首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide (LPS) of Proteus penneri strain 31. Sugar and methylation analyses along with NMR spectroscopic studies, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C and 1H,31P HMQC experiments, demonstrated the following structure of the polysaccharide: [carbohydrate structure: see text] where FucNAc is 2-acetamido-2,6-dideoxygalactose and EtnP is 2-aminoethyl phosphate. The polysaccharide studied has the same carbohydrate backbone as the O-polysaccharide of Proteus vulgaris O19. Based on this finding and close serological relatedness of the LPS of the two strains, it is proposed to classify P. penneri 31 in Proteus serogroup O19 as an additional subgroup. In contrast, D-GlcNAc6PEtn and alpha-L-FucNAc-(1-->3)-D-GlcNAc shared with a number of other Proteus O-polysaccharides could not provide any significant cross-reactivity of the corresponding LPS with rabbit polyclonal O-antiserum against P. penneri 31.  相似文献   

2.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis TG 332 strain. The following structure of the O-polysaccharide was determined by chemical methods along with NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H, 13C HMQC experiments: [see equation in text]. The O-polysaccharide studied has a unique structure among Proteus O-antigens. Accordingly, P. mirabilis TG 332 is serologically separate, and we propose to classify this strain into a new Proteus serogroup, O50. The nature of minor epitopes that provide a cross-reactivity of P. mirabilis TG 332 O-antiserum with the LPS of P. mirabilis O30 and Proteus penneri 34 (O60) is discussed.  相似文献   

3.
The O-specific polysaccharide of the lipopolysaccharide of Proteus penneri strain 103 was studied using 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,(13)C HMQC, 1H, 31P HMQC, and HMBC experiments. It was found that the polysaccharide is built up of oligosaccharide-ribitol phosphate repeating units and thus resembles ribitol teichoic acids of Gram-positive bacteria. The following structure of the polysaccharide was established:where Etn and Rib-ol are ethanolamine and ribitol, respectively. This structure is unique among the known structures of Proteus O-antigens and, therefore, we propose classification of the strain studied into a new Proteus serogroup, O73. The molecular basis for cross-reactivity between O-antiserum against P. penneri 103 and O-antigens of P. mirabilis O33 and D52 is discussed.  相似文献   

4.
An alkali-treated lipopolysaccharide of Proteus penneri strain 60 was studied by chemical analyses and 1H, 13C and 31P NMR spectroscopy, and the following structure of the linear pentasaccharide-phosphate repeating unit of the O-polysaccharide was established: 6)-alpha-D-Galp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D-GlcpNAc-(1-->3)-beta-D-Quip4NAc-(1-->6)-alpha-D-Glcp-1-P-(O--> Rabbit polyclonal O-antiserum against P. penneri 60 reacted with both core and O-polysaccharide moieties of the homologous LPS. Based on the unique O-polysaccharide structure and serological data, we propose to classify P. penneri 60 into a new, separate Proteus serogroup O70. A weak cross-reactivity of P. penneri 60 O-antiserum with the lipopolysaccharide of Proteus vulgaris O8, O15 and O19 was observed and discussed in view of the chemical structures of the O-polysaccharides.  相似文献   

5.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Proteus penneri 8 lipopolysaccharide and found to contain D-glucose, D-galacturonic acid, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2,6-dideoxy-L-galactose (L-FucNAc) and 2-aminoethyl phosphate (PEtn) in the ratios 2 : 1 : 1 : 1 : 1 : 1. 1H and 13C NMR spectroscopy was applied to the intact and dephosphorylated polysaccharides, and the following structure of the hexasaccharide repeating unit was established: The O-specific polysaccharide has a unique structure, and, accordingly, we propose for P. penneri 8 a new Proteus O67 serogroup, in which this strain is at present the single representative. The nature of epitopes on LPS of P. penneri 34, P. mirabilis O16, P. mirabilis O23 and P. vulgaris O22, which cross-react with O-antiserum against P. penneri 8, is discussed.  相似文献   

6.
The O-chain polysaccharide of the lipopolysaccharide (LPS) of a previously nonclassified strain of Proteus mirabilis termed G1 was studied by sugar analysis and 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, rotating-frame NOE (ROESY), H-detected 1H,13C HMQC, and heteronuclear multiple-bond correlation (HMBC) experiments. The following structure of the polysaccharide was established: [carbohydrate structure: see text] where D-GalA6(L-Lys) stands for N(alpha)-(D-galacturonoyl)-L-lysine. The structure of the O-polysaccharide of P. mirabilis G1 is similar, but not identical, to that of P. mirabilis S1959 and OXK belonging to serogroup O3. Immunochemical studies with P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera revealed close LPS-based serological relatedness of P. mirabilis G1 and S1959, and therefore it was suggested to classify P. mirabilis G1 in serogroup O3 as a subgroup. P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera also cross-reacted with LPS of P. mirabilis strains from two other serogroups containing D-GalA6(L-Lys) in the O-polysaccharide or in the core region.  相似文献   

7.
A neutral O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis OC (CCUG 10702) and studied by sugar and methylation analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [structure: see text]. Based on the unique structure of the O-polysaccharide and serological data, we propose classifying P. mirabilis OC (CCUG 10702) into a new separate Proteus serogroup O75. A weak cross-reaction of O-antiserum against P. mirabilis OC with the lipopolysaccharide of P. mirabilis O49 was accounted for by a similarity in the O-polysaccharide structures.  相似文献   

8.
An unusual ribitol teichoic acid-like O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide from a previously non-classified Proteus vulgaris strain TG 276-1. Structural studies using chemical analyses and 2D (1)H and (13)C NMR spectroscopy showed that the polysaccharide is a zwitterionic polymer with a repeating unit containing 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (D-FucNAc4N) and two D-ribitol phosphate (D-Rib-ol-5-P) residues and having the following structure:[formula: see text] where the non-glycosylated ribitol residue is randomly mono-O-acetylated. Based on the unique O-polysaccharide structure and the finding that the strain studied is serologically separate among Proteus bacteria, we propose to classify P. vulgaris strain TG 276-1 into a new Proteus serogroup, O53.  相似文献   

9.
The O-specific polysaccharide (OPS) isolated from the lipopolysaccharide of Proteus mirabilis O36 was found to have a pentasaccharide repeating unit of the following structure: -->2)-beta-D-Ribf-(1-->4)-beta-D-Galp-(1-->4)-alpha-D-GlcpNAc6Ac-(1-->4)-beta-D-Galp-(1-->3)-alpha-D-GlcpNAc-(1-->. The structure is unique among Proteus OPS, which is in agreement with the classification of this strain into a separate Proteus O-serogroup. Remarkably, the P. mirabilis O36-polysaccharide has the same structure as the OPS of Escherichia coli O153, except that the latter is devoid of O-acetyl groups. The cross-reaction of anti-O36 antibodies with the O-part of E. coli O153 lipopolysaccharide is observed. In the present study, two steps of serotyping Proteus strains are proposed: screening of dry mass with enzyme-linked immunosorbent assay and immunoblot with the crude lipopolysaccharides. This method allowed serotyping of 99 P. mirabilis strains infecting the human urinary tract. Three strains were classified into serogroup O36. The migration pattern of these lipopolysaccharides fraction with long O-specific PSs was similar to the standard laboratory P. mirabilis O36 (Prk 62/57) lipopolysaccharide. The relatively low number of clinical strains belonging to serogroup O36 did not correspond to the presence of anti-P. mirabilis O36 antibodies in the blood donors' sera. Twenty-five percent of tested sera contained a statistically significant elevated level of antibodies reacting with thermostable surface antigens of P. mirabilis O36. The presence and amount of antibodies correlated with Thr399Ile TLR4 polymorphism types (P=0.044).  相似文献   

10.
Mild acid degradation of the lipopolysaccharide (LPS) of Proteus mirabilis O20 resulted in depolymerisation of the O-polysaccharide to give a repeating-unit pentasaccharide. A polysaccharide was obtained by O-deacylation of the LPS followed by nitrous acid deamination. The derived pentasaccharide and polysaccharide were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the repeating unit of the O-polysaccharide was established: [Carbohydrate structure: see text]. As opposite to most other P. mirabilis O-polysaccharides studied, that of P. mirabilis O20 is neutral. A week serological cross-reactivity was observed between anti-P. mirabilis O20 serum and LPS of a number of Proteus serogroups with known O-polysaccharide structure. The ability of LPS of P. mirabilis O20 to activate the serine protease cascade was tested in Limulus amoebocyte lysate and in human blood plasma and compared with that of P. mirabilis O14a,14c having an acidic O-polysaccharide. The LPS of P. mirabilis O20 was found to be less active in both assays than the LPS of P. mirabilis O14a,14c and, therefore, the structurally variable O-polysaccharide may influenced the biological activity of the conserved lipid A moiety of the LPS.  相似文献   

11.
A highly phosphorylated O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis O41 followed by GPC. The initial and dephosphorylated polysaccharides and phosphorylated products from two sequential Smith degradations were studied by (1)H, (13)C and (31)P NMR spectroscopy and ESI-MS. The O-polysaccharide was found to have a tetrasaccharide repeating unit containing one ribitol phosphate (presumably d-Rib-ol-5-P) and two ethanolamine phosphate (Etn-P) groups, one of which is present in the stoichiometric amount and the other in a nonstoichiometric amount. The following structure of the O-polysaccharide was established:  相似文献   

12.
An O-polysaccharide was isolated by mild acid hydrolysis from the lipopolysaccharide of Proteus mirabilis O40 and studied by NMR spectroscopy, including 2D 1H, 1H COSY, TOCSY, ROESY, and 1H, 13C HMQC experiments, along with chemical methods. The polysaccharide was found to contain an ether of GlcNAc with lactic acid and glycerol phosphate in the main chain and to have the following structure: --> 3)-beta-D-GlcpNAc4(R-Lac)-(1 --> 3)-alpha-D-Galp-(1 --> 3)-D-Gro-1-P-(O --> 3)-beta-D-GlcpNAc-(1 --> where D-GlcpNAc4(R-Lac) stands for 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose. This structure is unique among the known structures of the Proteus O-polysaccharides, which is in agreement with the classification of the strain studied into a separate O-serogroup. A serological relatedness of P. mirabilis O40 with some other Proteus strains was revealed and discussed in view of the O-polysaccharide structures.  相似文献   

13.
O-specific polysaccharides (O-antigens) of the lipopolysaccharides (LPS) of Proteus penneri strains 1 and 4 were studied using sugar analysis, (1)H and (13)C NMR spectroscopy, including 2D COSY, H-detected (1)H,(13)C HMQC, and rotating-frame NOE spectroscopy (ROESY). The following structures of the tetrasaccharide (strain 1) and pentasaccharide (strain 4) repeating units of the polysaccharides were established: [reaction: see text]. In the polysaccharide of P. penneri strain 4, glycosylation with the lateral Glc residue (75%) and O-acetylation of the lateral GalNAc residue (55%) are nonstoichiometric. This polysaccharide contains also other, minor O-acetyl groups, whose positions were not determined. The structural similarity of the O-specific polysaccharides was consistent with the close serological relatedness of the LPS, which was demonstrated by immunochemical studies with O-antisera against P. penneri 1 and 4. Based on these data, it was proposed to classify P. penneri strains 1 and 4 into a new Proteus serogroup, O72, as two subgroups, O72a and O72a,b, respectively. Serological cross-reactivity of P. penneri 1 O-antiserum with the LPS of P. penneri 40 and 41 was substantiated by the presence of an epitope(s) on the LPS core region shared by all P. penneri strains studied.  相似文献   

14.
The structure of the O-polysaccharide of the lipopolysaccharide of Proteus mirabilis 2002 was elucidated by chemical methods and 1H and 13C NMR spectroscopy. It was found that the polysaccharide consists of branched pentasaccharide repeating units having the following structure: [structure in text]. The O-polysaccharide of P. mirabilis 2002 has a common tetrasaccharide fragment with that of P. mirabilis 52/57 from serogroup O29, and the lipopolysaccharides of the two strains are serologically related. Therefore, based on the structural and serological data, we propose to classify P. mirabilis 2002 into the Proteus O29 serogroup as a subgroup O29a,29b.  相似文献   

15.
An O-specific polysaccharide was obtained by mild acid degradation of Proteus mirabilis O14 lipopolysaccharide (LPS) and found to contain D-galactose, 2-acetamido-2-deoxy-D-glalactose, phosphate, N-(2-hydroxyethyl)-D-alanine (D-AlaEtn), and O-acetyl groups. Studies of the initial and O-deacetylated polysaccharides using one- and two-dimensional 1H- and 13C-NMR spectroscopy, including COSY, TOCSY, NOESY, H-detected 1H,13C heteronuclear multiple-quantum coherence, and heteronuclear multiple-bond correlation experiments, demonstrated the following structure of the repeating unit: [equation: see text] This is the second bacterial polysaccharide reported to contain alpha-D-Galp6PAlaEtn, whereas the first one was the O-antigen of P. mirabilis EU313 taken erroneously as strain PrK 6/57 from the O3 serogroup [Vinogradov, E. V., Kaca, W., Shashkov, A.S., Krajewska-Pietrasik, D., Rozalski, A., Knirel, Y.A. & Kochetkov, N.K. (1990) Eur. J. Biochem., 188, 645-651]. Anti-(P. mirabilis O14) serum cross-reacted with LPS of P. mirabilis EU313 and vice versa in passive hemolysis and ELISA. Absorption of both O-antisera with the heterologous LPS decreased markedly but did not abolish the reaction with the homologous LPS. These and chemical data indicated that both strains have similar but not identical O-antigens. Therefore, we propose that P. mirabilis EU313 should belong to a new subgroup of the O14 serogroup.  相似文献   

16.
The lipopolysaccharides (LPS) of Proteus penneri 28 and Proteus vulgaris O31 (PrK 55/57) were degraded with dilute acetic acid and structurally identical high-molecular-mass O-polysaccharides were isolated by gel-permeation chromatography. Sugar analysis and nuclear magnetic resonance (NMR) spectroscopic studies showed that both polysaccharides contain D-GlcNAc, 2-acetamido-2,6-dideoxy-L-glucose (L-2-acetamido-2,6-dideoxyglucose (N-acetylquinovosamine)) and 2-acetamido-3-O-[(S)-1-carboxyethyl]-2-deoxy-D-glucose (N-acetylisomuramic acid) and have the following structure: [carbohydrate structure: see text] where (S)-1-carboxyethyl [a residue of (S)-lactic acid] (S-Lac) is an ether-linked residue of (S)-lactic acid. The O-polysaccharide studied is structurally similar to that of P. penneri 26, which differs only in the absence of S-Lac from the GlcNAc residue. Based on the O-polysaccharide structures and serological data of the LPS, it was suggested classifying these strains in one Proteus serogroup, O31, as two subgroups: O(31a), 31b for P. penneri 28 and P. vulgaris PrK 55/57 and O31a for P. penneri 26. A serological relatedness of the LPS of Proteus O(31a), 31b and P. penneri 62 was revealed and substantiated by sharing epitope O31b, which is associated with N-acetylisomuramic acid. It was suggested that a cross-reactivity of P. penneri 28 O-antiserum with the LPS of several other P. penneri strains is due to a common epitope(s) on the LPS core.  相似文献   

17.
An acidic O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Proteus mirabilis CCUG 10701 (OB) and studied by chemical analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: --> 3)-beta-D-GlcpNAc6Ac-(1 --> 2)-beta-D-GalpA4Ac-(1--> 3)-alpha-D-GalpNAc-(1 --> 4)-alpha-D-GalpA-(1 -->, where the degree of O-acetylation at position 6 of GlcNAc is approximately 50% and at position 4 of beta-GalA approximately 60%. Based on the unique structure of the O-polysaccharide and serological data, it is proposed to classify P. mirabilis CCUG 10701 (OB) into a new Proteus serogroup, O74.  相似文献   

18.
The O-polysaccharide of the lipopolysaccharide (LPS) of Proteus vulgaris TG 155 was found to contain 2-acetamido-2,6-dideoxy-L-mannose (N-acetyl-L-rhamnosamine, L-RhaNAc), a monosaccharide that occurs rarely in Nature. The following structure of the O-polysaccharide was established by NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H,13C HSQC experiments, along with chemical methods: [carbohydrate structure in text] Rabbit polyclonal O-antiserum against P. vulgaris TG 155 reacted with both core and O-polysaccharide moieties of the homologous LPS but showed no cross-reactivity with other LPS from the complete set of serologically different Proteus strains. Based on the unique O-polysaccharide structure and the serological data, we propose classifying P. vulgaris TG 155 into a new, separate Proteus O-serogroup, O55.  相似文献   

19.
Lipopolysaccharide of Proteus penneri strain 63 was degraded by mild acid to give a high molecular mass O-specific polysaccharide that was isolated by gel-permeation chromatography. Sugar and methylation analyses and NMR spectroscopic studies, including two-dimensional 1H, 1H COSY, TOCSY rotating-frame NOE spectroscopy, H-detected 1H,13C and 1H,31P heteronuclear multiple-quantum coherence (HMQC), and 1H, 13C HMQC-TOCSY experiments, demonstrated the following structure of the polysaccharide: where FucNAc is 2-acetamido-2,6-dideoxygalactose and PEtn is 2-aminoethyl phosphate. The polysaccharide studied shares some structural features, such as the presence of D-GlcNAc6PEtn and an alpha-L-FucNAc-(1-->3)-D-GlcNAc disaccharide, with other Proteus O-specific polysaccharides. A marked cross-reactivity of P. penneri 63 O-antiserum with P. vulgaris O12 was observed and substantiated by a structural similarity of the O-specific polysaccharides of the two strains. In spite of this, the polysaccharide of P. penneri 63 has the unique structure among Proteus O-antigens, and therefore a new, separate serogroup, O68, is proposed for this strain.  相似文献   

20.
The O-specific polysaccharide chains (O-antigens) of the lipopolysaccharides (LPSs) of Proteus mirabilis O48 and Proteus vulgaris O21 were found to have tetrasaccharide and pentasaccharide repeating units, respectively, interlinked by a glycosidic phosphate. Polysaccharides and an oligosaccharide were derived from the LPSs by various degradation procedures and studied by 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,13C and 1H,31P HMQC experiments. The following related structures of the repeating units of the O-antigens were established (top: Proteus mirabilis O48; bottom: Proteus vulgaris O21) The O-specific polysaccharide of P. vulgaris O21 has the same structure as that of Hafnia allvei 744 and PCM 1194 [Petersson C., Jachymek, W., Klonowska, A., Lugowski, C., Niedziela, T. & Kenne, L. (1997) Eur. J. Biochem., 245, 668-675], except that the GlcN residue carries the N-acetyl rather than the N-[(R)-3-hydroxybutyryl] group. Serological investigations confirmed the close relatedness of the Proteus and Hafnia O-antigens studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号