首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 947 毫秒
1.
Two-dimensional 1H-NMR studies have been performed on ribonuclease F1 (RNase F1), which contains 106 amino acid residues. Sequence-specific resonance assignments were accomplished for the backbone protons of 99 amino acid residues and for most of their side-chain protons. The three-dimensional structures were constructed on the basis of 820 interproton-distance restraints derived from NOE, 64 distance restraints for 32 hydrogen bonds and 33 phi torsion-angle restraints. A total of 40 structures were obtained by distance geometry and simulated-annealing calculations. The average root-mean-square deviation (residues 1-106) between the 40 converged structures and the mean structure obtained by averaging their coordinates was 0.116 +/- 0.018 nm for the backbone atoms and 0.182 +/- 0.015 nm for all atoms including the hydrogen atoms. RNase F1 was determined to be an alpha/beta-type protein. A well-defined structure constitutes the core region, which consists of a small N-terminal beta-sheet (beta 1, beta 2) and a central five-stranded beta-sheet (beta 3-beta 7) packed on a long helix. The structure of RNase F1 has been compared with that of RNase T1, which was determined by X-ray crystallography. Both belong to the same family of microbial ribonucleases. The polypeptide backbone fold of RNase F1 is basically identical to that of RNase T1. The conformation-dependent chemical shifts of the C alpha protons are well conserved between RNase F1 and RNase T1. The residues implicated in catalysis are all located on the central beta-sheet in a geometry similar to that of RNase T1.  相似文献   

2.
The solution structure of recombinant wild-type hirudin and of the putative active site mutant Lys-47----Glu has been investigated by nuclear magnetic resonance (NMR) spectroscopy at 600 MHz. The 1H NMR spectra of the two hirudin variants are assigned in a sequential manner with a combination of two-dimensional NMR techniques. Some assignments made in our previous paper [Sukumaran, D. K., Clore, G. M., Preuss, A., Zarbock, J., & Gronenborn, A. M. (1987) Biochemistry 26, 333-338] were found to be incorrect and are now corrected. Analysis of the NOE data indicates that hirudin consists of an N-terminal compact domain (residues 1-49) held together by three disulfide linkages and a disordered C-terminal tail (residues 50-65) which does not fold back on the rest of the protein. This last observation corrects conclusions drawn by us previously on hirudin extracted from its natural source, the leech Hirudo medicinalis. The improved sensitivity of the 600-MHz spectrometer relative to that of our old 500-MHz spectrometer, the availability of two variants with slightly different chemical shifts, and the additional information arising from stereospecific assignments of methylene beta-protons and methyl protons of valine have permitted the determination of the solution structure of hirudin with much greater precision than before. Structure calculations on the N-terminal domain using the hybrid distance geometry-dynamical simulated annealing method were based on 685 and 661 approximate interproton distance restraints derived from nuclear Overhauser enhancement (NOE) data for the wild-type and mutant hirudin, respectively, together with 16 distance restraints for 8 backbone hydrogen bonds identified on the basis of NOE and amide NH exchange data and 26 phi backbone and 18 chi 1 side-chain torsion angle restraints derived from NOE and three-bond coupling constant data. A total of 32 structures were computed for both the wild-type and mutant hirudin. The structure of residues 2-30 and 37-48 which form the core of the N-terminal domain is well determined in both cases with an average atomic rms difference between the individual structures and the respective mean structures of approximately 0.7 A for the backbone atoms and approximately 1 A for all atoms. As found previously, the orientation of the exposed finger of antiparallel beta-sheet (residues 31-36) with respect to the core could not be determined on the basis of the present data due to the absence of any long-range NOEs between the exposed finger and the core.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
S Edmondson  N Khan  J Shriver  J Zdunek  A Gr?slund 《Biochemistry》1991,30(47):11271-11279
A model of the structure of the 22 amino acid residue gastrointestinal peptide hormone motilin in 30% hexafluoro-2-propanol has been obtained by using distance constraints obtained from two-dimensional nuclear Overhauser enhancements. A set of initial structures have been generated by using the distance geometry program DIANA, and 10 of these structures have been refined by using restrained molecular dynamics (AMBER). The resulting structures are virtually indistinguishable in terms of constraint violations and energies and display less than 0.5-A root mean square deviations (RMSD) of the backbone atom positions from Tyr7 to Lys20. A comparison of back-calculated and experimental NOE intensities indicates that RMSD's are not the best indicators of the goodness of fit or of the precision with which the structure is defined. The structure was further refined by fitting the experimental NOE data using an iterative full relaxation matrix analysis. The mean error between the observed and calculated backbone NOE intensities for the final refined structure was 0.23 for the full length of the molecule, 0.18 for the region from Glu9 to Lys20, and 0.29 for the region from Phe1 to Gly8. R factors for the same regions were 0.27, 0.19, and 0.43, respectively. All of the NOE-determined structures consistently display an alpha-helix which extends from Glu9 to Lys20. Considerable lack of definition of structure exists at the amino and carboxyl ends of the molecule and also in the vicinity of Thr6-Tyr7-Gly8. A tendency to form a wide turn appears to exist over the sequence Pro3-Ile4-Phe5-Thr6, but the structure in this region is not well defined by the NOE data.  相似文献   

4.
The three-dimensional structure of the sea anemone polypeptide Stichodactyla helianthus neurotoxin I in aqueous solution has been determined using distance geometry and restrained molecular dynamics simulations based on NMR data acquired at 500 MHz. A set of 470 nuclear Overhauser enhancement values was measured, of which 216 were used as distance restraints in the structure determination along with 15 dihedral angles derived from coupling constants. After restrained molecular dynamics refinement, the eight structures that best fit the input data form a closely related family. They describe a structure that consists of a core of twisted, four-stranded, antiparallel beta-sheet encompassing residues 1-3, 19-24, 29-34, and 40-47, joined by three loops, two of which are well defined by the NMR data. The third loop, encompassing residues 7-16, is poorly defined by the data and is assumed to undergo conformational averaging in solution. Pairwise root mean square displacement values for the backbone heavy atoms of the eight best structures are 1.3 +/- 0.2A when the poorly defined loop is excluded and 3.6 +/- 1.0A for all backbone atoms. Refinement using restrained molecular dynamics improved the quality of the structures generated by distance geometry calculations with respect to the number of nuclear Overhauser enhancements violated, the size of the total distance violations and the total potential energies of the structures. The family of structures for S. heliathus neurotoxin I is compared with structures of related sea anemone proteins that also bind to the voltage-gated sodium channel.  相似文献   

5.
P J Kraulis  T A Jones 《Proteins》1987,2(3):188-201
A method to build a three-dimensional protein model from nuclear magnetic resonance (NMR) data using fragments from a data base of crystallographically determined protein structures is presented. The interproton distances derived from the nuclear Overhauser effect (NOE) data are compared to the precalculated distances in the known protein structures. An efficient search algorithm is used, which arranges the distances in matrices akin to a C alpha diagonal distance plot, and compares the NOE distance matrices for short sequential zones of the protein to the data base matrices. After cluster analysis of the fragments found in this way, the structure is built by aligning fragments in overlapping zones. The sequentially long-range NOEs cannot be used in the initial fragments search but are vital to discriminate between several possible combinations of different groups of fragments. The method has been tested on one simulated NOE data set derived from a crystal structure and one experimental NMR data set. The method produces models that have good local structure, but may contain larger global errors. These models can be used as the starting point for further refinement, e.g., by restrained molecular dynamics or interactive graphics.  相似文献   

6.
S G Kim  B R Reid 《Biochemistry》1992,31(48):12103-12116
The solution structure of the self-complementary DNA duplex [d(GCCGTTAACGGC)]2, which contains the HpaI restriction site GTTAAC, has been elucidated by two-dimensional NMR, distance geometry (DG), and NOE back-calculation methods. Initial distance constraints were determined by polynomial fitting the two-spin initial NOE rates; backbone constraints from NOE and J-coupling observations (Kim et al., 1992) were included. RMSDs between initial-distance-refined structures derived from random-embedded DG, A-DNA, and B-DNA starting structures were all in the range 0.5-1.0 A, indicating good convergence properties of the algorithm, regardless of the starting structure. A semiautomatic back-calculation refinement procedure was developed and used to generate more refined structures for which the BKCALC-simulated NOE volumes matched the experimental data. The six final structures refined from various starting structures exhibit very good agreement with the experimental data (R values = 0.18) and converge well to within 0.8-A RMSD differences for the central 8 base pairs. The torsion and pseudorotation phase angles were found to be well determined by the data, and the local helical parameters for each base step converged quite well. The final structures show that the central T6-A7 step is somewhat underwound (twist angle ca. 29 degrees), with a large negative cup and a normal (wide) minor groove width, while the T5-T6 and A7-A8 steps have a partially narrowed minor groove.  相似文献   

7.
The solution conformation of potato carboxypeptidase inhibitor (CPI) has been investigated by 1H NMR spectroscopy. The spectrum is assigned in a sequential manner by using two-dimensional NMR techniques to identify through-bond and through-space (less than 5 A) connectivities. A set of 309 approximate interproton distance restraints is derived from the two-dimensional nuclear Overhauser enhancement spectra and used as the basis of a three-dimensional structure determination by a combination of metric matrix distance geometry and restrained molecular dynamics calculations. A total of 11 converged distance geometry structures were computed and refined by using restrained molecular dynamics. The average atomic root mean square (rms) difference between the final 11 structures and the mean structure obtained by averaging their coordinates is 1.4 +/- 0.3 A for residues 2-39 and 0.9 +/- 0.2 A for residues 5-37. The corresponding values for all atoms are 1.9 +/- 0.3 and 1.4 +/- 0.2 A, respectively. The larger values for residues 2-38 relative to those for residues 5-37 arise from the fact that the positions of the N- (residues 1-4) and C- (residues 38-39) terminal tails are rather poorly determined, whereas those of the core of the protein (residues 5-37) are well determined by the experimental interproton distance data. The computed structures are very close to the X-ray structure of CPI in its complex with carboxypeptidase, and the backbone atomic rms difference between the mean of the computed structures and the X-ray structure is only 1.2 A. Nevertheless, there are some real differences present which are evidenced by significant deviations between the experimental upper interproton distance limits and the corresponding interproton distances derived from the X-ray structure. These principally occur in two regions, residues 18-20 and residues 28-30, the latter comprising part of the region of secondary contacts between CPI and carboxypeptidase in the X-ray structure.  相似文献   

8.
The three-dimensional solution structure of a 51-residue synthetic peptide comprising the dihydrolipoamide dehydrogenase (E3)-binding domain of the dihydrolipoamide succinyltransferase (E2) core of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli has been determined by nuclear magnetic resonance spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure is based on 630 approximate interproton distance and 101 torsion angle (phi, psi, chi 1) restraints. A total of 56 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions for residues 12-48 of the synthetic peptide is 1.24 A for the backbone atoms, 1.68 A for all atoms, and 1.33 A for all atoms excluding the six side chains which are disordered at chi 1 and the seven which are disordered at chi 2; when the irregular partially disordered loop from residues 31 to 39 is excluded, the rms distribution drops to 0.77 A for the backbone atoms, 1.55 A for all atoms, and 0.89 A for ordered side chains. Although proton resonance assignments for the N-terminal 11 residues and the C-terminal 3 residues were obtained, these two segments of the polypeptide are disordered in solution as evidenced by the absence of nonsequential nuclear Overhauser effects. The solution structure of the E3-binding domain consists of two parallel helices (residues 14-23 and 40-48), a short extended strand (24-26), a five-residue helical-like turn, and an irregular (and more disordered) loop (residues 31-39). This report presents the first structure of an E3-binding domain from a 2-oxo acid dehydrogenase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The three-dimensional structure of the activation domain isolated from porcine pancreatic procarboxypeptidase B was determined using 1H NMR spectroscopy. A group of 20 conformers is used to describe the solution structure of this 81 residue polypeptide chain, which has a well-defined backbone fold from residues 11-76 with an average root mean square distance for the backbone atoms of 1.0 +/- 0.1 A relative to the mean of the 20 conformers. The molecular architecture contains a four-stranded beta-sheet with the polypeptide segments 11-17, 36-39, 50-56 and 75-76, two well defined alpha-helices from residues 20-30 and 60-70, and a 3(10) helix from residues 43-46. The three helices are oriented almost exactly antiparallel to each other, are all on the same side of the beta-sheet, and the helix axes from an angle of approximately 45 degrees relative to the direction of the beta-strands. Three segments linking beta-strands and helical secondary structures, with residues 32-35, 39-43 and 56-61, are significantly less well ordered than the rest of the molecule. In the three-dimensional structure two of these loops (residues 32-35 and 56-61) are located close to each other near the protein surface, forming a continuous region of increased mobility, and the third disordered loop is separated from this region only by the peripheral beta-strand 36-39 and precedes the short 3(10) helix.  相似文献   

10.
Summary A protocol for distance geometry calculation is shown to have excellent sampling properties in the determination of three-dimensional structures of proteins from nuclear magnetic resonance (NMR) data. This protocol uses a simulated annealing optimization employing mass-weighted molecular dynamics in four-dimensional space (Havel, T.F. (1991) Prog. Biophys. Mol. Biol., 56, 43–78). It attains an extremely large radius of convergence, allowing a random coil conformation to be used as the initial estimate for the succeeding optimization process. Computations are performed with four systems of simulated distance data as tests of the protocol, using an unconstrained l-alanine 30mer and three different types of proteins, bovine pancreatic trypsin inhibitor, the -amylase inhibitor Tendamistat, and the N-terminal domain of the 434-repressor. The test of the unconstrained polypeptide confirms that the sampled conformational space is that of the statistical random coil. In the larger and more complicated systems of the three proteins, the protocol gives complete convergence of the optimization without any trace of initial structure dependence. As a result of an exhaustive conformational sampling by the protocol, the intrinsic nature of the structures generated with distance restraints derived from NMR data has been revealed. When the sampled structures are compared with the corresponding X-ray structures, we find that the averages of the sampled structures always show a certain pattern of discrepancy from the X-ray structure. This discrepancy is due to the short distance nature of the distance restraints, and correlates with the characteristic shape of the protein molecule.Abbreviations r.m.s.d. root-mean-square deviation - MD molecular dynamics - NMR nuclear magnetic resonance - NOE nuclear Overhauser enhancement - BPTI bovine pancreatic trypsin inhibitor  相似文献   

11.
The use of proton-proton nuclear Overhauser enhancement (NOE) distance information for identification of polypeptide secondary structures in non-crystalline proteins was investigated by stereochemical studies of standard secondary structures and by statistical analyses of the secondary structures in the crystal conformations of a group of globular proteins. Both regular helix and beta-sheet secondary structures were found to contain a dense network of short 1H-1H distances. The results obtained imply that the combined information on all these distances obtained from visual inspection of the two-dimensional NOE (NOESY) spectra is sufficient for determination of the helical and beta-sheet secondary structures in small globular proteins. Furthermore, cis peptide bonds can be identified from unique, short sequential proton-proton distances. Limitations of this empirical approach are that the exact start or end of a helix may be difficult to define when the adjoining residues form a tight turn, and that unambiguous identification of tight turns can usually be obtained only in the hairpins of antiparallel beta-structures. The short distances between protons in pentapeptide segments of the different secondary structures have been tabulated to provide a generally applicable guide for the analysis of NOESY spectra of proteins.  相似文献   

12.
A low resolution solution structure of the cytokine interleukin-1 beta, a 153 residue protein of molecular weight 17,400, has been determined on the basis of 446 nuclear Overhauser effect (NOE) derived approximate interproton distance restraints involving solely NH, C alpha H and C beta H protons, supplemented by 90 distance restraints for 45 hydrogen bonds, and 79 phi torsion angle restraints. With the exception of 27 C alpha H-C alpha H NOEs, all the NOEs were assigned from a three-dimensional 1H-1H NOE 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum. The torsion angle restraints were obtained from accurate 3JHN alpha coupling constants measured from a HMQC-J spectrum, while the hydrogen bonds were derived from a qualitative analysis of the NOE, coupling constant and amide exchange data. A total of 20 simulated annealing (SA) structures was computed using the hybrid distance geometry-dynamical simulated annealing method. The solution structure of IL-1 beta comprises 12 beta-strands arranged in three pseudo-symmetrical topological units (each consisting of 5 anti-parallel beta-strands), joined by turns, short loops and long loops. The core of the structure, which is made up of the 12 beta-strands, together with the turns joining strands I and II, strands VIII and IX and strands X and XI, is well determined with a backbone atomic root-mean-square (r.m.s.) distribution about the mean co-ordinate positions of 1.2(+/- 0.1) A. The loop conformations, on the other hand, are poorly determined by the current data. A comparison of the core of the low resolution solution structure of IL-1 beta with that of the X-ray structure indicates that they are similar, with a backbone atomic r.m.s. difference of only 1.5 A between the co-ordinates of the restrained minimized mean of the SA structures and the X-ray structure.  相似文献   

13.
The three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata has been determined on the basis of 489 interproton and 24 hydrogen-bonding distance restraints supplemented by 23 phi backbone and 21 chi 1 side-chain torsion angle restraints derived from nuclear magnetic resonance (NMR) measurements. A total of 42 structures is calculated by a hybrid metric matrix distance geometry-dynamical simulated annealing approach. Both the backbone and side-chain atom positions are well defined. The average atomic rms difference between the 42 individual SA structures and the mean structure obtained by averaging their coordinates is 0.67 +/- 0.12 A for the backbone atoms and 0.90 +/- 0.17 A for all atoms. The core of the protein is formed by a triple-stranded antiparallel beta-sheet composed of residues 14-16 (strand 1), 30-34 (strand 2), and 37-41 (strand 3) with an additional mini-antiparallel beta-sheet at the N-terminus (residues 6-9). The first and second strands of the triple-stranded antiparallel beta-sheet are connected by a long exposed loop (residues 17-30). A number of side-chain interactions are discussed in light of the structure.  相似文献   

14.
The structure in solution of crambin, a small protein of 46 residues, has been determined from 2D NMR data using an iterative relaxation matrix approach (IRMA) together with distance geometry, distance bound driven dynamics, molecular dynamics, and energy minimization. A new protocol based on an “ensemble” approach is proposed and compared to the more standard initial rate analysis approach and a “single structure” relaxation matrix approach. The effects of fast local motions are included and R-factor calculations are performed on NOE build-ups to describe the quality of agreement between theory and experiment. A new method for stereospecific assignment of prochiral groups, based on a comparison of theoretical and experimental NOE intensities, has been applied. The solution structure of crambin could be determined with a precision (rmsd from the average structure) of 0.7 Å on backbone atoms and 1.1 Å on all heavy atoms and is largely similar to the crystal structure with a small difference observed in the position of the side chain of Tyr-29 which is determined in solution by both J-coupling and NOE data. Regions of higher structural variability (suggesting higher mobility) are found hi the solution structure, in particular for the loop between the two helices (Gly-20 to Pro-22). © 1993 Wiley-Liss, Inc.  相似文献   

15.
Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with peptidyl-prolyl isomerase activity. In order to investigate the three-dimensional structure of the CsA/CyP complex, we have applied a variety of multidimensional NMR methods in the study of uniformly 13C-labeled CsA bound to cyclophilin. The 1H and 13C NMR signals of cyclosporin A in the bound state have been assigned, and from a quantitative interpretation of the 3D NOE data, the bound conformation of CsA has been determined. Three-dimensional structures of CsA calculated from the NOE data by using a distance geometry/simulated appealing protocol were found to be very different from previously determined crystalline and solution conformations of uncomplexed CsA. In addition, from CsA/CyP NOEs, the portions of CsA that interact with cyclophilin were identified. For the most part, those CsA residues with NOEs to cyclophilin were the same residues important for cyclophilin binding and immunosuppressive activity as determined from structure/activity relationships. The structural information derived in this study together with the known structure/activity relationships for CsA analogues may prove useful in the design of improved immunosuppressants. Moreover, the approach that is described for obtaining the structural information is widely applicable to the study of small molecule/large molecule interactions.  相似文献   

16.
Nuclear Overhauser effects (NOE) distance constraints and torsion angle constraints are major conformational constraints for nuclear magnetic resonance (NMR) structure refinement. In particular, the number of NOE constraints has been considered as an important determinant for the quality of NMR structures. Of course, the availability of torsion angle constraints is also critical for the formation of correct local conformations. In our recent work, we have shown how a set of knowledge-based short-range distance constraints can also be utilized for NMR structure refinement, as a complementary set of conformational constraints to the NOE and torsion angle constraints. In this paper, we show the results from a series of structure refinement experiments by using different types of conformational constraints--NOE, torsion angle, or knowledge-based constraints--or their combinations, and make a quantitative assessment on how the experimentally acquired constraints contribute to the quality of structural models and whether or not they can be combined with or substituted by the knowledge-based constraints. We have carried out the experiments on a small set of NMR structures. Our preliminary calculations have revealed that the torsion angle constraints contribute substantially to the quality of the structures, but require to be combined with the NOE constraints to be fully effective. The knowledge-based constraints can be functionally as crucial as the torsion angle constraints, although they are statistical constraints after all and are not meant to be able to replace the latter.  相似文献   

17.
The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D 1H NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and muO-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18+/-0.05 A for the backbone atoms and 1.39+/-0.33 A for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.  相似文献   

18.
As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of (13)C,(15)N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional (1)H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and (15)N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.  相似文献   

19.
The three-dimensional structure of a synthetic fragment of human apolipoprotein CII (apo-CII) in 35%, 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) has been determined on the basis of distance and intensity constraints derived from two-dimensional proton nuclear magnetic resonance measurements. The NOE crosspeak build-up rates were converted to distance constraints which were used in the distance geometry program DIANA. A set of one hundred structures were generated and of these ten structures were used in molecular dynamics simulations using the program XPLOR. This program enabled a direct minimization between the difference of the two-dimensional NOE intensities and those calculated from the full relaxation matrix. In this way spin diffusion is fully taken into account, which can be seen from the considerable improvement of the R-factor after the relaxation matrix refinement. These calculations show that this fragment, which corresponds to the carboxy terminal 30 amino acids of intact apo-CII and which retains its ability to activate lipoprotein lipase, is essentially flexible, but has three defined secondary structural elements. The most significant one is an -helix between residues 67 and 74. The following three residues adopt a turn-like structure. Another turn of -helix is seen between residues 56 and 59. The effect of the solvent system on the secondary structure was studied by circular dichroism spectroscopy. The results show that the mixed aqueous 35% HFP solvent induces secondary structure of a very similar nature to the one induced by sodium dodecyl sulphate.Abbreviations Apo-CII Apolipoprotein CII - CD Circular Dichroism - DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPG 1,2-dioleoyl-sn-glycero-3-phosphoglycerol - HAc Acetic Acid - HFP 1,1,1,3,3,3-hexafluoro-2-propanol - ISPA Isolated Spin Pair Approximation - NMR Nuclear Magnetic Resonance - NOE Nuclear Overhauser Enhancement - NOESY Nuclear Overhauser Enhancement Spectroscopy - RMSD Root Mean Square Deviation - SDS Sodium Dodecyl Sulfate  相似文献   

20.
The applicability of restrained molecular dynamics for the determination of three-dimensional protein structures on the basis of short interproton distances (less than 4 A) that can be realistically determined from nuclear magnetic resonance measurements in solution is assessed. The model system used is the 1.2 A resolution crystal structure of the 46 residue protein crambin, from which a set of 240 approximate distance restraints, divided into three ranges (2.5 +/- 0.5, 3.0+0.5(-1.0) and 4 +/- 1 A), is derived. This interproton distance set comprises 159 short-range ([i-j] less than or equal to 5) and 56 ([i-j] greater than 5) long-range inter-residue distances and 25 intra-residue distances. Restrained molecular dynamics are carried out using a number of different protocols starting from two initial structures: a completely extended beta-strand; and an extended structure with two alpha-helices in the same positions as in the crystal structure (residues 7 to 19, and 23 to 30) and all other residues in the form of extended beta-strands. The root-mean-square (r.m.s.) atomic differences between these two initial structures and the crystal structure are 43 A and 23 A, respectively. It is shown that, provided protocols are used that permit the secondary structure elements to form at least partially prior to folding into a tertiary structure, convergence to the correct final structure, both globally and locally, is achieved. The r.m.s. atomic differences between the converged restrained dynamics structures and the crystal structure range from 1.5 to 2.2 A for the backbone atoms and from 2.0 to 2.8 A for all atoms. The r.m.s. atomic difference between the X-ray structure and the structure obtained by first averaging the co-ordinates of the converged restrained dynamics structures is even smaller: 1.0 A for the backbone atoms and 1.6 A for all atoms. These results provide a measure with which to judge future experimental results on proteins whose crystal structures are unknown. In addition, from an examination of the dynamics trajectories, it is shown that the convergence pathways followed by the various simulations are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号