首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin H synthase 2 (PGHS-2), a highly inducible isoenzyme, is responsible for overproduction of the prostaglandins (PGs) in inflammatory sites.We established that among fish oil polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), greatly decreased interleukin-1beta (IL-1beta)-induced PGHS-2 expression in human pulmonary microvascular endothelial cells (HPMECs). Lipoxygenase products 12 (S)-hydroperoxyeicosapentaenoic acid ((S)-HpEPE), 15 (S)-HpEPE and leukotriene (LT) D5 reproduced similar inhibitory effect, suggesting that they may be the intermediate metabolites responsible for PGHS-2 down-regulation by EPA. Accordingly, the EPA effect is prevented by nordihydroguaiaretic acid (NDGA) and by REV 5901, nonspecific and specific 5-lipoxygenase inhibitors, respectively. Besides, inhibition of cyclooxygenase activity by ibuprofen, indomethacin or aspirin was not able to prevent this effect. Moreover, cyclooxygenase metabolites of EPA (PGs D3, E3 and I3) markedly potentiate IL-1beta-induced PGHS-2 expression, probably by increasing intracellular cAMP levels. Peroxisome proliferator-activated receptors (PPARs) are known to be activated by fatty acids (FAs) such as EPA. We found here that HPMECs express only weak amounts of PPARalpha and PPARgamma whose activation by synthetic agonists, Wy-14,643 and ciglitazone, does not cause any inhibition of IL-1beta-induced PGHS-2 expression. This finding ruled out the involvement of PPARs in the EPA inhibitory effect. In addition, we established that EPA, which failed to inhibit nuclear factor-kappaB (NF-kappaB) activation, suppressed p38 mitogen-activated protein kinase (MAPK) phosphorylation in stimulated HPMECs.Our data demonstrate that EPA, unlike DHA, down-regulates PGHS-2 expression in HPMECs probably through its 5-lipoxygenase-dependent metabolites and advocates a beneficial role for this FA in limiting inflammatory response.  相似文献   

2.
Prostaglandin H synthase 2 (PGHS-2), a highly inducible isoenzyme, is responsible for overproduction of the prostaglandins (PGs) in inflammatory sites.We established that among fish oil polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), greatly decreased interleukin-1β (IL-1β)-induced PGHS-2 expression in human pulmonary microvascular endothelial cells (HPMECs). Lipoxygenase products 12 (S)-hydroperoxyeicosapentaenoic acid ((S)-HpEPE), 15 (S)-HpEPE and leukotriene (LT) D5 reproduced similar inhibitory effect, suggesting that they may be the intermediate metabolites responsible for PGHS-2 down-regulation by EPA. Accordingly, the EPA effect is prevented by nordihydroguaiaretic acid (NDGA) and by REV 5901, nonspecific and specific 5-lipoxygenase inhibitors, respectively. Besides, inhibition of cyclooxygenase activity by ibuprofen, indomethacin or aspirin was not able to prevent this effect. Moreover, cyclooxygenase metabolites of EPA (PGs D3, E3 and I3) markedly potentiate IL-1β-induced PGHS-2 expression, probably by increasing intracellular cAMP levels. Peroxisome proliferator-activated receptors (PPARs) are known to be activated by fatty acids (FAs) such as EPA. We found here that HPMECs express only weak amounts of PPARα and PPARγ whose activation by synthetic agonists, Wy-14,643 and ciglitazone, does not cause any inhibition of IL-1β-induced PGHS-2 expression. This finding ruled out the involvement of PPARs in the EPA inhibitory effect. In addition, we established that EPA, which failed to inhibit nuclear factor-κB (NF-κB) activation, suppressed p38 mitogen-activated protein kinase (MAPK) phosphorylation in stimulated HPMECs.Our data demonstrate that EPA, unlike DHA, down-regulates PGHS-2 expression in HPMECs probably through its 5-lipoxygenase-dependent metabolites and advocates a beneficial role for this FA in limiting inflammatory response.  相似文献   

3.
4.
5.
6.
Recombinant human prostaglandin endoperoxide H synthase-1 (huPGHS-1) was characterized. huPGHS-1 has a single high-affinity heme binding site per dimer and exhibits maximal cyclooxygenase (COX) activity with one heme per dimer. Thus, huPGHS-1 functions as a conformational heterodimer having a catalytic monomer (E(cat)) with a bound heme and an allosteric monomer (E(allo)) lacking heme. The enzyme is modestly inhibited by common FAs including palmitic, stearic, and oleic acids that are not COX substrates. Studies of arachidonic acid (AA) substrate turnover at high enzyme-to-substrate ratios indicate that nonsubstrate FAs bind the COX site of E(allo) to modulate the properties of E(cat). Nonsubstrate FAs slightly inhibit huPGHS-1 but stimulate huPGHS-2, thereby augmenting AA oxygenation by PGHS-2 relative to PGHS-1. Nonsubstrate FAs potentiate the inhibition of huPGHS-1 activity by time-dependent COX inhibitors, including aspirin, all of which bind E(cat). Surprisingly, preincubating huPGHS-1 with nonsubstrate FAs in combination with ibuprofen, which by itself is a time-independent inhibitor, causes a short-lived, time-dependent inhibition of huPGHS-1. Thus, in general, having a FA bound to E(allo) stabilizes time-dependently inhibited conformations of E(cat). We speculate that having an FA bound to E(allo) also stabilizes E(cat) conformers during catalysis, enabling half of sites of COX activity.  相似文献   

7.
Recent evidence indicates that both leptin and eicosapentaenoic acids (EPA) improve insulin sensitivity. In the present study, we examined the effect of EPA on endogenous leptin expression in 3T3-L1 adipocytes to clarify whether the EPA's effect is exerted through leptin expression. EPA caused a time- and dose-dependent increase of leptin mRNA levels in 3T3-L1 adipocytes. Leptin mRNA expression was significantly increased up to 309.4 +/- 17.0% of the control by 24 h (P < 0.01; n = 6). Leptin secretion was also significantly increased up to 193.3 +/- 12.1% of the control by 24 h (P < 0.01; n = 6). EPA is a ligand for peroxisome proliferator-activated receptors (PPARs) with the highest affinity to PPARalpha. We examined the effect on leptin expression of clofibrate, a ligand for PPARalpha, bezafibrate, for PPARbeta, or troglitazone, for PPARgamma, to clarify whether these ligands for PPARs could mimic EPA-induced stimulation of leptin expression. Neither clofibrate nor bezafibrate affected leptin mRNA expression, whereas troglitazone significantly suppressed leptin mRNA expression. On the other hand, inhibition by 6-diazo-5-oxo-l-norleucine of the rate-limiting enzyme in hexosamine biosynthesis blunted EPA-induced stimulation of leptin mRNA expression and its secretion. These data suggest that EPA up-regulates leptin gene expression and its secretion probably through a hexosamine biosynthetic pathway.  相似文献   

8.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) lower risk of cardiovascular disease. The primary source of EPA and DHA is fatty fish. Plant-derived alpha linolenic acid (ALA) and stearidonic acid (SDA) could provide sustainable land-based alternatives, but their functionality is underexplored. Omega-3 fatty acids (n-3 FAs) may influence atherogenic processes through changing endothelial cell (EC) function and lowering inflammation. This study compared effects of marine- and plant-derived n-3 FAs on EC inflammatory responses. EA.hy926 cells were exposed to ALA, SDA, EPA or DHA prior to stimulation with tumor necrosis factor (TNF)-α. All FAs were shown to be incorporated into ECs in a dose-dependent manner. SDA (50 μM) decreased both production and cell-surface expression of intercellular adhesion molecule (ICAM)-1; however EPA and DHA resulted in greater reduction of ICAM-1 production and expression. EPA and DHA also significantly lowered production of monocyte chemoattractant protein 1, interleukin (IL)-6 and IL-8. ALA, SDA and DHA (50 μM) all reduced adhesion of THP-1 monocytes to EA.hy926 cells. DHA significantly decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)p105 gene expression and phosphorylated NFκBp65 protein. Both EPA and DHA (50 μM) significantly decreased cyclooxygenase (COX)-2 protein. Thus, both marine-derived n-3 FAs, particularly DHA, had potent anti-inflammatory effects in this EC model. Of the plant-derived n-3 FAs, SDA showed the greatest inhibition of inflammation. Although neither ALA nor SDA reproduced the anti-inflammatory effects of EPA and DHA in this model, there is some potential for SDA to be a sustainable anti-inflammatory alternative to the marine n-3 FAs.  相似文献   

9.
10.
11.
We have prepared a monoclonal antibody, C-262, to a synthetic peptide that contains the carboxy-terminal 14 amino acids from progesterone receptors (PR). This sequence is 100% conserved in all species of PRs that have been cloned to date, suggesting that this antibody will recognize all mammalian and avian PR. The C-262 antibody recognizes both native and denatured forms of the receptor. However, it does not recognize PR when they are bound to the hormone agonists progesterone or R5020. Surprisingly the antibody does recognize PR when they are bound to the steroid antagonist RU486. This suggests that progestin agonists induce a conformational change in the receptor that occludes the C-262 epitope in the carboxyl-terminus, whereas unliganded receptors and receptors bound with RU486 assume distinct conformations that leaves the C-terminal tail accessible to the C-262 antibody.  相似文献   

12.
13.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that modulate target gene expression in response to fatty acid ligands. Their regulation by post-translational modifications has been reported but is poorly understood. In the present study, we investigated whether ligand binding affects the turnover and ubiquitination of the PPARbeta subtype (also known as PPARdelta). Our data show that the ubiquitination and degradation of PPARbeta is not significantly influenced by the synthetic agonist GW501516 under conditions of moderate PPARbeta expression. By contrast, the overexpression of PPARbeta dramatically enhanced its degradation concomitant with its polyubiquitination and the formation of high molecular mass complexes containing multiple, presumably oligomerized PPARbeta molecules that lacked stoichiometical amounts of the obligatory PPARbeta dimerization partner, retinoid X receptor. The formation of these apparently aberrant complexes, as well as the ubiquitination and destabilization of PPARbeta, were strongly inhibited by GW501516. Our findings suggest that PPARbeta is subject to complex post-translational regulatory mechanisms that partly may serve to safeguard the cell against deregulated PPARbeta expression. Furthermore, our data have important implications regarding the widespread use of overexpression systems to evaluate the function and regulation of PPARs.  相似文献   

14.
Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors.  相似文献   

15.
We have recently shown that vitamin D3 (cholecalciferol) absorption is not a simple passive diffusion but involves cholesterol transporters. As free fatty acids (FAs) modulate cholesterol intestinal absorption and metabolism, we hypothesized that FAs may also interact with vitamin D absorption. Effects of FAs were evaluated at different levels of cholecalciferol intestinal absorption. First, the physicochemical properties of micelles formed with different FAs were analyzed. The micelles were then administered to human Caco-2 cells in culture to evaluate FA effects on (i) cholecalciferol uptake and basolateral efflux and (ii) the regulation of genes coding proteins involved in lipid absorption process. Micellar electric charge was correlated with both FA chain length and degree of unsaturation. Long-chain FAs at 500 μM in mixed micelles decreased cholecalciferol uptake in Caco-2 cells. This decrease was annihilated as soon as the long-chain FAs were mixed with other FAs. Oleic acid significantly improved cholecalciferol basolateral efflux compared to other FAs. These results were partly explained by a modulation of genes coding for lipid transport proteins such as Niemann-pick C1-like 1 and scavenger receptor class B type I. The data reported here show for the first time that FAs can interact with cholecalciferol intestinal absorption at different key steps of the absorption process. Cholecalciferol intestinal absorption may thus be optimized according to oil FA composition.  相似文献   

16.
In response to a chronic high plasma concentration of long-chain fatty acids (FAs), the heart is forced to increase the uptake of FA at the cost of glucose. This switch in metabolic substrate uptake is accompanied by an increased presence of the FA transporter CD36 at the cardiac plasma membrane and over time results in the development of cardiac insulin resistance and ultimately diabetic cardiomyopathy. FA can interact with peroxisome proliferator-activated receptors (PPARs), which induce upregulation of the expression of enzymes necessary for their disposal through mitochondrial β-oxidation, but also stimulate FA uptake. This then leads to a further increase in FA concentration in the cytoplasm of cardiomyocytes. These metabolic changes are supposed to play an important role in the development of cardiomyopathy. Although the onset of this pathology is an increased FA utilization by the heart, the subsequent lipid overload results in an increased production of reactive oxygen species (ROS) and accumulation of lipid intermediates such as diacylglycerols (DAG) and ceramide. These compounds have a profound impact on signaling pathways, in particular insulin signaling. Over time the metabolic changes will introduce structural changes that affect cardiac contractile characteristics. The present mini-review will focus on the lipid-induced changes that link metabolic perturbation, characteristic for type 2 diabetes, with cardiac remodeling and dysfunction.  相似文献   

17.
Plasma and red blood cell fatty-acid (RBC FA) composition have both been proposed as biomarkers for cardiovascular (CV) risk. Since case/control studies using samples obtained after a CV constitute a source of supporting evidence, demonstrating that FA profiles are not affected by a myocardial infarction (MI) would improve our understanding of the usefulness of such studies. The primary goal of the present study was to determine the impact of an MI on RBC and whole plasma eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels and to do so with sufficient power to conclude that there was no effect. FA profiles were obtained from rats 24 h after an MI or a sham-MI and compared to control animals by tests for differences and equivalence. In RBCs, neither DHA nor EPA was changed and were statistically equivalent in control and MI rats, as were a majority of other FAs and FA composite indices; only shingolipid-associated fatty acids had abundances that were changed in either MI or sham-MI animals. In whole plasma 8 of 22 FAs were changed in MI or sham-MI rats, including EPA which was reduced from 2.53 (2.3, 2.8)% to 1.71 (1.4, 2)%; mean (95% CI). In conclusion, the levels of EPA, DHA, and most other FAs in RBCs are unaffected by an MI or by sham surgery, whereas the same cannot be said of plasma. This finding suggests that differences between cases and controls have prognostic implications.  相似文献   

18.
GPR40 was formerly an orphan G protein-coupled receptor whose endogenous ligands have recently been identified as free fatty acids (FFAs). The receptor, now named FFA receptor 1, has been implicated in the pathophysiology of type 2 diabetes and is a drug target because of its role in FFA-mediated enhancement of glucose-stimulated insulin release. Guided by molecular modeling, we investigated the molecular determinants contributing to binding of linoleic acid, a C18 polyunsaturated FFA, and GW9508, a synthetic small molecule agonist. Twelve residues within the putative GPR40-binding pocket including hydrophilic/positively charged, aromatic, and hydrophobic residues were identified and were subjected to site-directed mutagenesis. Our results suggest that linoleic acid and GW9508 are anchored on their carboxylate groups by Arg(183), Asn(244), and Arg(258). Moreover, His(86), Tyr(91), and His(137) may contribute to aromatic and/or hydrophobic interactions with GW9508 that are not present, or relatively weak, with linoleic acid. The anchor residues, as well as the residues Tyr(12), Tyr(91), His(137), and Leu(186), appear to be important for receptor activation also. Interestingly, His(137) and particularly His(86) may interact with GW9508 in a manner dependent on its protonation status. The greater number of putative interactions between GPR40 and GW9508 compared with linoleic acid may explain the higher potency of GW9508.  相似文献   

19.
PPAR (peroxisome proliferator-activated receptor) pan agonists play a critical role in treating metabolic diseases, especially the Type-2 diabetes mellitus (T2DM). GlaxoSmithKline's sodelglitazar (GW677954) is one of the potent PPAR pan agonists, which is currently being investigated in Phase II clinical trials for the treatment of T2DM and its complications. The present study was aimed at investigation into the effect of sodelglitazar at the binding pockets of PPARs. The Schrodinger Suite program (2009) was used for the molecular docking, while the GROMACS program used for the molecular dynamics (MD) simulations. The results thus obtained showed that sodelglitazar being docked well in the active site of PPARs. It was revealed by the MD simulations that the structures of the receptors remained quite stable during the simulations and that the important AF-2 helix showed less flexibility after binding with sodelglitazar. Also, it was observed that sodelglitazar could periodically form hydrogen bonds with the AF-2 helix of PPARs to stabilize the AF-2 helix in an active conformation. Our findings have confirmed that GlaxoSmithKline's sodelglitazar can activate the PPARs, which is quite consistent with the previous biological studies.  相似文献   

20.
前列腺素核受体系统信号转导及基因表达调控   总被引:1,自引:0,他引:1  
脂肪酸和前列腺素等脂代谢的产物不仅通过膜受体起作用,也可以通过与核受体结合来调节基因表达.前列腺素I2(PGI2)既可以与G蛋白偶联的细胞表面IP受体起作用,也可以通过核受体过氧化物酶体增殖因子活化受体(PPARs)发挥生物学功能.前列腺素E2(PGE2)的受体(EPs)不仅仅在质膜上有,最近在核膜上也发现了EPs受体.前列腺素核受体介导的信号转导途径与膜受体介导的信号途径不同,对于基因转录的调控机制也不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号