首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the hypoxia tolerance of three Everglades fishes, two native centrarchids ( Lepomis gulosus and Lepomis marginatus ) and a recently introduced cichlid ( Hemichromis letourneuxi ), were documented. Aquatic surface respiration (ASR) thresholds were lowest for H. letourneuxi , followed by L. gulosus , then L. marginatus . The ASR thresholds for L. marginatus were within ranges reported for small, freshwater tropical fishes, while those for L. gulosus were similar to swamp-adapted fishes. For H. letourneuxi , ASR thresholds were some of the lowest reported. All three species showed excellent tolerance of low dissolved oxygen levels when allowed access to the surface. When denied surface access, L. marginatus lost equilibrium at a higher oxygen tension than the other species. Overall, although all species easily tolerated hypoxia, H. letourneuxi appeared to be best equipped to deal with hypoxia, followed by L. gulosus , then L. marginatus . Hemichromis letourneuxi also exhibited more aggressive behaviours than the centrarchids. These results suggest that hypoxia is not likely to prevent H. letourneuxi from exploiting the seasonally inundated wetlands of south Florida while expanding its range there.  相似文献   

2.
A survey of epibenthic prosobranch gastropods was undertaken in both seagrass and hard substratum (coral or old reef rock) habitats on opposite sides of the Florida Keys (Florida Bay and Hawk Channel) to compare faunal differences attributable to differences in the above two habitats and environments. Additionally, two data sets (26 continuous months) of daytime dissolved oxygen, surface salinity and water temperature from Florida Bay (Long Key) and Hawk Channel (Key Largo) environments were compared to determine differences that might constitute environmental stresses likely to affect the fauna. The above data were collected to determine if several hypotheses concerning effects of stress on organisms, assemblage, community and faunal composition were consistent with data on assemblage structure. These hypotheses were that: (1) stress should reduce the average size of organisms; (2) shorten food chains; (3) reduce predation intensity; (4) reduce species richness and diversity; and (5) increase the relative abundance of predator-susceptible ancestral species (i.e. Archaegastropoda). Water quality data suggest that the two most likely forms of stress in deeper (>1 m) areas of Florida Bay adjacent to the Keys are cold water temperatures associated with winter cold fronts and low predawn oxygen associated with warm summer temperatures, high salinity, and periodic algal and seagrass drift buildups. Seagrass sites had high population densities and low diversity due to the dominance of Astraea americana Gmelin (American star shell) in Florida Bay and Modulus modulus L. in Hawk Channel seagrass habitats. Florida Bay sites had high species richness on a small spatial scale, but Hawk Channel sites had more species and greater encounter rates of new species on a larger scale. Predawn oxygen measurements taken during July in four habitats were positively correlated with prosobranch species richness and diversity. Faunal data, analysed on a population density basis, fit the above hypotheses of body size, trophic level, and evolutionary age of the species. Attempts to measure predation on an experimental prosobranch (A. americana) were unsuccessful but a tethering experiment with a sea urchin (Echinometra lucunter L.) indicated higher predation in the less stressful Hawk Channel than Florida Bay hard substratum sites. Stress appears to reduce the abundance of higher trophic levels (both prosobranch and finfish predators) resulting in the dominance of ancestral forms not adapted to predation but tolerant of environmental stress. Eutrophication or increased oxygen demands in Florida Bay could result in further species richness and diversity declines.  相似文献   

3.
The first recorded bloom of Karenia spp., resulting in brevetoxin in oysters, in the low salinity waters of the Northern Gulf of Mexico (NGOMEX) occurred in November 1996. It raised questions about the salinity tolerance of Karenia spp., previously considered unlikely to occur at salinities <24 psu, and the likelihood that the bloom would reoccur in the NGOMEX. Salinity was investigated as a factor controlling Karenia spp. abundance in the field, using data from the NGOMEX 1996 bloom and Florida coastal waters from 1954 to 2004, and growth and toxin production in cultures of Karenia brevis (Davis) G. Hansen and Moestrup. During the NGOMEX bloom, Karenia spp. occurred much more frequently at low salinities than in Florida coastal waters over the last 50 years. The data suggest that the NGOMEX bloom started on the NW Florida Shelf, an area with a higher frequency of Karenia spp. at low salinities than the rest of Florida, and was transported by an unusual westward surface current caused by Tropical Storm Josephine. The minimum salinity at which growth occurred in culture ranged between 17.5 and 20 psu, but the optimal salinity ranged between low values of 20 or 25 and high values of 37.5–45 psu, depending on the clone. The effect of salinity on toxin production in one clone of K. brevis was complex, but at all salinities brevetoxin levels were highest during the stationary growth phase, suggesting that aging, high density blooms may pose the greatest public health threat. The results demonstrate that Karenia spp. can be a public health threat in low salinity areas, but the risk in the NGOMEX is relatively low. No bloom has occurred since the 1996 event, which was probably associated with a special set of conditions: a bloom along the Florida Panhandle and a tropical storm with a track that set up a westward current.  相似文献   

4.
The spatial and temporal distributions of the epiphytic diatom flora on Thalassia testudinum was described within the Florida Bay estuary and at one Atlantic site east of the Florida Keys over a 1-year period. Species of the genus Mastogloia dominated the epiphytic diatom flora (82 out of 332 total species). Nonmetric Multidimensional Scaling (NMDS) and Analysis of Similarity (ANOSIM) revealed four distinct spatial assemblages and two temporal assemblages. Eastern and western Florida Bay assemblages were identified within the estuary. The eastern diatom assemblage was characterized by high relative abundances of Brachysira aponina and Nitzschia liebetruthii, while the western assemblage was characterized by the abundance of Reimerothrix floridensis, particularly during summer. Two diverse and distinct marine assemblages, one located in the Gulf of Mexico along the western edge of Florida Bay and the other behind the Florida reef tract in the Atlantic Ocean, were also identified. Analysis of the spatial distribution of diatoms and water quality characteristics within Florida Bay suggest that these assemblages may be structured by salinity and nutrient availability, particularly P. The Gulf of Mexico and the western Florida Bay assemblages were associated with higher water column salinities and TP concentrations and lower DIN concentrations and TN:TP ratios relative to the eastern Florida Bay assemblage. The temporal variation in diatom assemblages was associated with water temperature, though temporal indicator species were few relative to the number of spatial indicators. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

5.
During the 1960s, water management practices resulted in the conversion of the wetlands that fringe northeastern Florida Bay (USA) from freshwater/oligohaline herbaceous marshes to dwarf red mangrove forests. Coincident with this conversion were several ecological changes to Florida Bay’s fauna, including reductions in the abundances of top trophic-level consumers: piscivorous fishes, alligators, crocodiles, and wading birds. Because these taxa rely on a common forage base of small demersal fishes, food stress has been implicated as playing a role in their respective declines. In the present study, we monitored the demersal fishes seasonally at six sites over an 8-year time period. During monitoring, extremely high rainfall conditions occurred over a 3.5-year period leading to salinity regimes that can be viewed as “windows” to the area’s natural past and future restored states. In this paper, we: (1) examine the changes in fish communities over the 8-year study period and relate them to measured changes in salinity; (2) make comparisons among marine, brackish and freshwater demersal fish communities in terms of species composition, density, and biomass; and (3) discuss several implications of our findings in light of the intended and unintended water management changes that are planned or underway as part of Everglades restoration. Results suggest the reduction in freshwater flow to Florida Bay over the last several decades has reduced demersal fish populations, and thus prey availability for apex consumers in the coastal wetlands compared to the pre-drainage inferred standard. Furthermore, greater discharge of freshwater toward Florida Bay may result in the re-establishment of pre-1960s fauna, including a more robust demersal-fish community that should prompt increases in populations of several important predatory species.  相似文献   

6.
We investigated how species identity and variation in salinity and nutrient availability influence the hydraulic conductivity of mangroves. Using a fertilization study of two species in Florida, we found that stem hydraulic conductivity expressed on a leaf area basis ( K leaf) was significantly different among species of differing salinity tolerance, but was not significantly altered by enrichment with limiting nutrients. Reviewing data from two additional sites (Panamá and Belize), we found an overall pattern of declining leaf‐specific hydraulic conductivity ( K leaf) with increasing salinity. Over three sites, a general pattern emerges, indicating that native stem hydraulic conductivity ( K h) and K leaf are less sensitive to nitrogen (N) fertilization when N limits growth, but more sensitive to phosphorus (P) fertilization when P limits growth. Processes leading to growth enhancement with N fertilization are probably associated with changes in allocation to leaf area and photosynthetic processes, whereas water uptake and transport processes could be more limiting when P limits growth. These findings suggest that whereas salinity and species identity place broad bounds on hydraulic conductivity, the effects of nutrient availability modulate hydraulic conductivity and growth in complex ways.  相似文献   

7.
In estuaries, the somatic growth of crustacean mysids may be influenced by spatio-temporal variation in salinity and food resources. We tested such a possibility in a laboratory experiment, where somatic growth of sub-adult mysids Tenagomysis chiltoni and Tenagomysis novaezealandiae was studied in intermediate salinities(10–20) with contrasting high or low (based on Carbon and Nitrogen richness) food qualities. Different salinity and/or food quality combinations interacted to produce contrasting growth trajectories between the two species. Growth of sub-adult T. chiltoni was more influenced by salinity, whereas the growth of T. novaezealandiae more strongly affected by food quality. Our results suggest that small environmental changes to salinity and food regimes may give rise to different growth trajectories among sub-adult mysids which may have a cascading influence on their life histories and patterns of coexistence with other species in small intermittently open/closed estuaries in temperate regions.  相似文献   

8.
The effects of varying salinity and calcium and potassium concentrations on the growth of two species of estuarine Rhodophyta, Bostrychia radicans Montagne and Caloglossa lepricurii (Montagne) J. Agardh, were examined in unialgal culture. Inocula of settled tetraspores on glass coverslips were incubated in six concentrations of potassium (0. 100, 200, 300, 400 and 500 mg/l) at five salinities (0, 5, 15, 25, and 35%) in the presence of calcium. Growth responses of each alga were determined from the average cell number of 75 tetrasporelings after 4 days in Ott's synthetic sea-water medium. The concentrations of dissolved potassium and calcium in sea water along a salinity gradient in an estuary were determined with atomic absorption spectrophotometry. Four-day-old tetrasporeling of Bostrychia and Caloglossa demonstrated growth over wide ranges of potassium concentrations with growth maxima at 400 500 and 200 400 mg/l, at the optimal salinities for growth of 25 and 15%, respectively. These studies indicate also that the presence of calcium is essential for appreciable growth of both species at each salinity and the effects of variations in potassium are dependent upon the presence of calcium. The abundance of both species in the Mullica River estuary. New Jersey, appears to be a response to a total osmotic effect along the salinity gradient because sufficient levels of the major cations are present. However, the upper limit of both species towards the head of the Mullica River estuary may be determined by combinations of low salinity and low levels of dissolved calcium and potassium rather than by low salinity alone.  相似文献   

9.
The dominant seagrass in Florida Bay, Thalassia testudinum Banks ex König, is a stenohaline species with optimum growth around marine salinity (30-40 PSU). Previous studies have examined the responses of mature short shoots of T. testudinum to environmental stresses. Our goal was to assess responses of seedlings to changes in water chemistry in Florida Bay that might occur as part of the Comprehensive Everglades Restoration Plan (CERP). Specifically, we examined seedling survival, growth, photosynthesis, respiration and osmolality in response to hypo- and hyper-salinity conditions, as well as possible synergistic effects of depleted and elevated ammonium concentrations. The study was conducted in mesocosms on T. testudinum seedlings collected during August 2003 near Florida Bay. Hyper- and hypo-saline conditions were detrimental to the fitness of T. testudinum seedlings. Plants at 0 and 70 PSU exhibited 100% mortality and a significant decrease in survival was observed in the 10, 50 and 60 PSU treatments. Increased levels of ammonium further decreased growth in the lower salinity treatments. Seedlings in 30 and 40 PSU had the greatest growth. Quantum yield and relative electron transport rate, measured using PAM fluorometry, showed a decrease in photosynthetic performance on either side of the 30-40 PSU optimum. Tissue osmolality decreased significantly with decreased salinity but tissue remained consistently hyperosmotic to the media across all salinity treatments. Maintaining negative water potential and allocating more energy to osmoregulation may decrease the productivity of this species in salinity-stress conditions. Our results suggest that the salinity-tolerance limits of this seagrass at the seedling stage are not as broad as those reported for mature plants. Increased fresh water inflow, especially if co-occurring with an increase in water-column ammonium, could negatively affect successful recruitment of T. testudinum seedlings in northern regions of Florida Bay.  相似文献   

10.
In situ calcification measurements tested the hypothesis that corals from environments (Florida Bay, USA) that naturally experience large swings in pCO2 and pH will be tolerant or less sensitive to ocean acidification than species from laboratory experiments with less variable carbonate chemistry. The pCO2 in Florida Bay varies from summer to winter by several hundred ppm roughly comparable to the increase predicted by the end of the century. Rates of net photosynthesis and calcification of two stress-tolerant coral species, Siderastrea radians and Solenastrea hyades, were measured under the prevailing ambient chemical conditions and under conditions amended to simulate a pH drop of 0.1–0.2 units at bimonthly intervals over a 2-yr period. Net photosynthesis was not changed by the elevation in pCO2 and drop in pH; however, calcification declined by 52 and 50 % per unit decrease in saturation state, respectively. These results indicate that the calcification rates of S. radians and S. hyades are just as sensitive to a reduction in saturation state as coral species that have been previously studied. In other words, stress tolerance to temperature and salinity extremes as well as regular exposure to large swings in pCO2 and pH did not make them any less sensitive to ocean acidification. These two species likely survive in Florida Bay in part because they devote proportionately less energy to calcification than most other species and the average saturation state is elevated relative to that of nearby offshore water due to high rates of primary production by seagrasses.  相似文献   

11.
Individual daily food intake, mass‐specific growth rate and growth efficiency in groups of juvenile brown trout Salmo trutta were compared in tank experiments with three water level regimes (fluctuating, stable high and low water levels) and two temperature regimes (fluctuating between 10 and 14° C and constant 14° C) to simulate events during hydropeaking in regulated rivers. Fish exposed to high stable water level showed higher food intake and growth rate, and higher or similar growth efficiency than fish exposed to fluctuating or stable low water level. Both groups of slow‐growing and fast‐growing individuals fed less and grew slower at stable low and fluctuating water level than at stable high water level. Furthermore, growth and growth efficiency were lower in brown trout exposed to stable low water level and fluctuating temperature, particularly for groups of fish with slow growth. Temperature did not have any effect at high water level. For groups of fast‐growing fish, there was no difference in growth efficiency between treatments. It is concluded that fluctuating water level and temperature have a potentially detrimental effect on growth in juvenile brown trout and effects are more severe in slow‐ than fast‐growing fish.  相似文献   

12.
A total of 65 isolates of Vibrio cholerae, serotypes other than O--1, have been recovered from water, sediment, and shellfish samples from the Chesapeake Bay. Isolations were not random, but followed a distinct pattern in which salinity appeared to be a controlling factor in V. cholerae distribution. Water salinity at stations yielding V. cholerae (13 out of 21 stations) was 4 to 17 0/00, whereas the salinity of water at stations from which V. cholerae organisms were not isolated was less than 4 or greater than 17 0/00. From results of statistical analyses, no correlation between incidence of fecal coliforms and V. cholerae could be detected, whereas incidence of Salmonella species, measured concurrently, was clearly correlated with fecal coliforms, with Salmonella isolated only in areas of high fecal coliform levels. A seasonal cycle could not be determined since strains of V. cholerae were detectable at low levels (ca. 1 to 10 cells/liter) throughout the year. Although none of the Chesapeake Bay isolates was agglutinable in V. cholerae O group 1 antiserum, the majority for Y-1 adrenal cells. Furthermore, rabbit ileal loop and mouse lethality tests were also positive for the Chesapeake Bay isolates, with average fluid accumulation in positive ileal loops ranging from 0.21 to 2.11 ml/cm. Serotypes of the strains of V. cholerae recovered from Chesapeake Bay were those of wide geographic distribution. It is concluded from the data assembled to date, that V. cholerae is an autochthonous estuarine bacterial species resident in Chesapeake Bay.  相似文献   

13.
Postharvest growth of Vibrio vulnificus in oysters can increase risk of human infection. Unfortunately, limited information is available regarding V. vulnificus growth and survival patterns over a wide range of storage temperatures in oysters harvested from different estuaries and in different oyster species. In this study, we developed a predictive model for V. vulnificus growth in Eastern oysters (Crassostrea virginica) harvested from Chesapeake Bay, MD, over a temperature range of 5 to 30°C and then validated the model against V. vulnificus growth rates (GRs) in Eastern and Asian oysters (Crassostrea ariakensis) harvested from Mobile Bay, AL, and Chesapeake Bay, VA, respectively. In the model development studies, V. vulnificus was slowly inactivated at 5 and 10°C with average GRs of -0.0045 and -0.0043 log most probable number (MPN)/h, respectively. Estimated average growth rates at 15, 20, 25, and 30°C were 0.022, 0.042, 0.087, and 0.093 log MPN/h, respectively. With respect to Eastern oysters, bias (B(f)) and accuracy (A(f)) factors for model-dependent and -independent data were 1.02 and 1.25 and 1.67 and 1.98, respectively. For Asian oysters, B(f) and A(f) were 0.29 and 3.40. Residual variations in growth rate about the fitted model were not explained by season, region, water temperature, or salinity at harvest. Growth rate estimates for Chesapeake Bay and Mobile Bay oysters stored at 25 and 30°C showed relatively high variability and were lower than Food and Agricultural Organization (FAO)/WHO V. vulnificus quantitative risk assessment model predictions. The model provides an improved tool for designing and implementing food safety plans that minimize the risk associated with V. vulnificus in oysters.  相似文献   

14.
The agarophyte Gracilaria cornea, collected over 2.5 y in the Florida Keys, shows adaptations to oceanic salinities and subtropical to tropical water temperatures in its photosynthetic and respiratory responses as measured with a respirometer. No seasonal pattern in responses to irradiance, temperature, and salinity were evident between five collections over a 20-month period, indicating the tropical nature of the populations from Bahia Honda and Pigeon Keys. Concentrations of chlorophyll a (0.09 to 0.41 mg g d wt-1) and phycoerythrin (0.06 to 0.36 mg g d wt- 1) were low and reflect the low nutrient regime of the habitats, especially when compared to laboratory cultured plants. Compensation and saturation irradiances were also low (11–38 and 90–127 μmol photon m-2 s-1), indicating acclimation to lower irradiances in their shallow (1–2 m depth) habitats where turbidity can be high. In comparison with other subtropical and warm temperate species of Gracilaria, G. cornea had lower levels of pigment, but similarly high photosynthetic efficiency, demonstrating shade adaptation; it had only limited tolerance to salinities below 20‰ and temperatures below 15 °C. Thus, G. cornea from the Florida Keys in mariculture would require subtropical to tropical temperatures and stable oceanic salinities. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Growth of 2659 Atlantic cod Gadus morhua aged 4 to 9 years examined in Placentia Bay, Newfoundland, peaked in most cases in June and was at a minimum in October or November. Water temperature, partial fullness index ( I P) and gonado‐somatic index ( I G) explained between 31 and 52% of the monthly variability in growth. Temperature and I P of capelin Mallotus villosus had significant effects on growth of all age groups and explained most of the variance for ages 6–8 and 4–5 years, respectively. The I P of large invertebrates (ages 4 to 7 years), sandlance ( Ammodytes sp. age 6 years) and demersal fishes (age 9 years) had age‐specific effects in the model. Overall, amphipods, decapods and echinoderms dominated the Atlantic cod diet in most seasons, but fish consumption by Atlantic cod was high in June and July, particularly on capelin. The rapid increase in somatic mass during June and July occurred despite cold water temperatures ( < 3° C at 50 m) and moderate to high gonado‐somatic index. The findings of this study suggest that when food was not a limiting factor, growth tended to increase even when Atlantic cod occupied colder waters, but when food was limiting, the opposite may have occured.  相似文献   

16.
The nitrogen metabolism and excretion patterns of the grunting toadfish Allenbatrachus grunniens and the effects of salinity on these processes were examined. Individuals of A. grunniens were subjected to several experimental treatments, including variable salinity (2 to 30), high pH (8·5 compared to 7·0 for controls), high environmental ammonia (10 mM) and confinement to small water volumes, and measurements were made of activities of selected enzymes of nitrogen metabolism, ammonia and urea excretion rates, and tissue and plasma contents of ammonia, urea and amino acids. Activities of key ornithine‐urea cycle enzymes were rather low ( e.g . liver carbamoyl phosphate synthetase III activity was 0·001 μmols min−1 g−1), and A. grunniens consistently demonstrated a low capacity for urea excretion despite significant elevations of plasma and tissue ammonia contents by the high pH and high ammonia treatments. This species could thus be categorized as ammoniotelic. Total free amino acid contents in plasma and tissues were increased by the high pH and high ammonia treatments, but no patterns were discerned in individual amino acids that would indicate any preferential accumulation ( e.g . alanine and glutamine) as has been noted previously in several semi‐terrestrial fish species. Thus, it appeared that A. grunniens was not unusual in its patterns of nitrogen metabolism and excretion in comparison to other 'typical' teleosts. Furthermore, manipulation of salinity had no major effects on nitrogen excretion in either this species or in comparative studies with the ureotelic gulf toadfish Opsanus beta . The results are discussed in the context of the broader pattern of nitrogen metabolism and excretion in the Batrachoididae.  相似文献   

17.
Synopsis Species composition and relative capture rates of water column fishes occurring on the shallow (<1 m), seagrass-covered mudbanks of Florida Bay were assessed using small-mesh gillnets. The fauna was largely temperate, with few tropical representatives, and was similar to the fish community in adjacent basins. There was a high variability in the catch across the Bay, reflecting heterogeneity in both the physical environment and various aspects of the seagrass canopy. The Gulf site, in the northwestern section of the Bay, had the highest species richness and highest capture rates of individual species, relative to other sites. Higher densities of potential prey, greater available foraging area, and organically rich, fine sediments are probably influential in the greater fish utilization of this bank. The greater exchange of western Florida Bay with open Atlantic or Gulf waters is proposed as a secondary factor influencing species richness; the probability of non-resident species occasionally appearing on western banks is greater than in isolated interior sections of the Bay.  相似文献   

18.
The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low‐flow habitat more frequently, than at other times. Non‐random habitat use was more frequent at the point scale (4·5 m2) than at the larger reach scale (20–40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter‐flowing water as temperature increased, and shallower, slower‐flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high‐velocity habitats in summer to deeper, low‐velocity habitats in winter, and of using shallower, low‐velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non‐random use of available habitats is more frequent at small scales.  相似文献   

19.
The Atlantic blue marlin Makaira nigricans larvae were collected from Exuma Sound, Bahamas and the Straits of Florida over three summers (2000–2002). Sagittal otoliths were extracted and read under light microscopy to determine relationships between standard length ( L S) and age for larvae from each year and location. Otolith growth trajectories were significantly different between locations: after the first 5–6 days of life, larvae from Exuma Sound grew significantly faster than larvae from the Straits of Florida. Exponential regression coefficients were similar among years for Exuma Sound larvae (mean instantaneous growth rate, G L = 0·125), but differed between years for larvae from the Straits of Florida ( G L = 0·086–0·089). Differences in larval growth rates between locations resulted in a 4–6 mm difference in L S by day 15 of larval life. These differences in growth appeared to be unrelated to mean ambient water temperatures, and may have been caused by location‐specific differences in prey composition or availability. Alternatively, population‐specific differences in maternal condition may have contributed to these differences in early larval growth.  相似文献   

20.
The trade‐offs involved in allocating carotenoid pigments and food to healing and regrowing damaged caudal fin tissue v . other functions were examined in guppies Poecilia reticulata , a species in which females prefer males that display larger amounts of carotenoids in their skin. The guppies were derived from four natural populations in Trinidad that differed in resource availability but not predation intensity. Carotenoids, food and site of origin did not affect either absolute or relative fin regrowth, which suggested that fin regeneration in guppies was not constrained by carotenoid availability. It is possible that carotenoid intake influences fin regeneration in the presence of natural stressors such as predators. There was a significant negative interaction between food level in the laboratory and resource availability in the field: males from low‐resource‐availability sites regrew more fin tissue when raised on the high food level, and males from high‐resource‐availability sites regrew more fin tissue when raised on the low food level. The direction of this interaction runs counter to theoretical expectations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号