首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
药物临床前安全性评价中的致癌实验对药物是否能进入临床实验和上市起着至关重要的作用。一些发达国家已经采用小鼠模型的短中期致癌实验作为附加实验,代替了传统的两年期实验。本文主要参考这些模型在致癌实验和药品致癌性评价中的已有数据及资料,对其特点和近年来的应用情况进行了概述。结合现有模型的缺陷,我国新药研发的需求和药物流通日益国际化的现状,得出研发DNA修复系统和细胞周期控制系统缺陷的人源化的转基因模型,是非常有前景的新替代模型。  相似文献   

2.
Genetically altered mouse models (GAMM) for human cancers have been critical to the investigation and characterization of oncogene and tumor suppressor gene expression and function and the associated cancer phenotype. Similarly, several of the mouse models with defined genetic alterations have shown promise for identification of potential human carcinogens and investigation of mechanisms of carcinogen-gene interactions and tumorigenesis. In particular, both the B6.129N5-Trp53 mouse, heterozygous for a p53 null allele, and the CB6F1-RasH2 mouse, hemizygous for the human H-ras transgene, have been extensively investigated. Using 26-week exposure protocols at or approaching the maximum tolerated dose, the summary results to date indicate the potential for GAMM to identify and, possibly, classify chemicals of potential risk to humans using short-term carcinogenicity experiments. This IWGT session focused on: (1) the development of recommendations for genetic/molecular characterization required in animals, tissues, and tumors before and after treatment for identification of presumptive human carcinogens based on the current state of knowledge, (2) identification of data gaps in our current state of knowledge, and (3) development of recommendations for research strategies for further development of our knowledge base of these particular models. By optimization of protocols and identification of significant outcomes and responses to chemical exposure in appropriate short-term mechanism-based genetically altered rodent models, strategies for prevention and intervention may be developed and employed to the benefit of public health.  相似文献   

3.
A role for Helicobacter pylori infection in the development of gastric cancer in humans is well established; however, evidence for its carcinogenicity in animals remains inadequate. Mongolian gerbils and mice are commonly used to investigate the carcinogenicity of H. pylori, yet it is unclear whether H. pylori infection per se causes gastric cancer or duodenal ulcers in these animal models. Gastric adenocarcinoma in the gerbils was reported over 10 years ago, but this species has proved an unreliable model for studying H. pylori infection-associated gastric cancer. Helicobacter pylori infection alone appears insufficient to induce gastric cancer in these animals; additional carcinogenic insult is required. The development of invasive adenocarcinoma in inbred mice is rare regardless of the mouse or bacterial strain, and many long-term studies have failed to induce gastric cancer in these animals. Helicobacter pylori infection is also an established causative factor for duodenal ulcer in humans. However, few studies have attempted to develop animal models of H. pylori infection-induced duodenal ulcer. We therefore conclude that both Mongolian gerbils and inbred mice may be inadequate models for studying H. pylori infection-associated gastric cancer and that there is no animal model of H. pylori infection-induced duodenal ulcer.  相似文献   

4.
Genetically altered mouse models (GAMM) for human cancers have been critical to the investigation and characterization of oncogene and tumor suppressor gene expression and function and the associated cancer phenotype. Similarly, several of the mouse models with defined genetic alterations have shown promise for identification of potential human carcinogens and investigation of mechanisms of carcinogen–gene interactions and tumorigenesis. In particular, both the B6.129N5-Trp53 mouse, heterozygous for a p53 null allele, and the CB6F1-RasH2 mouse, hemizygous for the human H-ras transgene, have been extensively investigated. Using 26-week exposure protocols at or approaching the maximum tolerated dose, the summary results to date indicate the potential for GAMM to identify and, possibly, classify chemicals of potential risk to humans using short-term carcinogenicity experiments. This IWGT session focused on: (1) the development of recommendations for genetic/molecular characterization required in animals, tissues, and tumors before and after treatment for identification of presumptive human carcinogens based on the current state of knowledge, (2) identification of data gaps in our current state of knowledge, and (3) development of recommendations for research strategies for further development of our knowledge base of these particular models. By optimization of protocols and identification of significant outcomes and responses to chemical exposure in appropriate short-term mechanism-based genetically altered rodent models, strategies for prevention and intervention may be developed and employed to the benefit of public health.  相似文献   

5.
Colorectal cancer is a life-threatening disease that can develop spontaneously or as a complication of inflammatory bowel diseases. Mouse models are essential tools for the preclinical testing of novel therapeutic options in vivo. Here, we provide a highly reliable protocol for an experimental mouse model to study the development of colon cancers. It is based on the mutagenic agent azoxymethane (AOM), which exerts colonotropic carcinogenicity. Repeated intraperitoneal administration of AOM results in the development of spontaneous tumors within 30 weeks. As an alternative option, inflammation-dependent tumor growth can be investigated by combining the administration of AOM with the inflammatory agent dextran sodium sulfate in drinking water, which causes rapid growth of multiple colon tumors per mouse within 10 weeks. Different scoring systems including number of tumors and tumor size identify factors promoting or inhibiting tumor initiation and/or tumor progression, respectively.  相似文献   

6.
A survey has been conducted of 222 chemicals evaluated for carcinogenicity in mice and rats by the United States NCI/NTP. The structure of each chemical has been assessed for potential electrophilic (DNA-reactive) sites, its mutagenicity to Salmonella recorded, and the level of its carcinogenicity to rodents tabulated. Correlations among these 3 parameters were then sought. A strong association exists among chemical structure (S/A), mutagenicity to Salmonella (Salm.) and the extent and sites of rodent tumorigenicity among the 222 compounds. Thus, a approximately 90% correlation exists between S/A and Salm. across the 115 carcinogens, the 24 equivocal carcinogens and the 83 non-carcinogens. This indicates the Salmonella assay to be a sensitive method of detecting intrinsic genotoxicity in a chemical. Concordance between S/A and Salm. have therefore been employed as an index of genotoxicity, and use of this index reveals two groups of carcinogens within the database, genotoxic and putatively non-genotoxic. These two broad groups are characterized by different overall carcinogenicity profiles. Thus, 16 tissues were subject to carcinogenesis only by genotoxins, chief among which were the stomach, Zymbal's glands, lung, subcutaneous tissue and circulatory system. Conclusions of carcinogenicity in these 16 tissues comprised 31% of the individual chemical/tissue reports of carcinogenicity. In contrast, both genotoxins and non-genotoxins were active in the remaining 13 tissues, chief among which was the mouse liver which accounted for 24% of all chemical/tissue reports of carcinogenicity. Further, the group of 70 carcinogens reported to be active in both species and/or in 2 or more tissues contained a higher proportion of Salmonella mutagens (70%) than observed for the group of 45 single-species/single-tissue carcinogens (39%). 30% of the 83 non-carcinogens were mutagenic to Salmonella. This confirms earlier observations that a significant proportion of in vitro genotoxins are non-carcinogenic, probably due to their non-absorption or preferential detoxification in vivo. Also, only 30% of the mouse liver-specific carcinogens were mutagenic to Salmonella. This is consistent with tumors being induced in this tissue (and to a lesser extent in other tissues of the mouse and rat) by mechanisms not dependent upon direct interaction of the test chemical with DNA. Detection of 103 of the 115 carcinogens could be achieved by use of only male rats and female mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The mouse spot test, an in vivo mutation assay, has been used to assess a number of chemicals. It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484). It is however rather insensitive, animal consuming and expensive type of test. More recently several assays using transgenic animals have been developed. From data in the literature, the present study compares the results of in vivo testing of over twenty chemicals using the mouse spot test and compares them with results from the two transgenic mouse models with the best data base available, the lacI model (commercially available as the Big Blue(R) mouse), and the lacZ model (commercially available as the Mutatrade mark Mouse). There was agreement in the results from the majority of substances. No differences were found in the predictability of the transgenic animal assays and the mouse spot test for carcinogenicity. However, from the limited data available, it seems that the transgenic mouse assay has several advantages over the mouse spot test and may be a suitable test system replacing the mouse spot test for detection of gene but not chromosome mutations in vivo.  相似文献   

8.
前列腺癌鼠模型是研究前列腺癌的重要工具,目前常见以下4类:自发和诱发鼠模型,异种移植鼠模型,转基因鼠模型和基因敲除鼠模型。简要综述了前列腺癌鼠模型的研究进展。  相似文献   

9.
The known aneuploidogens, benomyl and its metabolite, carbendazim (methyl 2-benzimidazole carbamate (MBC)), were selected for the third in a series of ongoing projects with selected pesticides. Mutagenicity and carcinogenicity data submitted to the US Environmental Protection Agency's (US EPA's) Office of Pesticide Programs (OPP) as part of the registration process are examined along with data from the open literature. Mutagenicity and carcinogenicity profiles are developed to provide a complete overview and to determine whether an association can be made between benomyl- and MBC-induced mouse liver tumors and aneuploidy. Since aneuploidogens are considered to indirectly affect DNA, the framework adopted by the Agency for evaluating any mode of action (MOA) for carcinogenesis is applied to the benomyl/MBC data.Both agents displayed consistent, positive results for aneuploidy induction but mostly negative results for gene mutations. Non-linear dose responses were seen both in vitro and in vivo for aneuploidy endpoints. No evidence was found suggesting that an alternative MOA other than aneuploidy may be operative. The data show that by 14 days of benomyl treatment, events associated with liver toxicity appear to set in motion the sequence of actions that leads to neoplasms. Genetic changes (as indicated by spindle impairment leading to missegregation of chromosomes, micronucleus induction and subsequent aneuploidy in bone marrow cells) can commence within 1-24h after dosing, well within the time frame for early key events. Critical steps associated with frank tumor formation in the mouse liver include hepatotoxicity, increased liver weights, cell proliferation, hypertrophy, and other steps involving hepatocellular alteration and eventual progression to neoplasms. The analysis, however, reveals weaknesses in the data base for both agents (i.e. no studies on mouse tubulin binding, no in vivo assays of aneuploidy on the target tissue (liver), and no clear data on cell proliferation relative to dose response and time dependency). The deficiencies in defining the MOA for benomyl/MBC introduce uncertainties into the analysis; consequently, benomyl/MBC induction of aneuploidy cannot be definitively linked to mouse liver carcinogenicity at this time.  相似文献   

10.
孟晓伟  汪洁  马晴雯 《遗传》2018,40(3):207-217
唐氏综合征(Down syndrome, DS)是最常见的常染色体异常疾病,由人类21号染色体(human chromosome 21, Hsa21)的重复引起。由于Hsa21的直系同源基因分散于小鼠16、17和10号染色体上,所以用小鼠模拟人类唐氏综合征并不容易。早期的Ts65Dn小鼠虽然具有DS表型特征,但其重复片段由电离辐射产生,未包含所有Hsa21直系同源基因。2004年,Cre/LoxP重组酶系统介导的染色体编辑技术在Ts1Rhr小鼠中的成功应用,解决了特定片段重复化的难题,使DS小鼠模型在基因重复和表型模拟方面实现了精准化。本文从同源基因重复和DS表型模拟两方面简要介绍了不同时期DS小鼠模型的优势和局限,为科研人员在DS研究中对不同小鼠模型的选用提供了参考。  相似文献   

11.
This survey is a compendium of genotoxicity and carcinogenicity information of antihypertensive drugs. Data from 164 marketed drugs were collected. Of the 164 drugs, 65 (39.6%) had no retrievable genotoxicity or carcinogenicity data; this group was comprised largely of drugs marketed in a limited number of countries. The remaining 99 (60.4%) had at least one genotoxicity or carcinogenicity test result. Of these 99, 48 (48.5%) had at least one positive finding: 32 tested positive in at least one genotoxicity assay, 26 in at least one carcinogenicity assay, and 10 gave a positive result in both at least one genotoxicity assay and at least one carcinogenicity assay. In terms of correlation between results of the various genotoxicity assays and absence of carcinogenic activity in both mice and rats 2 of 44 non-carcinogenic drugs tested positive in the in vitro bacterial mutagenesis assay, 2 of 9 tested positive in the mouse lymphoma assay, none of 14 tested positive for gene mutation at the hprt locus, 5 of 25 tested positive in in vitro cytogenetic assays, none of 31 in in vivo cytogenetic assays, and none of 14 in inducing DNA damage and/or repair in in vitro and/or in vivo assays. Concerning the predictivity of genetic toxicology findings for long-term carcinogenesis assays, 75 drugs had both genotoxicity and carcinogenicity data; of these 37 (49.3%) were neither genotoxic nor carcinogenic, 14 (18.7%) were non-carcinogens which tested positive in at least one genotoxicity assay, 14 (18.7%) were carcinogenic in at least one sex of mice or rats but tested negative in genotoxicity assays, and 10 (13.3%) were both genotoxic and carcinogenic. Only 42 of the 164 marketed antihypertensives (25.6%) had all data required by the guidelines for testing of pharmaceuticals.  相似文献   

12.
Aromatic amines represent one of the most important classes of industrial and environmental chemicals: many of them have been reported to be powerful carcinogens and mutagens, and/or hemotoxicants. Their toxicity has been studied also with quantitative structure-activity relationship (QSAR) methods: these studies are potentially suitable for investigating mechanisms of action and for estimating the toxicity of compounds lacking experimental determinations. In this paper, we first summarized the QSAR models for the rodent carcinogenicity of the aromatic amines. The gradation of potency of the carcinogenic amines depended firstly on their hydrophobicity, and secondly on electronic (reactivity, propensity to be metabolically transformed) and steric properties. On the contrary, the difference between carcinogenic and non-carcinogenic aromatic amines depended mainly on electronic and steric properties. These QSARs can be used directly for estimating the carcinogenicity of aromatic amines. A two-step prediction is possible: (1) estimation of yes/no activity; (2) if the answer from step 1 is yes, then prediction of the degree of potency. The QSARs for rodent carcinogenicity were put in a wider context by comparing them with those for: (a) Salmonella mutagenicity; (b) general toxicity; (c) enzymatic reactions; (d) physical-chemical reactions. This comparative QSAR exercise generated a coherent global picture of the action mechanisms of the aromatic amines. The QSARs for carcinogenicity were similar to those for Salmonella mutagenicity, thus pointing to a similar mechanism of action. On the contrary, the general toxicity QSARs (both in vitro and in vivo systems) were mostly based on hydrophobicity, pointing to an aspecific mechanism of action much simpler than that for carcinogenicity and mutagenicity. The oxidation of the amines (first step in the main metabolic pathway leading to carcinogenic and mutagenic species) had identical QSARs in both enzymatic and physical-chemical systems, thus providing evidence for the link between simple chemical reactions and those in biological systems. The results show that it is possible to generate mechanistically and statistically sound QSAR models for rodent carcinogenicity, and indirectly that the rodent bioassay is a reliable source of good quality data.  相似文献   

13.
Genotoxicity of a variety of nitroarenes and other compounds was examined in DNA-repair tests with rat or mouse hepatocytes. Out of 15 nitroarenes tested, 9 compounds, i.e., 1-nitropyrene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 1-nitro-3-acetoxypyrene, 3-nitrofluoranthene, 2-nitrofluorene, 2,7-di-nitrofluorene and 5-nitroacenaphthene elicited positive response of DNA repair in the tests with rat and mouse hepatocytes. Among the positive chemicals, the DNA-repair level of the 3 dinitropyrene isomers was much higher than other nitroarenes. The results indicate that a number of nitroarenes are metabolically activated in the primary culture of rodent hepatocytes, and suggest potential carcinogenicity of 1-nitropyrene and 1-nitro-3-acetoxypyrene the carcinogenicity of which is either not clear or unknown. Of the other nitro compounds, 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide as well as 4-nitroquinoline 1-oxide were clearly genotoxic in the assays with hepatocytes of both species. However, 5-nitro-2-furaldehyde semicarbazone was negative in both assays with hepatocytes of 2 species.  相似文献   

14.
Mutation in the “nude” gene, i.e. the FoxN1 gene, induces a hairless phenotype and a rudimentary thymus gland in mice (nude mouse) and humans (T-cell related primary immunodeficiency). Conventional FoxN1 gene knockout and transgenic mouse models have been generated for studies of FoxN1 gene function related to skin and immune diseases, and for cancer models. It appeared that FoxN1''s role was fully understood and the nude mouse model was fully utilized. However, in recent years, with the development of inducible gene knockout/knockin mouse models with the loxP-Cre(ERT) and diphtheria toxin receptor-induced cell abolished systems, it appears that the complete repertoire of FoxN1''s roles and deep-going usage of nude mouse model in immune function studies have just begun. Here we summarize the research progress made by several recent works studying the role of FoxN1 in the thymus and utilizing nude and “second (conditional) nude” mouse models for studies of T-cell development and function. We also raise questions and propose further consideration of FoxN1 functions and utilizing this mouse model for immune function studies.  相似文献   

15.
人体肿瘤的形成是一个复杂的过程.在这个过程中会发生许多基因突变,这些突变中只有较少一部分具有驱动肿瘤发生的作用,大部分突变作为伴随性变化对肿瘤的发生并无明确的贡献.要确定哪些变异具有驱动肿瘤发生的作用及其作用机制,需要通过实验验证.伴随着新的研究技术的出现,鉴定肿瘤驱动基因的手段也不断演变.从早期主要是从动物诱癌实验、...  相似文献   

16.
17.
Dunson DB  Haseman JK 《Biometrics》1999,55(3):965-970
We describe a method for modeling carcinogenicity from animal studies where the data consist of counts of the number of tumors present over time. The research is motivated by applications to transgenic rodent studies, which have emerged as an alternative to chronic bioassays for screening possible carcinogens. In transgenic mouse studies, the endpoint of interest is frequently skin papilloma, with weekly examinations determining how many papillomas each animal has at a particular point in time. It is assumed that each animal has two unobservable latent variables at each time point. The first indicates whether or not the tumors are in a multiplying state and the second is the potential number of additional tumors if the tumors are in a multiplying state. The product of these variables follows a zero-inflated Poisson distribution, and the EM algorithm can be used to maximize the observed-data pseudo-likelihood, based on the latent variables. A generalized estimating equations robust variance estimator adjusts for dependency among outcomes within individual animals. The method is applied to testing for a dose-related trend in both tumor incidence and multiplicity in carcinogenicity studies.  相似文献   

18.
为了在小鼠胚胎于细胞(ES)中引起神经细胞cdc2类激酶调节亚基p35Nck5a基因的定点 重复,采用常规的分子克隆技术,构建得到长约12.2kb的基因重复性打靶载体pGDTV。用电 穿孔法将线性化的pGDTV载体转入ES细胞,经过G418和GANC分组药物选择,获得245个 双药物抗性的细胞克隆,细胞存活率为6.22 × 10-5。经PCR和基因组Southern杂交鉴定,2个 ES细胞克隆发生了p35Nck5a基因的重复,同源重组率为5.08×10-7、负向选择系统的应用使 同源重组事件的富集效率提高了7倍。为建立Alzheimer病的转基因小鼠模型打下了基础。  相似文献   

19.
The genotoxicity of 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers selected from IARC (International Agency for Research on Cancer) groups 1, 2A, and 2B was evaluated in eight mouse organs with the alkaline single cell gel electrophoresis (SCGE) (comet) assay. Groups of four mice were treated once intraperitoneally at the dose at which micronucleus tests had been conducted, and the stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and/or 24 h later. All chemicals were positive in the SCGE assay in at least one organ. Of the 22 mono-functional alkylating agents, over 50% were positive in all organs except the brain and bone marrow. The two subsets of mono-functional alkylating agents differed in their bone marrow genotoxicity: only 1 of the 9 dialkyl N-nitrosoamines was positive in bone marrow as opposed to 8 of the 13 other alkylating agents, reflecting the fact that dialkyl N-nitrosoamines are poor micronucleus inducers in hematopoietic cells. The two groups of mono-functional alkylating agents also differ in hepatic carcinogenicity in spite of the fact that they are similar in hepatic genotoxicity. While dialkyl N-nitrosoamines produce tumors primarily in mouse liver, only one (styrene-7,8-oxide) out of 10 of the other type of mono-functional alkylating agents is a mouse hepatic carcinogen. Taking into consideration our previous results showing high concordance between hepatic genotoxicity and carcinogenicity for aromatic amines and azo compounds, a possible explanation for the discrepancy might be that chemicals that require metabolic activation show high concordance between genotoxicity and carcinogenicity in the liver. A high percent of the 10 DNA crosslinkers were positive in the SCGE assay in the gastrointestinal mucosa, but less than 50% were positive in the liver and lung. In this study, we allowed 10 min alkali-unwinding to obtain low and stable control values. Considering that DNA crosslinking lesions can be detected as lowering of not only positive but also negative control values, low control values by short alkali-treatment might make it difficult to detect DNA crosslinking lesions. In conclusion, although both mono-functional alkylating agents and DNA crosslinkers are genotoxic in mouse multiple organs, the genotoxicity of DNA crosslinkers can be detected in the gastrointestinal organs even though they were given intraperitoneally followed by the short alkali-treatment.  相似文献   

20.
Historically, small fish species have proven useful both as environmental sentinels and as versatile test animals in toxicity and carcinogenicity bioassays. They can be bred in large numbers, have low maintenance and bioassay costs, and have a low background incidence of tumors. However, more mechanistic information is needed to help validate the information garnered from these models and to keep pace with other more fully developed animal models. This paper focuses on mechanistic considerations when using small fish models for carcinogenicity testing. Several small aquarium fish species have proven useful. The Japanese medaka is perhaps the best characterized small fish model for carcinogenicity testing; however, the zebrafish is emerging as an important model because it is well characterized genetically. Both route and methodology of exposure may affect the outcome of the study. Most studies have been conducted by introducing the test compound into the ambient water, but dietary exposures and embryo microinjection have also been used. Other considerations in study design include use of an initiating carcinogen, such as diethlynitrosamine, and differences in xenobiotic metabolism, such as the fact that fish CYP2B is refractory to phenobarbital induction. The small size of these models has perhaps limited some types of mechanistic studies, such as formation and repair of DNA adducts in response to carcinogen exposure. However, improved analytical methods are allowing greater resolution and should be applied to small fish species. Slide-based methods such as immunohistochemistry are an important adjunct to routine histopathology and should be included in study design. However, there is a need for development of more species-specific antibodies for fish research. There is also a need for more fish-specific data on cytokines, serum biochemistry, and oncogenes to strengthen the use of these important test models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号