouabain-resistant sheep alpha1 isoform and expressed in HeLa cells. The capacity to generate essential Na+ and K+ gradients and thus support cell growth was used as an initial indication of the functionality of heterologous enzymes. Enzymes carrying alanine substitution of Ser94, Thr136, Ser140, Gln143, Glu144, Glu282, Thr334, Thr338, Thr340, Ser814, Tyr817, Glu818, Glu821, Ser822, Gln854, and Tyr994 supported cell growth, while those carrying substitutions Gln923Ala, Thr955Ala, and Asp995Ala did not. To study the effects of these latter replacements on cation binding, they were introduced into the wild-type alpha1 sheep isoform and expressed in mouse NIH3T3 cells where [3H]ouabain binding was utilized to probe the heterologous proteins. These substitutions did not affect ouabain, K+, or Na+ binding. Expression levels of these enzymes were similar to that of control. However, the level of Gln923Ala-, Thr955Ala-, or Asp995Ala-substituted enzyme at the plasma membrane was significantly lower than that of the wild-type isoform. Thus, these substitutions appear to impair the maturation process or targeting of the enzyme to the plasma membrane, but not cation-enzyme interactions. These results complete previous studies which have identified Ser755, Asp804, and Asp808 as absolutely essential for Na+ and K+ transport by the enzyme. Thus, it is significant that most transmembrane conserved-oxygen-containing residues in the Na,K-ATPase can be replaced without substantially affecting cation-enzyme interactions to the extent of preventing enzyme function. Consequently, other chemical groups, aromatic rings or backbone carbonyls, should be considered in models of cation-binding sites.  相似文献   

20.
beta Lys-155 in the glycine-rich sequence of the beta subunit of Escherichia coli F1-ATPase has been shown to be near the gamma-phosphate moiety of ATP by affinity labeling (Ida, K., Noumi, T., Maeda, M., Fukui, T., and Futai, M. (1991) J. Biol. Chem. 266, 5424-5429). For examination of the roles of beta Lys-155 and beta Thr-156, mutants (beta Lys-155-->Ala, Ser, or Thr; beta Thr-156-->Ala, Cys, Asp, or Ser; beta Lys-155/beta Thr-156-->beta Thr-155/beta Lys-156; and beta Thr-156/beta Val-157-->beta Ala-156/beta Thr-157) were constructed, and their properties were studied extensively. The beta Ser-156 mutant was active in ATP synthesis and had approximately 1.5-fold higher membrane ATPase activity than the wild type. Other mutants were defective in ATP synthesis, had < 0.1% of the membrane ATPase activity of the wild type, and showed no ATP-dependent formation of an electrochemical proton gradient. The mutants had essentially the same amounts of F1 in their membranes as the wild type. Purified mutant enzymes (beta Ala-155, beta Ser-155, beta Ala-156, and beta Cys-156) showed low rates of multisite (< 0.02% of the wild type) and unisite (< 1.5% of the wild type) catalyses. The k1 values of the mutant enzymes for unisite catalysis were lower than that of the wild type: not detectable with the beta Ala-156 and beta Cys-156 enzymes and 10(2)-fold lower with the beta Ala-155 and beta Ser-155 enzymes. The beta Thr-156-->Ala or Cys enzyme showed an altered response to Mg2+, suggesting that beta Thr-156 may be closely related to Mg2+ binding. These results suggest that beta Lys-155 and beta Thr-156 are essential for catalysis and are possibly located in the catalytic site, although beta Thr-156 could be replaced by a serine residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号