首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. V. Jacobsen  E. Pressman 《Planta》1979,144(3):241-248
Germination of celery seed occurred after 6 d of imbibition in light. During this time the embryo enlarged at the expense of the adjacent endosperm cells and at the time of germination was 2–3 times as long as in the dry seed. Breakdown of the endosperm cells near the root cap preceeded radicle emergence. None of these changes occurred in darkness.Endosperm digestion began adjacent to the embryo and spread radially. In degrading cells, the aleurone grains often became larger and fewer in number. The cell walls were modified and appeared to undergo partial degradation. Ultimately the cells seemed to lose their contents. In cells adjacent to the root cap, similar changes occurred except there was a transient appearance of starch grains. Radial progression of endosperm breakdown also occurred in isolated endosperm treated with gibberellin A4+7.The results indicate that (1) the stimulus for breakdown of celery endosperm emanates from the embryo in response to light; (2) the stimulus may be a gibberellin because changes in endosperm cells and the sequence of endosperm digestion during germination resemble the responses of isolated endosperm to gibberellin; and (3) the radial progression of endosperm breakdown during germination may be the result of a sequential response of cells to a uniformly applied stimulus rather than the result of gradual embryo expansion.  相似文献   

2.
Plastid development in the primary leaf of Echinochloa crus-galli (L.) Beauv. var. oryzicola (Vasing.) Ohwi was followed during 5 d of anoxic germination and growth. Plastids develop slowly from simple spheroidal proplastids into larger pleomorphic plastids with several stromal membranes and many peripheral membrane vesicles. A small prolamellar body is present at 96 h with perforated (pro)thylakoids extending into the stroma. Changes in starch grains and plastoglobuli are evidence of carbohydrate and lipid metabolism. Plastid division is indicated by dumbbell plastid profiles after 4 d of anoxia. These results demonstrate that plastids not only maintain their integrity during anaerobic germination but also show developmental changes involving an increase in internal membrane complexity, although to a lesser extent than in etiolated shoots.Abbreviation PLB prolamellar body Scientific paper No. 6167. College of Agriculture, Washington State University, Pullman  相似文献   

3.
Structurally similar proplastids occur in the shoot, scutellum, and root of the oat embryo at the start of germination. These proplastids follow several pathways of differentiation, depending on their location within an organ and on previous exposure to light. During the first 24 hr of germination morphologically similar amyloplasts are formed from the preexisting proplastids in most of the cells of the seedling. After about 24 hr in the light, unique chloroplasts begin to develop in a subepidermal ring of small cortical parenchyma cells in the coleoptile and give the organ a pale green color. At 48 and 72 hr the coleoptile chloroplasts and etioplasts are conspicuously different from the corresponding leaf plastids in morphology and ontogeny but contain typical photosynthetic grana and prolamellar bodies. Study of the ontogeny of plastids in the epidermal and nongreening parenchymal regions of dark grown coleoptiles shows that these plastids undergo significant losses in starch content, and some increase of membranes within the plastid, related to the age of the cell. Light has little effect on the structure of these plastids. It is suggested that the ontogeny of all the plastid types of the oat seedling begins with a common precursor—a relatively simple proplastid that is present at the time of germination. Starch grains showing two distinct types of erosion, apparently enzymatic, were observed in oat coleoptile plastids. In one type (grooved appearance) the starch grains are consistently associated with plastid membranes, while in the other type (irregular, spiny appearance) the starch grains are associated with the plastid stroma only. We suggest that there are two enzyme systems for metabolizing starch in oat plastids—one membrane-bound and the other free in the stroma.  相似文献   

4.
The effect of AlCl3 on endosperm reserve mobilization of rice grains or dehulled rice grains during germination was investigated. AlCl3 had no effect on grain fresh and dry masses, protein and starch contents, and α-amylase and protease activities in endosperm of germinating rice grains. However, when dehulled rice grains were treated with AlCl3, AlCl3 inhibited the decrease in fresh mass, dry mass, and starch and protein contents, and the increase in α-amylase and protease activities in endosperm. Evidence is provided to show that the hull is a barrier against influx of Al to endosperm.This work was supported by the National Science Council of the Republic of China, grant NSC92-2313-B-002-001.  相似文献   

5.
Hara  Sayuri  Falk  Heinz  Kleinig  Hans 《Planta》1985,164(3):303-307
During somatic embryogenesis in Papaver orientale tissue cultures a permanent starch accumulation and a transient triacylglycerol accumulation were observed. The degradation of the lipids during plantlet development from embryoids was paralleled by an activity increase of the glyoxylate-cycle enzymes malate synthase (EC 4.1.3.2) and isocitrate lyase (EC 4.1.3.1). Fat accumulation and breakdown was interpreted as a reflection of seed formation and germination during normal development.  相似文献   

6.
Abreu I  Costa I  Oliveira M  Cunha M  de Castro R 《Protoplasma》2006,228(1-3):131-135
The cultivar Loureiro of Vitis vinifera is one of the most economically important, recommended in almost the totality of the Regi?o Demarcada dos Vinhos Verdes. In vineyards, the grape productivity of this cultivar is normal while in others it is extremely low. The aim of this work was to study the morphology and germination of Vitis vinifera cv. Loureiro pollen with high and low productivity. The pollen grain was examined under light, transmission and scanning electron microscopy. Typically V. vinifera pollen present three furrows but in the cultivar Loureiro we found tricolporated and acolporated (without furrows or pores) pollen grains. Both pollen types present generative and vegetative cells with the usual aspect and a dense cytoplasm rich in organelles. In the acolporated pollen a continuous exine layer and an irregular intine layer were observed. Differences were found in the starch accumulation, since only in tricolporated pollen abundant plastids filled with numerous starch granules were observed. To determine the causes of the low productivity of this cultivar we tested pollen viability by the fluorochromatic reaction and pollen germinability by in vitro assays. We observed that the acolporated pollen grain is viable, but no germination was recorded.  相似文献   

7.
选用耐旱性不同的两个大麦品种作为研究对象,分析其叶片结构的异同。结果表明:两个大麦品种的叶片发育可以分为幼叶萌发期、幼叶抽出期、幼叶生长期和叶片成熟期四个阶段,其中在幼叶萌发期,叶片结构无明显差异。经PAS染色,从幼叶生长期开始,耐旱性弱的Moroc 9-75,含淀粉粒的叶肉细胞少,淀粉粒颗粒小; 耐旱性强的HS 41-1,含淀粉粒的叶肉细胞多,淀粉粒颗粒大。遭受干旱胁迫后,两个品种的植株长势明显较弱,叶片短而窄; 表皮细胞角质层变厚,叶片中叶肉细胞变小,叶肉细胞胞间隙变大,叶肉细胞破裂现象增多; PAS染色反应显示,含淀粉粒的叶肉细胞减少,淀粉粒颗粒变小或基本没有; HS 41-1解体的细胞不如Moroc 9-75多。因此,在光镜下,叶片结构的差异,特别是细胞含有的淀粉粒大小与数量的区别,是植物对水分胁迫的一种适应; 同时叶脉对植物刚性的影响较大。  相似文献   

8.
利用光学显微镜和透射电镜,对葡萄属(Vitis L.)15种、1亚种和4栽培品种植物的叶片显微和超微结构进行了观察研究。结果显示:(1)东亚种群中桦叶葡萄的叶片总厚度和各组织厚度最大;北美种群的河岸葡萄和沙地葡葡叶片总厚度、上表皮厚度、栅栏组织厚度、海绵组织厚度和下表皮厚度较大,但叶片组织紧密度最小。(2)各种类间栅栏组织中叶绿体数目均多于海绵组织,且刺葡萄、桦叶葡萄、葛藟葡萄和秋葡萄叶肉细胞中叶绿体数目最多,北红、蘡薁、网脉葡萄和菱叶葡萄叶片中叶绿体数目最少,巨峰和桦叶葡萄叶绿体中含有大量的淀粉粒,桦叶葡萄、网脉葡萄、秋葡萄、葛藟葡萄、刺葡萄和华东葡萄含有较多的嗜锇颗粒。研究表明,中国野生葡萄的许多种类在叶片组织紧密度、叶绿体数量、淀粉粒数量、嗜锇颗粒数量方面均高于北美种群的河岸葡萄和沙地葡萄,具有更高的结构抗性基础。  相似文献   

9.
The effects of aqueous leachate of Nicotiana plumbaginifolia Viv. on germination, seedling growth, amylase activity, sugar and starch contents of germinated seeds of maize (Zea mays L. cv. Uttam) were examined. Effects of leachate on photosynthetic pigments, protein content, activities of nitrate reductase and some antioxidants were also studied. Higher concentration of aqueous leachate of N. plumbaginifolia reduced the germination rate (GR). However, final germination percentage remained almost unaffected. Lower concentration of leachate stimulated the amylase activity and resulted in higher sugar content and GR. The increasing concentrations of leachate inhibited the conversion of starch into sugars. Allelochemicals decreased the amount of chlorophyll a, chlorophyll b, carotenoids, protein and nitrate reductase activity (NRA). The leachate of lower concentrations stimulated the activity of peroxidase but slight decrease was recorded in higher concentration. Superoxide dismutase and catalase exhibited concentration dependent increase except in seedlings treated with 100% concentration of leachate. Impairment of various metabolic activities due to leachate resulted in decreased root and shoot length.  相似文献   

10.
Salinity induced changes in -amylase activity in three cotton cultivars (NIAB-Karishma, NIAB-86 and K-115) was studied during germination and early seedling growth under controlled conditions. The increase in NaCl concentration resulted in the decrease in -amylase activity and break down of starch into reducing and non-reducing sugars in all cultivars, however, it was more pronounced in NIAB-86. K-115 showed highest germination followed by NIAB-Karishma and NIAB-86.  相似文献   

11.
Pollen viability and germination are known to be sensitive to high temperature (HT). However, the mode by which high temperature impairs pollen functioning is not yet clear. In the present study, we investigated the effect of high temperature on changes occurring in carbohydrate of bell pepper (Capsicum annuum L. cv. Mazurka) pollen in order to find possible relations between these changes and pollen germination under heat stress. When pepper plants were maintained under a moderate HT regime (32/26 degrees C, day/night) for 8 days before flowers have reached anthesis, pollen count at anthesis was similar to that found in plants grown under normal temperatures (NT 28/22 degrees C). However, the in vitro germination, carried out at 25 degrees C, of pollen from HT plants was greatly reduced. This effect matched the marked reduction in the number of seeds per fruit in the HT plants. Maintaining the plants at high air CO2 concentration (800 &mgr;mol mol-1 air) in both temperature treatments did not affect the in vitro germination of pollen from NT plants, but restored germination to near the normal level in pollen from HT plants. Under NT conditions, starch, which was negligible in pollen at meiosis (8 days before anthesis, A-8) started to accumulate at A-4 and continued to accumulate until A-2. From that stage until anthesis, starch was rapidly degraded. On the other hand, sucrose concentration rose from stage A-4 until anthesis. Acid invertase (EC 3.2.1.26) activity rose parallel with the increase of sucrose. In pollen from HT plants, sucrose and starch concentrations were significantly higher at A-1 pollen than in that of NT plants. Under high CO2 conditions, the sucrose concentration in the pollen of HT plants was reduced to levels similar to those in NT pollen. In accordance with the higher sucrose concentration in HT pollen, the acid invertase activity in these pollen grains was lower than in NT pollen. The results suggest that the higher concentrations of sucrose and starch in the pollen grains of HT plants may result from reduction in their metabolism under heat stress. Elevated CO2 concentration, presumably by increasing assimilate availability to the pollen grain, may alleviate the inhibition of sucrose and starch metabolism, thereby increasing their utilization for pollen germination under the HT stress. Acid invertase may have a regulatory role in this system.  相似文献   

12.
The residual starches of germinating wheat and barley grains show similar structural changes. Germinating wheat grains produce malto-oligosaccharides and dextrins. The starch of wrinkled-seeded peas showed some structural changes during germination, but the starch from senescing tobacco leaves showed none. Neither peas nor tobacco produced malto-oligosaccharides or dextrins at any stage. Wrinkled-seeded peas showed some differences to smooth-seeded peas in enzyme content, and starch was probably degraded by phosphorylase initially with α-amylase acting after 3 days. In senescing tobacco leaves the only significant enzyme activities were α-amylase and maltase. Wheat closely resembled barley in showing amylolytic breakdown.  相似文献   

13.
The regulation of developmental pathways in cultured microspores of tobacco (Nicotiana tabacum L) and snapdragon (Antirrhinum majus L) by medium pH is described for the first time. Unicellular tobacco and snapdragon microspores developed into normal, fertile pollen when cultured in media T1 and AT3 at pH 7.0 and 25°C for 6 and 8 days, respectively. First, pollen mitosis was asymmetric and mature pollen grains were filled with starch granules and germinated upon transfer to a germination medium. However, when tobacco and snapdragon microspores were cultured in media T1 and AT3, respectively, at pH 8.0–8.5 for 4–6 days at 25 °C, the frequency of symmetric division increased significantly with the formation two nuclei of equal size, and the gametophytic pathway was blocked, as seen by the lack of starch accumulation and the inhibition of pollen germination. The transfer of these microspores to embryogenesis medium AT3 at pH 6.5 resulted in the formation of multicellular structures in both species and, in tobacco, in the formation of embryos and plants. In order to understand the possible mechanisms of the action of high pH, sucrose metabolism was analysed in isolated microspores of tobacco cultured at various pH values. Invertase (EC 3.2.1.26) activity in microspores was maximal at pH 5.0 and strongly decreased at higher pH, leading to a slow-down of sucrose cleavage. At the same time the incorporation of 14C-labelled sucrose from the medium into microspores was drastically reduced at high pH. These data suggest that isolated microspores are not able to metabolise carbohydrates at high pH and thus undergo starvation stress, which was shown earlier to block the gametophytic pathway and trigger sporophytic development.  相似文献   

14.
During germination and early seedling growth of cucumber, cotyledonarylipid and protein reserve material mobilization is controlledthrough a cotyledon/axis, source/sink relationship. Earlierwork has shown that some cotyledonary lipid breakdown is ableto occur even in the absence of the embryonic axis. This studyshows that such breakdown is probably a consequence of the formationof a transitory starch store. Excised cucumber cotyledons accumulatelarge amounts of starch following the accumulation of reservebreakdown products which can no longer be utilized in the absenceof the axis and represents a mechanism in the issue to regulatethe concentration of osmotically active substances such as sucroseand glucose. The starch content of both attached and excisedcotyledons increased during the experimental period. In theformer case, however, the increase was very small and starchlevels fell subsequently, while in the later instance the increasecontinued, reaching a maximum at day 8 after which it stabilizedat this elevated level. The increase in starch content is mostclosely correlated with an increase in the activity of boundADPG-starch synthase although soluble ADPG-starch synthase activityalso increases during the experimental period. Cucumber, Cucumis sativus, starch, food mobilization, germination, ADPG-starch synthase  相似文献   

15.
以萌发后不同时期的大豆子叶为材料,通过普通光镜和荧光显微镜观察,分析了不同时期子叶细胞的结构变化及子叶细胞内蛋白质和淀粉含量的组织化学变化.结果表明,随着种子萌发时期的延长,子叶细胞内的蛋白质和淀粉含量逐渐减少,在子叶衰老过程中,细胞内蛋白质首先消耗殆尽,淀粉的消耗速度较蛋白质慢;大豆子叶细胞在萌发后第18天时出现典型的植物编程性死亡的形态学特征,子叶细胞内营养物质的消耗诱发子叶细胞发生细胞凋亡.  相似文献   

16.
A cDNA clone with sequence homology to soluble inorganic pyrophosphatase (IPPase) was isolated from a library of developing barley grains. The protein encoded by this clone was produced in transgenic Escherichia coli, and showed IPPase activity. In nondormant barley grains, the gene appeared to be expressed in metabolically active tissue such as root, shoot, embryo and aleurone. During imbibition, a continuous increase of the steady state mRNA level of IPPase was observed in embryos of non-dormant grains. In the embryos of dormant grains its production declined, after an initial increase. With isolated dormant and nondormant embryos, addition of recombinant IPPase, produced by E. coli, enhanced the germination rate. On the other hand, addition of pyrophosphate (PPi), substrate for this enzyme, appeared to reduce the germination rate. A role for this IPPase in germination is discussed.  相似文献   

17.
油松茎次生木质部中树脂道的发育过程和组织化学研究   总被引:4,自引:0,他引:4  
利用组织化学方法对油松茎次生木质部树脂道发育过程中上皮细胞内树脂滴和淀粉粒的动态变化进行了研究。发现在树脂道原始细胞阶段,每个原始细胞含淀粉粒较少,含树脂滴稀少。在树脂道形成阶段,淀粉粒数目较多,体积增大,树脂滴也呈递增趋势。在树脂道成熟阶段,淀粉粒数目变化不大,而体积明显变小,树脂滴的体积增大,数目减少。  相似文献   

18.
Defoliation of alfalfa (Medicago sativa L.) results in a cyclic pattern of starch degradation followed by reaccumulation in taproots. Characterization of changes in anatomical distribution of starch grains in taproots will aid our understanding of biochemical and physiological mechanisms involved in starch metabolism in taproots of this species. Our objectives were to determine the influence of defoliation on starch grain distribution and size variation in taproots of two alfalfa lines selected for contrasting concentrations of taproot starch. In addition, we used electron microscopy to examine the cellular environment of starch grains, and computer-based image optical analysis to determine how cross-sectional area of tissues influenced starch accumulation. Taproots of field-grown plants were sampled at defoliation and weekly thereafter over a 28-day period. Taproot segments were fixed in glutaraldehyde and prepared for either light or electron microscopy. Transverse sections were examined for number and size of starch grains and tissue areas were measured. Starch grains were located throughout bark tissues, but were confined primarily to ray parenchyma cells in wood tissues. During the first week of foliar regrowth after defoliation, starch grains in ray cells near the cambium disappeared first, while degradation of those near the center of the taproot was delayed. During the third and fourth weeks of regrowth, there was a uniform increase in number of starch grains per cell profile across the rays, but by 28 days after defoliation there were more starch grains in ray cells near the cambium than in cells near the center of the taproot (low starch line only). Bark tissues from both lines showed synchronous degradation and synthesis of starch grains that was not influenced greatly by cell location. Diameter of starch grains varied with cell location in medullary rays during rapid starch degradation, but was not influenced by cell position in bark tissues. Therefore, during foliar regrowth there is a spatial separation in starch degradation and synthesis in alfalfa taproots. Amyloplasts from alfalfa taproots contained numerous starch grains, prolamellar-, and electron-dense bodies. The high starch line had 23% more cross-sectional area as ray cells in wood tissues when compared to the low starch line, which may explain part of the difference in starch accumulation between these alfalfa lines.  相似文献   

19.
Murata T 《Plant physiology》1968,43(12):1899-1905
Time-sequence analyses of carbohydrate breakdown in germinating rice seeds shows that a rapid breakdown of starch reserve in endosperm starts after about 4 days of germination. Although the major soluble carbohydrate in the dry seed is sucrose, a marked increase in the production of glucose and maltooligosaccharides accompanies the breakdown of starch. Maltotriose was found to constitute the greatest portion of the oligosaccharides throughout the germination stage. α-Amylase activities were found to parallel the pattern of starch breakdown. Assays for phosphorylase activity showed that this enzyme may account for much smaller amounts of starch breakdown per grain, as compared to the amounts hydrolyzed by α-amylase. There was a transient decline in the content of sucrose in the initial 4 days of seed germination, followed by the gradual increase in later germination stages. During the entire germination stage, sucrose synthetase activity was not detected in the endosperm, although appreciable enzyme activity was present in the growing shoot tissues as well as in the frozen rice seeds harvested at the mid-milky stage. We propose the predominant formation of glucose from starch reserves in the endosperm by the action of α-amylase and accompanying hydrolytic enzyme(s) and that this sugar is eventually mobilized to the growing tissues, shoots or roots.  相似文献   

20.
Electron photomicrographs of endosperm tissue from germinating seed of Ricinus communis L. cv. Hale show proplastids which contain prominent starch grains. The content of starch in endosperm tissue increased from 500 micrograms per seed, in imbibed seed, to 1,100 micrograms per seed in 5-day-old seedlings. The maximum net rate of starch deposition was 1.1 nanomoles glucose incorporated per minute per seed. About 200 micrograms of starch remained in the endosperm 9 days after imbibition. Starch content followed the same developmental pattern as the content of sucrose, free reducing sugars, and other metabolic processes found in this tissue. Two key enzymes of starch synthesis, adenosine diphosphoglucose (ADPG) pyrophosphorylase and ADPG-starch glucosyl transferase (starch synthetase) exhibited maximum activities at 4 and 5 days after germination, respectively. The maximum activity of ADPG pyrophosphorylase was 8.17 nanomoles ADPG formed per minute per seed, whereas starch synthetase exhibited an activity of 125 nanomoles glucose incorporated per minute per seed. These levels of enzyme activity are sufficient to account for the starch synthesis observed. Other enzymes which may be involved in starch synthesis include 3-phosphoglycerate kinase which showed an activity of 8.76 units per seed, triose-P isomerase (2.56 units per seed), fructose-1,6-bisphosphate aldolase (0.99 units per seed), fructose-1,6-bisphosphatase (0.23 units per seed), phosphoglucose isomerase (12.6 units per seed), and phosphoglucomutase (9.72 units per seed). The activities of these enzymes were similar to previously reported values.

Starch synthetase was found in association with the fraction containing proplastids isolated from endosperm tissue. Of the total starch synthetase activity in the endosperm, 38% was particulate. Forty-four% of the total particulate activity of starch synthetase placed on sucrose gradients was associated with the band containing proplastids. The proplastids contained 98% of the ribulose 1,5-bisphosphate carboxylase carboxylase activity placed on the gradient.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号