首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1H-NMR spectroscopy data, such as NOE intraprotein and (bound water)/protein contacts, 3J coupling constants and deuterium exchange rates were used to determine the in-solution spatial structure of cytotoxin II from Naja naja oxiana snake venom (CTII). Exploiting information from two 1H-NMR spectral components, shown to be due to cis/trans isomerization of the Val7-Pro8 peptide bond, spatial structures of CTII minor and major forms (1 : 6) were calculated using the torsion angle dynamics algorithm of the DYANA program and then energy refined using the FANTOM program. Each form, major and minor, is represented by 20 resulting conformers, demonstrating mean backbone rmsd values of 0.51 and 0.71 A, respectively. Two forms of CTII preserve the structural skeleton as three large loops, including two beta-sheets with bend regions, and demonstrate structural differences at loop I, where cis/trans isomerization occurs. The CTII side-chain distribution constitutes hydrophilic and hydrophobic belts around the protein, alternating in the trend of the three main loops. Because of the Omega-shaped backbone, formed in participation with two bound water molecules, the tip of loop II bridges the tips of loops I and III. This ensures the continuity of the largest hydrophobic belt, formed with the residues of these tips. Comparison revealed pronounced differences in the spatial organization of the tips of the three main loops between CTII and previous structures of homologous cytotoxins (cardiotoxins) in solution.  相似文献   

2.
The cardiotoxin (cytotoxin II, or CTII) isolated from cobra snake (Naja oxiana) venom is a 60-residue basic membrane-active protein featuring three-finger beta sheet fold. To assess possible modes of CTII/membrane interaction 31P- and 1H-NMR spectroscopy was used to study binding of the toxin and its effect onto multilamellar vesicles (MLV) composed of either zwitterionic or anionic phospholipid, dipalmitoylglycerophosphocholine (Pam2Gro-PCho) or dipalmitoylglycerophosphoglycerol (Pam2Gro-PGro), respectively. The analysis of 1H-NMR linewidths of the toxin and 31P-NMR spectral lineshapes of the phospholipid as a function of temperature, lipid-to-protein ratios, and pH values showed that at least three distinct modes of CTII interaction with membranes exist: (a) nonpenetrating mode; in the gel state of the negatively charged MLV the toxin is bound to the surface electrostatically; the binding to Pam2Gro-PCho membranes was not observed; (b) penetrating mode; hydrophobic interactions develop due to penetration of the toxin into Pam2Gro-PGro membranes in the liquid-crystalline state; it is presumed that in this mode CTII is located at the membrane/water interface deepening the side-chains of hydrophobic residues at the tips of the loops 1-3 down to the boundary between the glycerol and acyl regions of the bilayer; (c) the penetrating mode gives way to isotropic phase, stoichiometrically well-defined CTII/phospholipid complexes at CTII/lipid ratio exceeding a threshold value which was found to depend at physiological pH values upon ionization of the imidazole ring of His31. Biological implications of the observed modes of the toxin-membrane interactions are discussed.  相似文献   

3.
The hypothesis that local conformational differences of the snake venom cardiotoxins (cytotoxins, CT) may play a significant role in their interaction with membrane was tested by molecular modeling of the behavior of the CT A5 from the venom of Naja atra in water and at the water–membrane interface. Two models of the CT A5 spatial structure are known: the first was obtained by X-ray analysis and the second, by NMR studies in solution. A molecular dynamics (MD) analysis demonstrated that loop II of the toxin has a fixed -like shape in water, which does not depend on its initial structure. An interaction of the experimentally derived (X-ray and NMR) conformations and MD simulated conformations of CT A5 with the lipid bilayer was studied by the Monte Carlo method using the previously developed model of the implicit membrane. It is found that: (1) unlike the previously studied CT2 from the venom of cobra Naja oxiana, CT A5 has only loops I and II bound to the membrane with the involvement of a lesser number of hydrophobic residues. (2) A long hydrophobic area is formed on the surface of CT A5 due to the -like shape of loop II and the arrangement of loop I in proximity to loop II. This hydrophobic area favors the toxin embedding into the lipid bilayer. (3) The toxin retains its conformation upon interaction with the membrane. (4) The CT A5 molecule has close values of the potential energy in the membrane and in aqueous environment, which suggests dynamic character of the binding. The results of the molecular modeling indicate a definite configuration of loops I and II and, consequently, a specific character of distribution of polar and apolar properties on the toxin surface, which turns out to be the most energetically favorable.  相似文献   

4.
S C Sue  H C Jarrell  J R Brisson  W G Wu 《Biochemistry》2001,40(43):12782-12794
Recent studies of cobra P-type cardiotoxins (CTXs) have shown that the water-binding loop (loop II) plays a crucial role in toxin binding to biological membranes and in their cytotoxicity. To understand the role of bound water in the loop, the structure and dynamics of the major P-type CTX from Taiwan cobra, CTX A3, were determined by a comprehensive NMR analysis involving (1)H NOESY/ROESY, (13)C[1)H]NOE/T(1) relaxation, and (17)O triple-quantum filtered NMR. A single water molecule was found to be tightly hydrogen bonded to the NH of Met26 with a correlation time (5-7 ns) approaching the isotropic tumbling time (3.8-4.5 ns) of the CTX A3 molecule. Surprisingly, despite the relatively long residence time (ca. 5 ns to 100 micros), the bound water molecule of CTX A3 is located within a dynamic (order parameter S(2) approximately 0.7) and solvent accessible loop. Comparison among several P-type CTXs suggests that proline residues in the consensus sequence of MxAxPxVPV should play an important role in the formation of the water binding loop. It is proposed that the exchange rate of the bound water may play a role in regulating the lipid binding mode of amphiphilic CTX molecules near membrane surfaces.  相似文献   

5.
6.
The hypothesis that local conformational differences of snake venom cardiotoxins (cytotoxins, CTs) may play a significant role in their interaction with membrane was tested by molecular modeling of the behavior of the CT A5 from the venom of Naja atra in water and at the water-membrane interface. Two models of the CT A5 spatial structure are known: the first was obtained by X-ray analysis and the second, by NMR studies in solution. A molecular dynamics (MD) analysis demonstrated that loop II of the toxin has a fixed omega-like shape in water, which does not depend on its initial structure. Interaction of the experimentally derived (X-ray and NMR) conformations and MD-simulated conformations of CT A5 with the lipid bilayer was studied by the Monte Carlo method using the previously developed model of the implicit membrane. The following was found: (1) Unlike the previously studied CT2 from the venom of cobra Naja oxiana, CT A5 has only loops I and II bound to the membrane, with the involvement of a lesser number of hydrophobic residues. (2) A long hydrophobic area is formed on the surface of CT A5 due to the omega-like shape of loop II and the arrangement of loop I in proximity to loop II. This hydrophobic area favors the toxin embedding into the lipid bilayer. (3) The toxin retains its conformation upon interaction with the membrane. (4). The CT A5 molecule has close values of the potential energy in the membrane and in an aqueous environment, which suggests a dynamic character of the binding. The results of the molecular modeling indicate a definite configuration of loops I and II and, consequently, a specific character of distribution of polar and apolar properties on the toxin surface, which turns out to be the most energetically favorable. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also http://www.maik.ru.  相似文献   

7.
Fasciculin 2 and toxin alpha proteins belong to the same structural family of three-fingered snake toxins. They act on different targets, but in each case the binding region involves residues from loops I and II. The superimposition of the two structures suggests that these functional regions correspond to structurally distinct zones. Loop I, half of loop II and the C-terminal residue of fasciculin 2 were therefore transferred into the toxin alpha. The inhibition constant of the resulting chimera is only 15-fold lower than that of fasciculin 2, and as expected the potency of binding to the toxin alpha target has been lost. In order to understand the structure-function relationship between the chimera and its "parent" molecules, we solved its structure by X-ray crystallography. The protein crystallized in space group P3(1)21 with a=b=58.5 A, and c=62.3 A. The crystal structure was solved by molecular replacement and refined to 2.1 A resolution. The structure belongs to the three-fingered snake toxin family with a core of four disulphide bridges from which emerge the three loops I, II and III. Superimposition of the chimera on fasciculin 2 or toxin alpha revealed an overall fold intermediate between those of the two parent molecules. The regions corresponding to toxin alpha and to fasciculin 2 retained their respective geometries. In addition, the chimera protein displayed a structural behaviour similar to that of fasciculin 2, i.e. dimerization in the crystal structure of fasciculin 2, and the geometry of the region that binds to acetylcholinesterase. In conclusion, this structure shows that the chimera retains the general structural characteristics of three-fingered toxins, and the structural specificity of the transferred function.  相似文献   

8.
Cardiotoxins (CTXs) belonging to the three-finger toxin superfamily of snake venoms are one of principal toxic components and the protein toxins exhibit membrane lytic activities when the venoms are injected into victims. In the present study, complex formations between CTX VI (a P-type CTX from Naja atra) and CTX1 (an S-type CTX from Naja naja) on zwitterionic POPC bilayers (a major lipid component of cell membranes) have been studied in near physiological conditions for a total dynamic time scale of 1.35 μs using all-atom molecular dynamics (MD) simulations. Comprehensive analyses of the MD data revealed that residues such as Leu1, Lys2, Tyr11, Lys31, Asp57 and Arg58 of CTX VI, and Ala16, Lys30 and Arg58 of CTX1 were crucial for establishing interactions with the POPC bilayer. Moreover, loop I, along with globular head and loop II of CTX VI, and loop II of CTX1 were found to be the structural regions chiefly governing complex formation of the respective proteins with POPC. Rationalizations for the differential binding modes of CTXs and implications of the findings for designing small molecular inhibitors to the toxins are also discussed.
Graphical Abstract Binding modes of a P-type CTX and an S-type CTX towards the POPC bilayer
  相似文献   

9.
Chen TS  Chung FY  Tjong SC  Goh KS  Huang WN  Chien KY  Wu PL  Lin HC  Chen CJ  Wu WG 《Biochemistry》2005,44(20):7414-7426
Natural homologues of cobra cardiotoxins (CTXs) were classified into two structural subclasses of group I and II based on the amino acid sequence and circular dichroism analysis, but the exact differences in their three-dimensional structures and biological significance remain elusive. We show by circular dichroism, NMR spectroscopic, and X-ray crystallographic analyses of a newly purified group I CTX A6 from eastern Taiwan cobra (Naja atra) venoms that its loop I conformation adopts a type VIa turn with a cis peptide bond located between two proline residues of PPxY. A similar "banana-twisted" conformation can be observed in other group I CTXs and also in cyclolinopeptide A and its analogues. By binding to the membrane environment, group I CTX undergoes a conformational change to adopt a more extended hydrophobic domain with beta-sheet twisting closer to the one adopted by group II CTX. This result resolves a discrepancy in the CTX structural difference reported previously between solution as well as crystal state and shows that, in addition to the hydrophobicity, the exact loop I conformation also plays an important role in CTX-membrane interaction. Potential protein targets of group I CTXs after cell internalization are also discussed on the basis of the determined loop I conformation.  相似文献   

10.
The structure and interactions of the 1-24 fragment of the adrenocorticotropin hormone, ACTH (1-24), with membrane have been studied by molecular dynamics (MD) simulation in an NPT ensembles in two explicit membrane mimics, a dodecylphosphocholine (DPC) micelle and a dimyristoylphosphatidylcholine (DMPC) bilayer. The starting configuration of the peptide/lipid systems had the 1-10 segment of the peptide lying on the surface of the model membrane, the same as the equilibrated structure (by MD) of ACTH (1-10) in a DPC micelle. The simulations showed that the peptide adopts the surface-binding mode and essentially the same structure in both systems. Thus the results of this work lend support to the assumption that micelles are reasonable mimics for biological membranes for the study of peptide binding. The 1-10 segment is slightly tilted from the parallel orientation to the interface and interacts strongly with the membrane surface while the more polar 11-24 segment shows little tendency to interact with the membrane surface, preferring to reside primarily in the aqueous phase. Furthermore, the 1-10 segment of the peptide binds to the DPC micelle in essentially the same way as ACTH (1-10). Thus the MD results are in excellent agreement with the model of interaction of ACTH (1-24) with membrane derived from NMR experiments. The secondary structure and the hydration of the peptide and the interactions of specific residues with the lipid head groups have also been analyzed.  相似文献   

11.
The Bcl-2 family of proteins play a pivotal role in the regulation of programmed cell death. One of the postulated mechanisms for the function of these proteins involves the formation of ion channels in membranes. As a first step to structurally characterize these proteins in a membrane environment, we investigated the structure of a Bcl-x(L) mutant protein when incorporated into small detergent micelles. This form of Bcl-x(L) lacks the loop (residues 49-88) between helix 1 and helix 2 and the putative C-terminal transmembrane helix (residues 214-237). Below the critical micelle concentration (CMC), Bcl-x(L) binds detergents in the hydrophobic groove that binds to pro-apoptotic proteins. However, above the CMC, Bcl-x(L) undergoes a dramatic conformational change. Using NMR methods, we characterized the secondary structure of Bcl-x(L) in the micelle-bound form. Like Bcl-x(L) in aqueous solution, the structure of the protein when dissolved in dodecylphosphocholine (DPC) micelles consists of several alpha-helices separated by loops. However, the length and position of the individual helices of Bcl-x(L) in micelles differ from those in aqueous solution. The location of Bcl-x(L) within the micelle was examined from the analysis of protein-detergent NOEs and limited proteolysis. In addition, the mobility of the micelle-bound form of Bcl-x(L) was investigated from NMR relaxation measurements. On the basis of these studies, a model is proposed for the structure, dynamics, and location of Bcl-x(L) in micelles. In this model, Bcl-x(L) has a loosely packed, dynamic structure in micelles, with helices 1 and 6 and possibly helix 5 partially buried in the hydrophobic interior of the micelle. Other parts of the protein are located near the surface or on the outside of the micelle.  相似文献   

12.
We determined the distances separating five functionally important residues (Gln(10), Lys(27), Trp(29), Arg(33), and Lys(47)) of a three-fingered snake neurotoxin from the reduced disulfide bond alpha(Cys(192)-Cys(193)) located at the alphagamma interface of the Torpedo nicotinic acetylcholine receptor. Each toxin position was substituted individually for a cysteine, which was then linked to a maleimido moiety through three different spacers, varying in length from 10 to 22 A. We estimated the coupling efficiency between the 15 toxin derivatives and the reduced cystine alpha(192-193) by gel densitometry of Coomassie Blue-stained gels. A nearly quantitative coupling was observed between alphaCys(192) and/or alphaCys(193) and all probes introduced at the tip of the first (position 10) and second (position 33) loops of Naja nigricollis alpha-neurotoxin. These data sufficed to locate the reactive thiolate in a "croissant-shaped" volume comprised between the first two loops of the toxin. The volume was further restrained by taking into account the absence or partial coupling of the other derivatives. Altogether, the data suggest that alphaCys(192) and/or alphaCys(193), at the alphagamma interface of a muscular-type acetylcholine receptor, is (are) located in a volume located between 11.5 and 15.5 A from the alpha-carbons at positions 10 and 33 of the toxin, under the tip of the toxin first loop and close to the second one.  相似文献   

13.
This paper provides the first direct experimental evidence for the secondary structural features of the putative second extracellular loop (ECL II) of the kappa opioid receptor through a synthetic peptide mimic in a DPC micelle environment. These studies indicate that residues V(6)-A(15) of the ECL II peptide adopt a well-defined helical structure analogous to that formed by V(201)-C(210) of the native receptor. Moreover, a beta-turn around the D(22) (D(217)) and D(23) (D(218)) residues represents another feature of the ECL II. The NMR and fluorescent data also suggest the location of the two helical turns of TM V and the approximate location of the C-terminal end of the TM IV of the kappa opioid receptor. We modeled the kappa opioid receptor including the extracellular region of the receptor. The model of the ECL II utilized the information obtained from the NMR structural analysis of the ECL II peptide in a DPC micelle solution and the molecular dynamic simulations in a biphasic membrane environment. Our discovery of this amphiphilic helical region in the ECL II peptide by NMR and molecular modeling studies provides direct evidence that the sequence of residues V(201)-C(210) is likely to be the helical region that interacts with Dynorphin (Dyn) A [Paterlini, G., Portoghese, P. S., and Ferguson, D. M. (1997) J. Med. Chem. 40, 3254-3262]. We believe that this work offers further insight into the structural characteristics of the extracellular portions of the seven-TM kappa opioid receptor.  相似文献   

14.
The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15N{1H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV.  相似文献   

15.
The role played by noncovalent interactions in inducing a stable secondary structure onto the sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelle-bound conformations of (Ala(8,13,18))magainin 2 amide and the DPC micelle bound conformation of magainin 1 were determined. Two-dimensional NMR and molecular modeling investigations indicated that (Ala(8,13,18))magainin 2 amide bound to DPC micelles adopts a alpha-helical secondary structure involving residues 2-16. The four C-terminal residues converge to a lose beta-turn structure. (Ala(8,13,18))magainin 2 amide bound to SDS miscelles adopts a alpha-helical secondary structure involving residues 7-18. The C- and N-terminal residues exhibited a great deal of conformational flexibility. Magainin 1 bound to DPC micelles adopts a alpha-helical secondary structure involving residues 4-19. The C-terminal residues converge to a lose beta-turn structure. The results of this investigation indicate hydrophobic interactions are the major contributors to stabilizing the induced helical structure of the micelle-bound peptides. Electrostatic interactions between the polar head groups of the micelle and the cationic side chains of the peptides define the positions along the peptide backbone where the helical structures begin and end.  相似文献   

16.
Lasioglossins, a new family of antimicrobial peptide, have been shown to have strong antimicrobial activity with low haemo-lytic and mast cell degranulation activity, and exhibit cytotoxic activity against various cancer cells in vitro. In order to understand the active conformation of these pentadecapeptides in membranes, we have studied the interaction of Lasioglossin II (LL-II), one of the members of Lasioglossins family with membrane mimetic micelle Dodecylphosphocholine (DPC) by fluorescence, Circular Dichroism (CD) and two dimensional (2D) 1H NMR spectroscopy. Fluorescence experiments provide evidence of interaction of the N-terminal tryptophan residue of LL-II with the hydrophobic core of DPC micelle. CD results show an extended chain conformation of LL-II in water which is converted to a partial helical conformation in the presence of DPC micelle. Moreover we have determined the first three-dimensional NMR structure of LL-II bound to DPC micelle with rmsd of 0.36 Å. The solution structure of LL-II shows hydrophobic and hydrophilic core formation in peptide pointing towards different direction in the presence of DPC. This amphipathic structure may allow this peptide to penetrate deeply into the interfacial region of negatively charged membranes and leading to local membrane destabilization. Further we have elucidated the DNA binding ability of LL-II by agarose gel retardation and fluorescence quenching experiments.  相似文献   

17.
Topologically, platelet factor-4 kinocidins consist of distinct N-terminal extended, C-terminal helical, and interposing gamma-core structural domains. The C-terminal alpha-helices autonomously confer direct microbicidal activity, and the synthetic antimicrobial peptide RP-1 is modeled upon these domains. In this study, the structure of RP-1 was assessed using several complementary techniques. The high-resolution structure of RP-1 was determined by NMR in anionic sodium dodecyl sulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles, which approximate prokaryotic and eukaryotic membranes, respectively. NMR data indicate the peptide assumes an amphipathic alpha-helical backbone conformation in both micelle environments. However, small differences were observed in the side-chain orientations of lysine, tyrosine, and phenylalanine residues in SDS versus DPC environments. NMR experiments with a paramagnetic probe indicated differences in positioning of the peptide within the two micelle types. Molecular dynamics (MD) simulations of the peptide in both micelle types were also performed to add insight into the peptide/micelle interactions and to assess the validity of this technique to predict the structure of peptides in complex with micelles. MD independently predicted RP-1 to interact only peripherally with the DPC micelle, leaving its spherical shape intact. In contrast, RP-1 entered deeply into and significantly distorted the SDS micelle. Overall, the experimental and MD results support a preferential specificity of RP-1 for anionic membranes over zwitterionic membranes. This specificity likely derives from differences in RP-1 interaction with distinct lipid systems, including subtle differences in side chain orientations, rather than gross changes in RP-1 structure in the two lipid environments.  相似文献   

18.
Abstract

The structure and interactions of the 1–24 fragment of the adrenocorticotropin hormone, ACTH (1–24), with membrane have been studied by molecular dynamics (MD) simulation in an NPT ensembles in two explicit membrane mimics, a dodecylphosphocholine (DPC) micelle and a dimyristoylphosphatidylcholine (DMPC) bilayer. The starting configuration of the peptide/lipid systems had the 1–10 segment of the peptide lying on the surface of the model membrane, the same as the equilibrated structure (by MD) of ACTH (1–10) in a DPC micelle. The simulations showed that the peptide adopts the surface-binding mode and essentially the same structure in both systems. Thus the results of this work lend support to the assumption that micelles are reasonable mimics for biological membranes for the study of peptide binding. The 1–10 segment is slightly tilted from the parallel orientation to the interface and interacts strongly with the membrane surface while the more polar 11–24 segment shows little tendency to interact with the membrane surface, preferring to reside primarily in the aqueous phase. Furthermore, the 1–10 segment of the peptide binds to the DPC micelle in essentially the same way as ACTH (1–10). Thus the MD results are in excellent agreement with the model of interaction of ACTH (1–24) with membrane derived from NMR experiments. The secondary structure and the hydration of the peptide and the interactions of specific residues with the lipid head groups have also been analyzed.  相似文献   

19.
Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional “three-finger” snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by “three-finger” snake neurotoxins.  相似文献   

20.
Boiga dendrophila (mangrove catsnake) is a colubrid snake that lives in Southeast Asian lowland rainforests and mangrove swamps and that preys primarily on birds. We have isolated, purified, and sequenced a novel toxin from its venom, which we named denmotoxin. It is a monomeric polypeptide of 77 amino acid residues with five disulfide bridges. In organ bath experiments, it displayed potent postsynaptic neuromuscular activity and irreversibly inhibited indirectly stimulated twitches in chick biventer cervicis nerve-muscle preparations. In contrast, it induced much smaller and readily reversible inhibition of electrically induced twitches in mouse hemidiaphragm nerve-muscle preparations. More precisely, the chick muscle alpha(1)betagammadelta-nicotinic acetylcholine receptor was 100-fold more susceptible compared with the mouse receptor. These data indicate that denmotoxin has a bird-specific postsynaptic activity. We chemically synthesized denmotoxin, crystallized it, and solved its crystal structure at 1.9 A by the molecular replacement method. The toxin structure adopts a non-conventional three-finger fold with an additional (fifth) disulfide bond in the first loop and seven additional residues at its N terminus, which is blocked by a pyroglutamic acid residue. This is the first crystal structure of a three-finger toxin from colubrid snake venom and the first fully characterized bird-specific toxin. Denmotoxin illustrates the relationship between toxin specificity and the primary prey type that constitutes the snake's diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号