首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degree of leaf dissection differs dramatically among populations of the Achillea millefolium complex along an altitudinal gradient in the Sierra Nevada. The purpose of this study was to determine whether there was a genetic basis to differences in leaf shape among populations, and also to determine the importance of genetic variability within populations, plastic responses of leaf shape to the growth environment, and genetic differences among populations in plastic response to the environment. A second major goal of the research was to investigate the effects of differences in leaf dissection on the capacity for leaf temperatures to become uncoupled from air temperatures. Greenhouse experiments using clonal replicates of plants collected at different altitudes revealed that there were genetic differences among populations in the degree of dissection, and that other sources of phenotypic variation, such as plasticity, were also significant. Leaves from the highest altitude population had the most compact shape under all conditions, while those from lower altitude populations were always more open and highly dissected. In both simulations and actual measurements the dissected leaves of low altitude plants remained close to air temperatures, while the compact leaves of high altitude plants had the capacity to warm up substantially above air temperatures.  相似文献   

2.
Most plant species, particularly long-lived plants, harbor a large amount of genetic variation within populations. A central issue in evolutionary ecology is to explore levels of genetic variation and understand the mechanisms that influence them. In this study, our goals were to examine the impact of neutral evolutionary processes on the genetic variance and functional diversity within three populations of a long-lived plant (Quercus suber L.). For this purpose, we genotyped the progeny of 45 open-pollinated mother trees from three populations originating from Spain, Portugal, and Morocco using six microsatellite markers. Seedlings were planted in a common garden trial and were phenotypically characterized by seven leaf functional traits. Molecular analyses revealed weak genetic differences between Iberian and Moroccan populations. Nevertheless, high genetic differentiation was observed among maternal families within populations. Differentiation between particular maternal families from the same population reached values of 29.2 %, which far exceeds the values reported between the most genetically distant populations for this species (11.7 %). Maternal families differed also in phenology, leaf size, and shape traits. In the Moroccan population, there were correlations among matrices of distances for molecular markers, leaf shape traits (e.g., leaf circularity index), and phenology, indicating that maternal families with contrasting phenologies were genetically and functionally distinct. This, together with the moderate heritability for phenology in Moroccan population, suggests that besides selective forces, neutral evolutionary processes have promoted intrapopulation genetic divergence and contribute to maintain high levels of genetic variation within this population. Overall, our results reinforce the importance of intrapopulation studies in long-lived plants under an evolutionary context.  相似文献   

3.
利用 RAPD技术分析了分布于浙江省天台山 3个不同海拔高度的天然大血藤群体的遗传多样性、遗传分化以及与环境因子的相关性。 13种随机引物在 3 6株个体中共检测到 88个可重复的位点 ,其中多态位点 74个 ,总多态位点百分率为84.0 9% ,大血藤具有丰富的遗传多样性。 Shannon信息指数显示的遗传多样性以海拔 950 m的群体为最高 ,其次是海拔 73 0 m的群体 ,最低的是海拔 52 0 m的群体 ;群体内的遗传多样性占总遗传多样性的 43 .68% ,群体间的遗传多样性占 56.3 2 %。 Nei指数估计大血藤群体间的遗传分化系数为 0 .540 6,大血藤群体间的基因流很低。大血藤海拔 73 0 m群体与海拔 52 0 m群体的遗传相似度较高 ,海拔 950 m群体与其它两群体的遗传相似度较低。大血藤群体内的遗传多样性与土壤总氮呈极显著的正相关。  相似文献   

4.
Structural features of leaves, including size, shape, and surfaces, vary greatly throughout the plant kingdom. In both functional and phylogenetic analyses of leaves, the various morphological aspects are often considered independently of each other, although it is likely that many combinations of features do not occur at random due to either functional constraint or genetic correlation. The distribution of variation in leaf morphology in the highly variable Begonia dregei species complex was examined in natural populations and in F(2) offspring from a cross between plants from two populations. Leaf shape was quantified using several morphometric measures, and trichomes on leaves were counted and measured. Correlations between leaf shape and the numbers and size of trichomes were examined. There were significant correlations between the shapes of leaves and the presence, number, and size of trichomes among populations and in hybrid plants. Deeply incised leaves had larger numbers of longer trichomes at the sinuses. Higher numbers of trichomes on upper leaf surfaces occurred together with trichomes at the petiole and on the abaxial surface. The potential for independent evolution of leaf shape and trichomes in this group is limited. Hypotheses to explain the correlated development of leaf shape and trichomes are discussed.  相似文献   

5.
Organisms are exposed to environmental and mutational effects influencing both mean and variance of phenotypes. Potentially deleterious effects arising from this variation can be reduced by the evolution of buffering (canalizing) mechanisms, ultimately reducing phenotypic variability. There has been interest regarding the conditions enabling the evolution of canalization. Under some models, the circumstances under which genetic canalization evolves are limited despite apparent empirical evidence for it. It has been argued that genetic canalization evolves as a correlated response to environmental canalization (congruence model). Yet, empirical evidence has not consistently supported predictions of a correlation between genetic and environmental canalization. In a recent study, a population of Drosophila adapted to high altitude showed evidence of genetic decanalization relative to those from low altitudes. Using strains derived from these populations, we tested if they varied for multiple aspects of environmental canalization We observed the expected differences in wing size, shape, cell (trichome) density and mutational defects between high- and low-altitude populations. However, we observed little evidence for a relationship between measures of environmental canalization with population or with defect frequency. Our results do not support the predicted association between genetic and environmental canalization.  相似文献   

6.
Y Luo  A Widmer  S Karrenberg 《Heredity》2015,114(2):220-228
Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana.  相似文献   

7.
Phenotypic and genetic variation within and among eight populations of Arabis serrata are documented in this study. This species shows great morphological variation throughout its geographical distribution in Japan. Plants are located in habitats with different types of soils and degree of disturbance. Half-sibs progenies from eight populations were collected and cultivated in a garden experiment. Nine morphological traits representing size and shape of rosette leaves were recorded. Univariate analyses of measured traits showed that phenotypic means differed among populations for all characters. Leaves of plants from disturbed habitats had the longest petioles (lanceolate) and plants from limestone habitats showed the most roundness in leaf shape (ovate). The northernmost populations always revealed the smallest leaves. Multivariate principal component analyses also showed that leaf shape and size varied among populations. The first three principal components explained 98.5% of the variation. Coefficients of variation had a very wide range and differed from one population to another. Some traits (e.g. leaf width/leaf length ratio) were consistently less variable while others (e.g. leaf area and petiole length) were more plastic. All traits had significant genetic variance in all populations. Intra-class correlation coefficients differed for most of the traits and each population presented a different range of values. Most of the leaf traits were intercorrelated in all the populations studied, although some populations were integrated more tightly for some traits. Populations of A. serrata are differentiated in phenotypic means but they display a mosaic of traits with slight morphological differences in each locality (i.e. a quantitative genetic variation). Some traits can be correlated to the habitats that they occupy but for some of them it is difficult to assign an actual adaptive value.  相似文献   

8.
Understanding adaptive evolution to differing environments requires studies of genetic variances, of natural selection, and of the genetic differentiation between populations. Plant physiological traits such as leaf size and water-use efficiency (the ratio of carbon gained per water lost) have been suggested by physiological plant ecologists to be important in local adaptation to environments differing in water availability. In this study, I raised families of Cakile edentula var lacustris derived from a wet-site population and a dry-site population in a common greenhouse environment to determine the degree of genetic differentiation between the two populations and the genetic architecture of the traits. The dry-site population had significantly smaller leaf size and significantly greater water-use efficiency than the wet-site population. I used a retrospective selection analysis to compare long-term selection inferred from these results to measures of phenotypic selection from a field experiment. Both direct measures in the field and the retrospective selection gradients were consistent with the hypothesis that greater water-use efficiency and smaller leaves were adaptive in drier environments. Though the correlation between population means for water-use efficiency and leaf size was negative, the genetic correlation within populations between water-use efficiency and leaf size was positive and thus would be expected to constrain the evolutionary response to selection.  相似文献   

9.
The common pattern of replicated evolution of a consistent shape-environment relationship might reflect selection acting in similar ways within each environment, but divergently among environments. However, phenotypic evolution depends on the availability of additive genetic variation as well as on the direction of selection, implicating a bias in the distribution of genetic variance as a potential contributor to replicated evolution. Allometry, the relationship between shape and size, is a potential source of genetic bias that is poorly understood. The threespine stickleback, Gasterosteus aculeatus, provides an ideal system for exploring the contribution of genetic variance in body shape allometry to evolutionary patterns. The stickleback system comprises marine populations that exhibit limited phenotypic variation, and young freshwater populations which, following independent colonization events, have often evolved similar phenotypes in similar environments. In particular, stickleback diversification has involved changes in both total body size and relative size of body regions (i.e., shape). In a laboratory-reared cohort derived from an oceanic Alaskan population that is phenotypically and genetically representative of the ancestor of the diverse freshwater populations in this region, we determined the phenotypic static allometry, and estimated the additive genetic variation about these population-level allometric functions. We detected significant allometry, with larger fish having relatively smaller heads, a longer base to their second dorsal fin, and longer, shallower caudal peduncles. There was additive genetic variance in body size and in size-independent body shape (i.e., allometric elevation), but typically not in allometric slopes. These results suggest that the parallel evolution of body shape in threespine stickleback is not likely to have been a correlated response to selection on body size, or vice versa. Although allometry is common in fishes, this study highlights the need for additional data on genetic variation in allometric functions to determine how allometry evolves and how it influences phenotypic evolution.  相似文献   

10.
A primary goal of molecular ecology is to understand the influence of abiotic factors on the spatial distribution of genetic variation. Features including altitudinal clines, topography and landscape characteristics affect the proportion of suitable habitat, influence dispersal patterns, and ultimately structure genetic differentiation among populations. We studied the effects of altitude and topography on genetic variation of long-toed salamanders (Ambystoma macrodactylum), a geographically widespread amphibian species throughout northwestern North America. We focused on 10 low altitude sites (< 1200 m) and 11 high-altitude sites in northwestern Montana and determined multilocus genotypes for 549 individuals using seven microsatellite loci. We tested four hypotheses: (1) gene flow is limited between high- and low-altitude sites; and, (2) gene flow is limited among high-altitude sites due to harsh habitat and extreme topographical relief between sites; (3) low-altitude sites exhibit higher among-site gene flow due to frequent flooding events and low altitudinal relief; and (4) there is a negative correlation between altitude and genetic variation. Overall F(ST) values were moderate (0.08611; P < 0.001). Pairwise F(ST) estimates between high and low populations and a population graphing method supported the hypothesis that low-altitude and high-altitude sites, taken together, are genetically differentiated from each other. Also as predicted, gene flow is more prominent among low-altitude sites than high-altitude sites; low-altitude sites had a significantly lower F(ST) (0.03995; P < 0.001) than high altitude sites (F(ST) = 0.10271; P < 0.001). Use of Bayesian analysis of population structure (BAPS) resulted in delineation of 10 genetic groups, two among low-altitude populations and eight among high-altitude populations. In addition, within high altitude populations, basin-level genetic structuring was apparent. A nonequilibrium algorithm for detecting current migration rates supported these population distinctions. Finally, we also found a significant negative correlation between genetic diversity and altitude. These results are consistent with the hypothesis that topography and altitudinal gradients shape the spatial distribution of genetic variation in a species with a broad geographical range and diverse life history. Our study sheds light on which key factors limit dispersal and ultimately species' distributions.  相似文献   

11.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

12.
Environmental changes may stress organisms and stimulate an adaptive phenotypic response. Effects of inbreeding often interact with the environment and can decrease fitness of inbred individuals exposed to stress more so than that of outbred individuals. Such an interaction may stem from a reduced ability of inbred individuals to respond plastically to environmental stress; however, this hypothesis has rarely been tested. In this study, we mimicked the genetic constitution of natural inbred populations by rearing replicate Drosophila melanogaster populations for 25 generations at a reduced population size (10 individuals). The replicate inbred populations, as well as control populations reared at a population size of 500, were exposed to a benign developmental temperature and two developmental temperatures at the lower and upper margins of their viable range. Flies developed at the three temperatures were assessed for traits known to vary across temperatures, namely abdominal pigmentation, wing size, and wing shape. We found no significant difference in phenotypic plasticity in pigmentation or in wing size between inbred and control populations, but a significantly higher plasticity in wing shape across temperatures in inbred compared to control populations. Given that the norms of reaction for the noninbred control populations are adaptive, we conclude that a reduced ability to induce an adaptive phenotypic response to temperature changes is not a general consequence of inbreeding and thus not a general explanation of inbreeding–environment interaction effects on fitness components.  相似文献   

13.
Altitudinal gradients in mountain regions are short‐range clines of different environmental parameters such as temperature or radiation. We investigated genomic and phenotypic signatures of adaptation to such gradients in five Arabidopsis thaliana populations from the North Italian Alps that originated from 580 to 2350 m altitude by resequencing pools of 19–29 individuals from each population. The sample includes two pairs of low‐ and high‐altitude populations from two different valleys. High‐altitude populations showed a lower nucleotide diversity and negative Tajima's D values and were more closely related to each other than to low‐altitude populations from the same valley. Despite their close geographic proximity, demographic analysis revealed that low‐ and high‐altitude populations split between 260 000 and 15 000 years before present. Single nucleotide polymorphisms whose allele frequencies were highly differentiated between low‐ and high‐altitude populations identified genomic regions of up to 50 kb length where patterns of genetic diversity are consistent with signatures of local selective sweeps. These regions harbour multiple genes involved in stress response. Variation among populations in two putative adaptive phenotypic traits, frost tolerance and response to light/UV stress was not correlated with altitude. Taken together, the spatial distribution of genetic diversity reflects a potentially adaptive differentiation between low‐ and high‐altitude populations, whereas the phenotypic differentiation in the two traits investigated does not. It may resemble an interaction between adaptation to the local microhabitat and demographic history influenced by historical glaciation cycles, recent seed dispersal and genetic drift in local populations.  相似文献   

14.
Solar ultraviolet-B (UV-B) radiation can be harmful for developing amphibians. As the UV-B dose increases with altitude, it has been suggested that high-altitude populations may have an increased tolerance to high levels of UV-B radiation as compared to lowland populations. We tested this hypothesis with the common frog (Rana temporaria) by comparing populations from nine altitudes (from 333 to 2450m above sea level). Eggs collected in the field were used for laboratory experiments, i.e., exposed to high levels of artificial UV-B radiation. Eggs were reared at 14+/-2 degrees C and exposed to UV treatments until hatching. Embryonic developmental rates increased strongly and linearly with increasing altitude, suggesting a genetic capacity for faster development in highland than lowland eggs. Body length at hatching varied significantly with UV-B treatments, being lower when eggs developed under direct UV-B exposure. Body length at hatching also increased as the altitude of populations increased, but UV-B exposure times were shorter as altitude of population increased. However, the body length difference between exposed and non-exposed individuals in each population decreased as altitude of populations increased, suggesting a costly effect of UV exposure on growth. Type of UV exposure did not influence the mean rates of embryonic mortality and deformity, but both mortality and deformity rates increased as the altitude of populations increased (while UV-B exposure duration decreased). The effect of UV-B on body length at hatching, mortality, and deformities suggests that the sensitivity to UV-B varied among populations along the altitudinal gradient. These results are discussed in evolutionary terms, specifically the potential of R. temporaria high-altitude populations to develop local genetic adaptation to high levels of UV-B.  相似文献   

15.
Two populations of the mosquito Psorophora columbiae from the central Andean area of Colombia and one population of Ps. toltecum from the Atlantic coast of Colombia were analyzed for 11 isoenzyme markers. Psorophora columbiae and Ps. toltecum are two of the main vectors of Venezuelan equine encephalitis. We found no conspicuous genetic differences between the two species. The relatively high gene flow levels among these populations indicate that these are not two different species or that there has been recent divergence between these taxa. In addition, no global differential selection among the loci was detected, although the alpha-GDH locus showed significantly less genetic heterogeneity than the remaining loci, which could mean that homogenizing natural selection acts at this locus. No isolation by distance was detected among the populations, and a spatial population analysis showed opposite spatial trends among the 31 alleles analyzed. Multiregression analyses showed that both expected heterozygosity and the average number of alleles per locus were totally determined by three variables: altitude, temperature and size of the human population at the locality. Individually, the expected heterozygosity is more related to these three variables than to the average number of alleles.  相似文献   

16.
The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape variation in a damselfly (Lestes sponsa) across a latitudinal gradient in Europe that differed in time constraints mediated by photoperiod and temperature. We reared damselflies from northern and southern populations in the laboratory using a reciprocal transplant experiment that simulated time-constrained (i.e. northern) and unconstrained (southern) photoperiods and temperatures. After emergence, adult wing shape was analysed using geometric morphometrics. Wings from individuals in the northern and southern populations differed significantly in shape when animals were reared in their respective native environment. Comparing wing shape across environments, we found evidence for phenotypic plasticity in wing shape, and this response differed across populations (i.e. G × E interactions). This interaction was driven by a stronger plastic response by individuals from the northern population and differences in the direction of plastic wing shape changes among populations. The alignment between genetic and plastic responses depended on the specific combination of population and rearing environment. For example, there was an alignment between plasticity and genetic differentiation under time-constrained, but not under non-time-constrained conditions for forewings. We thus find mixed support for the hypothesis that environmental plasticity and genetic population differentiation are aligned. Furthermore, although our laboratory treatments mimicked the natural climatic conditions at northern and southern latitudes, the effects of population differences on wing shape were two to four times stronger than plastic effects. We discuss our results in terms of time constraints and the possibility that natural and sexual selection is acting differently on fore- and hindwings.  相似文献   

17.
Pickup M  Young AG 《Heredity》2008,100(3):268-274
Self-incompatibility systems function to prevent inbreeding, and work effectively in large, genetically diverse populations. However, a decrease in population size can reduce genetic diversity at the self-incompatibility locus, which leads to a reduction in mate availability and has important demographic implications for small populations. Currently, little is known about the response of self-incompatible polyploid species to a reduction in population size. In Rutidosis leptorrhynchoides there was a significant decrease in the within-population probability of fertilization with a decline in population size for diploid populations and a marginally significant relationship for tetraploid populations, suggesting that in small populations of both chromosome races fertilization success is reduced due to a decrease in self-incompatibility allele (S-allele) diversity. There was no significant difference between the slopes of the fertility-population size relationship for diploid and tetraploid populations which indicates a similar rate of decline in fertilization success with population size for both chromosome races. Fertilization success increased when crosses were undertaken between populations and this was significantly related to population size for diploid and tetraploid populations, indicating that small populations gain the greatest benefit to fertilization success from crossing between populations. For tetraploid populations the benefits of crossing between populations tended to decline more rapidly with increasing population size. These results suggest that for small populations that have reduced fertilization success, genetic rescue by introducing new genetic material from other populations is an important means of ameliorating mate limitation issues associated with reduced S-allele diversity in both diploid and tetraploid races.  相似文献   

18.
Semagn K  Stedje B  Bjornstad A 《Hereditas》2001,135(1):51-60
The genetic diversity and structure in 17 wild populations (249 individuals) of Phytolacca dodecandra (endod) sampled along altitudinal gradients of 1600-3000 meters above sea level (m.a.s.l.) in Ethiopia was studied using random amplified polymorphic DNA (RAPD). A total of 70 polymorphic loci (P) scored from 12 RAPD primers were used to calculate different diversity indices within and between populations, habitats, geographical regions, climatic zones and altitude groups. The number of polymorphic loci and overall Shannon information measure (H) in the populations varied from 30 to 55 and from 0.228 to 0.418, respectively. In general, differences in population variability were found significantly correlated to effective population size. Both P and H were significantly higher in an undisturbed than in a disturbed habitat, and in the lowland and central-highland than in the highland altitude group. However, for both parameters the differences were not statistically significant between regions and climatic zones. Genetic distance between populations varied from 0.301 to 0.628. Cluster analysis performed using the genetic distance matrix revealed a clear separation of the highland populations (2501-3000 m.a.s.l.) from those of the lowland/central-highlands (1600-2500 m.a.s.l.) irrespective of their geographical regions and climatic zones. Analysis of molecular variance (AMOVA) indicated that differences in habitat, geographical regions and climatic zones explained 4.6%, 2.5% and 4.6%, respectively. But none of these differences were significant. Altitude explained 17.2% of the total variance and was highly significant. The data, therefore, clearly indicated the association of genetic structure in endod with altitude. The proportion of RAPD variation found among populations (21.2-35.0%) was somewhat intermediate between values reported for selfing and outcrossing species. The fixation index (FST) values (0.350 to 0.384) indicated very high genetic differentiation among populations.  相似文献   

19.

Background

Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes.

Methodology/Principal Findings

In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms) and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes.

Conclusions/Significance

Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic) gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for migration under climate change.  相似文献   

20.
徐浩  陈孝梅  蔺哲广  吉挺 《昆虫学报》1950,63(10):1260-1267
【目的】利用11对微卫星标记对湖南龙山中华蜜蜂Apis cerana cerana种群遗传多样性进行分析,评估种群内遗传变异和种群间的遗传分化。【方法】从湖南省龙山县采集不同海拔(1 080和665 m)中华蜜蜂各30群,共60群。从每群10~20头成年工蜂中随机挑选1头提取DNA作为模板,利用11对微卫星引物进行PCR。基于PCR扩增产物,通过Microsatellite-Toolkit软件计算高海拔种群(G)和低海拔种群(D)各基因位点的优势等位基因频率(Pi)、期望杂合度(He)、多态信息含量(PIC)。根据FSTAT程序计算种群内近交系数(Fis)。用SPSS 25.0软件分析两个种群(G和D)间Pi, He, PIC和Fis的差异显著性。【结果】湖南省龙山县中华蜜蜂高海拔种群(G)和低海拔种群(D)的Pi分析表明,两个种群均具有较高的遗传多样性;高海拔种群的He, PIC和Fis平均值分别为0.593, 0.556和0.121,均略低于低海拔种群的0.631, 0.587和0.187。两个种群间Pi, He, PIC和Fis无显著性差异(PPi=0.721>0.05,PHe=0.759>0.05, PPIC=0.802>0.05, PFis=0.767>0.05)。【结论】位于武陵山区龙山县地域高海拔与低海拔中华蜜蜂种群具有较高遗传多样性,但遗传分化程度不高,提示海拔因素可能不直接影响中华蜜蜂种群遗传多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号