首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An oleandomycin glycosyltransferase (OleD GT) gene from Streptomyces antibioticus was functionally expressed in Escherichia coli BL21 (DE3) with various molecular chaperones. The purified recombinant OleD GT catalyzed glycosylation of various flavonoids: apigenin, chrysin, daidzein, genistein, kaempferol, luteolin, 4-methylumbelliferone, naringenin, quercetin and resveratrol with UDP–glucose. 4.6 μg OleD GT was readily immobilized onto 1 mg hybrid nanoparticles of Fe3O4/silica/NiO on the basis of the affinity between His-tag and NiO nanoparticles with retention of 90% activity. In batch reaction, more than 90% naringenin (20 μM) was converted to its glycoside in 5 h. The immobilized OleD GT was efficiently reused for seven times whilst maintaining >60% of the residual activity in repeated glycosylation of naringenin.  相似文献   

2.
The protective effects of nine flavonoids, including apigenin, eriodictyol, 3-hydroxyflavone, kaempherol, luteolin, quercetin, rutin, and taxifolin (Table 1), on the cytotoxicity of linoleic acid hydroperoxide (LOOH) toward rat pheochromocytoma PC12 cells were examined. The cytotoxicity was assessed by the trypan blue exclusion test and so-called MTT assay. When cells were preincubated with each flavonoid prior to LOOH exposure, quercetin, 3-hydroxyflavone, or luteolin decreased LOOH cytotoxicity toward undifferentiated cells, while only luteolin decreased efficiently LOOH cytotoxicity toward differentiated cells. On the other hand, when cells were coincubated with each flavonoid and LOOH, kaempherol, eriodictyol, quercetin, 3-hydroxyflavone, luteolin, or taxifolin decreased LOOH cytotoxicity toward undifferentiated and differentiated cells. On both preincubation prior to LOOH exposure and coincubation with LOOH, luteolin acted as the most efficiently protective agent against LOOH cytotoxicity. Further, these flavonoids showed protective effects on coincubation rather than preincubation. Flow cytometry using the fluorescence probe 2',7'-dichlorofluorescin diacetate revealed that LOOH increases the intracellular level of reactive oxygen species in undifferentiated cells in a dose-dependent manner, and that desferrioxamine mesylate suppresses the LOOH-induced increase in the level. These flavonoids suppress the LOOH-induced increase. Further, the protective effect of flavonoids on LOOH cytotoxicity correlates with the suppression of the LOOH-induced increase. These results suggest that such flavonoids are beneficial for neuronal cells under oxidative stress.  相似文献   

3.
We previously reported that oral administration of luteolin can inhibit serum tumor necrosis factor (TNF)-alpha production and several inflammatory and allergic models. We investigated here the effect of various flavonoids which resemble luteolin in structure. Lipopolysaccharide (LPS)-induced TNF-alpha production from macrophages was inhibited by treatment with flavone (luteolin, apigenin, and chrysin), flavonol (quercetin and myricetin), flavanonol (taxifolin), and anthocyanidin (cyanidin chloride) in vitro. Most of these, however, did not affect mice when administered orally. Serum TNF-alpha production was inhibited only by luteolin or apigenin, and only luteolin or quercetin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema. These results suggest that the structure of luteolin: 3',4',5,7-tetrahydroxyflavone, is most suitable for the oral anti-inflammatory activity and that existence or disappearance of a hydroxy group may cause a loss of efficiency.  相似文献   

4.
The major flavonoids in rice leaves were analyzed via LC-MS/MS after their total flavonoid extracts were hydrolyzed. The most abundant flavones were apigenin, luteolin, and tricetin. Of these, tricetin was methylated at its 3′ and 5′-hydroxyl group to form tricin, which was probablyO-glycosylated. Both 3′-O-methylated luteolin and luteolin were found in theC-glycosylated form while apigenin wasC-glycosylated. We also cloned and characterizedOsFNS, which catalyzes the reaction from flavanone (naringenin) to flavone (apigenin). Analysis of the reaction product with recombinant OsFNS showed that it indeed converts naringenin to apigenin.  相似文献   

5.
菊科(Compositae)苦苣菜属(Sonchus L.)的许多种类在民间作为药用植物使用,大多具有清热解毒、消肿排脓及凉血利湿等功效。苦苣菜属植物主要含有黄酮类及倍半萜类活性成分,其中苦苣菜(S.oleraceus L.)中的总黄酮对脑缺血缺氧小鼠及实验性肝损伤均有明显的保护作用。  相似文献   

6.
Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC50 determination. The IC50 values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results.  相似文献   

7.
The method of high-performance liquid chromatography (HPLC) with UV-vis detection was used and validated for the simultaneous determination of six flavonoids (puerarin, rutin, morin, luteolin, quercetin, kaempferol) and troxerutin in rat urine and chicken plasma. Chromatographic separation was performed using a VP-ODS column (150 mm x 4.6 mm, 5.0 microm) maintained at 35.0 degrees C. The mobile phase was a mixture of water, methanol and acetic acid (57:43:1, v/v/v, pH 3.0) at the flow rate of 0.8 mL/min. Six flavonoids and troxerutin were analyzed simultaneously with good separation. On optimum conditions, calibration curves were found to be linear with the ranges of 0.10-70.00 microg/mL (puerarin, rutin, morin, luteolin, quercetin, kaempferol) and 0.50-350.00 microg/mL (troxerutin). The detection limits were 0.010-0.050 microg/mL. The method was validated for accuracy and precision, and it was successfully applied to determine drug concentrations in rat urine and chicken plasma samples from rat and chicken that had been orally administered with six flavonoids and troxerutin.  相似文献   

8.
9.
Anaerobic degradation of flavonoids by Eubacterium ramulus   总被引:2,自引:0,他引:2  
Eubacterium ramulus, a quercetin-3-glucoside-degrading anaerobic microorganism that occurs at numbers of approximately 108/g dry feces in humans, was tested for its ability to transform other flavonoids. The organism degraded luteolin-7-glucoside, rutin, quercetin, kaempferol, luteolin, eriodictyol, naringenin, taxifolin, and phloretin to phenolic acids. It hydrolyzed kaempferol-3-sorphoroside-7-glucoside to kaempferol-3-sorphoroside and transformed 3,4-dihydroxyphenylacetic acid, a product of anaerobic quercetin degradation, very slowly to non-aromatic fermentation products. Luteolin-5-glucoside, diosmetin-7-rutinoside, naringenin-7-neohesperidoside, (+)-catechin, and (–)-epicatechin were not degraded. Cell extracts of E. ramulus contained α- and β-d-glucosidase activities, but were devoid of α-l-rhamnosidase activity. Based on the degradation patterns of these substrates, a pathway for the degradation of flavonoids by E. ramulus is proposed. Received: 1 July 1999 / Accepted: 25 September 1999  相似文献   

10.
An anaerobic, quercetin-degrading bacterium was isolated from human feces and identified as Clostridium orbiscindens by comparative 16S rRNA gene sequence analysis. The organism was tested for its ability to transform several flavonoids. The isolated C. orbiscindens strain converted quercetin and taxifolin to 3,4-dihydroxyphenylacetic acid; luteolin and eriodictyol to 3-(3,4-dihydroxyphenyl)propionic acid; and apigenin, naringenin, and phloretin to 3-(4-hydroxyphenyl)propionic acid, respectively. Genistein and daidzein were not utilized. The glycosidic bonds of luteolin-3-glucoside, luteolin-5-glucoside, naringenin-7-neohesperidoside (naringin), quercetin-3-glucoside, quercetin-3-rutinoside (rutin), and phloretin-2′-glucoside were not cleaved. Based on the intermediates and products detected, pathways for the degradation of the flavonol quercetin and the flavones apigenin and luteolin are proposed. To investigate the numerical importance of C. orbiscindens in the human intestinal tract, a species-specific oligonucleotide probe was designed and tested for its specificity. Application of the probe to fecal samples from 10 human subjects proved the presence of C. orbiscindens in 8 out of the 10 samples tested. The numbers ranged from 1.87 × 108 to 2.50 × 109 cells g of fecal dry mass−1, corresponding to a mean count of 4.40 × 108 cells g of dry feces−1.  相似文献   

11.
Anaerobic degradation of flavonoids by Clostridium orbiscindens   总被引:2,自引:0,他引:2  
An anaerobic, quercetin-degrading bacterium was isolated from human feces and identified as Clostridium orbiscindens by comparative 16S rRNA gene sequence analysis. The organism was tested for its ability to transform several flavonoids. The isolated C. orbiscindens strain converted quercetin and taxifolin to 3,4-dihydroxyphenylacetic acid; luteolin and eriodictyol to 3-(3,4-dihydroxyphenyl)propionic acid; and apigenin, naringenin, and phloretin to 3-(4-hydroxyphenyl)propionic acid, respectively. Genistein and daidzein were not utilized. The glycosidic bonds of luteolin-3-glucoside, luteolin-5-glucoside, naringenin-7-neohesperidoside (naringin), quercetin-3-glucoside, quercetin-3-rutinoside (rutin), and phloretin-2'-glucoside were not cleaved. Based on the intermediates and products detected, pathways for the degradation of the flavonol quercetin and the flavones apigenin and luteolin are proposed. To investigate the numerical importance of C. orbiscindens in the human intestinal tract, a species-specific oligonucleotide probe was designed and tested for its specificity. Application of the probe to fecal samples from 10 human subjects proved the presence of C. orbiscindens in 8 out of the 10 samples tested. The numbers ranged from 1.87 x 10(8) to 2.50 x 10(9) cells g of fecal dry mass(-1), corresponding to a mean count of 4.40 x 10(8) cells g of dry feces(-1).  相似文献   

12.
From the aerial parts of Helichrysum chasmolycicum P.H Davis, which is an endemic species in Turkey, the flavonoids apigenin, luteolin, kaempferol, 3,5-dihydroxy-6,7,8-trimethoxyflavone, 3,5-dihydroxy-6,7,8,4′-tetramethoxyflavone, apigenin 7-O-glucoside, apigenin 4′-O-glucoside, luteolin 4′-O-glucoside, luteolin 4′,7-O-diglucoside, kaempferol 3-O-glucoside, kaempferol 7-O-glucoside and quercetin 3-O-glucoside were isolated. The methanol extract of the aerial parts of H. chasmolycicum showed antioxidant activity by DPPH method (IC50 0.92 mg/mL). Antimicrobial activity test was performed on the B, D, E extracts and also 3,5-dihydroxy-6,7,8-trimethoxyflavone and kaempferol 3-O-glucoside which were the major flavonoid compounds obtained from aerial parts of H. chasmolycicum by microbroth dilutions technique. The E (ethanol-ethyl acetate) extract showed moderate antimicrobial activity against Pseudomonas aeruginosa, B (petroleum ether-60% ethanol-chloroform) extract and 3,5-dihydroxy-6,7,8-trimethoxyflavone showed moderate antifungal activity against Candida albicans.  相似文献   

13.
This work describes the antiparasitic and cytotoxic activities of three plant species from the Cerrado biome, Northeastern Brazil. Significant antiparasitic inhibition was observed against Trypanosoma cruzi (63.86%), Leishmania brasiliensis (92.20%) and Leishmania infantum (95.23%) when using ethanol extract from leaves of Guazuma ulmifolia Lam. (Malvaceae), at a concentration of 500 μg/mL. However, low levels of inhibition were observed when assessing leishmanicidal and trypanocidal (Clone CL-B5) activities of crude ethanol extracts from leaves and bast tissue of Luehea paniculata (Malvaceae) and leaves and bark of Prockia crucis (Salicaceae) at a concentration of 500 μg/mL. The extracts revealed the presence of phenolic acids such as gallic acid, chlorogenic acid, caffeic acid and rosmarinic acid, as well as flavonoids such as rutin, luteolin, apigenin and quercetin – the latter detected only in G. ulmifolia. G. ulmifolia extract displayed higher leishmanicidal activity probably due to the presence of quercetin, a potent known leishmanicidal compound. A cytotoxicity test indicated values over 50% at the highest concentration (1000 μg/mL) for all natural products, which were considered cytotoxic. This points out the need for further tests to enable future in vivo trials, including antineoplastic activity on human tumor cells.  相似文献   

14.
Xu YC  Leung SW  Yeung DK  Hu LH  Chen GH  Che CM  Man RY 《Phytochemistry》2007,68(8):1179-1188
Flavonoids are polyphenolic compounds that are widespread in the plant kingdom, and structure-activity relationships (SAR) for vascular relaxation effects were examined for 17 of them using porcine coronary arteries. Density functional theory was employed to calculate the chemical parameters of these compounds. The order of potency for vascular relaxation was as follows: flavones (apigenin and luteolin) >or= flavonols (kaempferol and quercetin)>isoflavones (genistein and daidzein)>flavanon(ol)es (naringenin)>chalcones (phloretin)>anthocyanidins (pelargonidin)>flavan(ol)es ((+)-catechin and (-)-epicatechin). SAR analysis revealed that for good relaxation activity, the 5-OH, 7-OH, 4'-OH, C2=C3 and C4=O functionalities were essential. Comparison of rutin with quercetin, genistin with genistein, and puerarin with daidzein demonstrated that the presence of a glycosylation group greatly reduced relaxation effect. Total energy and molecular volume were also predictive of their relaxation activities. Our findings indicated that the most effective relaxing agents are apigenin, luteolin, kaempferol and genistein. These flavonoids possess the key chemical structures demonstrated in our SAR analysis.  相似文献   

15.
《Phytochemistry》1986,25(2):383-385
The autoxidation of linoleic acid and methyl linolenate is inhibited by flavonoids. The antioxidant efficiency of these flavonoids increases with their concentration and in the order fustin < catechin < quercetin < rutin = luteolin < kaempferol < morin for linoleic acid and rutin < catechin < morin = kaempferol for methyl linolenate. Flavonoids are more effective on linoleic acid than on methyl linolenate. The antioxidant activity offlavonoids is related to an inhibition of the formation of trans,trans hydroperoxide isomers of linoleic acid. This inhibition exhibited the great H-atom donating ability of flavonoids to peroxy radical, thus terminating the chain radical reaction.  相似文献   

16.
 HPLC-UV and HPLC-MS investigations of phenolic acids and flavonoids in flowerheads of 84 samples of 76 taxa belonging to 66 species of Hieracium resulted in the identification of three phenolic acids (chlorogenic acid, 3,5-dicaffeoyl quinic acid, 4,5-dicaffeoyl quinic acid) and six flavonoids (apigenin 4-O-β-D-glucuronide, isoetin 4-O-β-D-glucuronide, luteolin, luteolin 7-O-β-D-glucoside, luteolin 7-O-β-D-glucuronide, luteolin 4-O-β-D-glucoside). The contents of these secondary metabolites were quantified by HPLC using quercetin and cynarin as internal standards. In contrast to the previously investigated genera Leontodon and Crepis, cichoric acid and caffeoyl tartaric acid were not found in any of the investigated Hieracium taxa. Results of HPLC analyses revealed only a limited degree of qualitative variation between the different taxa, and luteolin 7-O-β-D-glucuronide and isoetin 4-O-β-D-glucuronide were the only compounds, which were not detectable in some of the investigated taxa. Quantitative patterns of phenolics differed markedly between particular taxa and Principal Component Analysis of the quantification results yielded separate clusters for the members of the subgenera Hieracium and Pilosella. Received January 23, 2001 Accepted October 11, 2001  相似文献   

17.
Regioselectivity of 7-O-methyltransferase of poplar to flavones   总被引:1,自引:0,他引:1  
POMT-7, an O-methyltransferase from poplar (Populus deltoids) was used to modify a variety of flavonoid compounds. POMT-7 was able to transfer a methyl group to several flavonoids containing a C-7 hydroxyl group. However, POMT-7 showed a higher affinity toward flavonol and flavone such as apigenin, kaempferol, luteolin, and quercetin than flavanone and isoflavone. Based on comparison of HPLC retention times with authentic compounds and corresponding nuclear magnetic resonance spectroscopy data, the methylation position of the reaction products was determined to be at the hydroxyl group of C-7. Biotransformation kinetics indicated that the enzyme converted more than 80% of the apigenin, kaempferol, luteolin and quercetin substrates, which were added at concentration of 70 microM, into corresponding 7-methoxy compounds within 24 h.  相似文献   

18.
GSH was readily depleted by a flavonoid, H(2)O(2), and peroxidase mixture but the products formed were dependent on the redox potential of the flavonoid. Catalytic amounts of apigenin and naringenin but not kaempferol (flavonoids that contain a phenol B ring) when oxidized by H(2)O(2) and peroxidase co-oxidized GSH to GSSG via a thiyl radical which could be trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) to form a DMPO-glutathionyl radical adduct detected by ESR spectroscopy. On the other hand, quercetin and luteolin (flavonoids that contain a catechol B ring) or kaempferol depleted GSH stoichiometrically without forming a thiyl radical or GSSG. Quercetin, luteolin, and kaempferol formed mono-GSH and bis-GSH conjugates, whereas apigenin and naringenin did not form GSH conjugates. MS/MS electrospray spectroscopy showed that mono-GSH conjugates for quercetin and luteolin had peaks at m/z 608 [M + H](+) and m/z 592 [M + H](+) in the positive-ion mode, respectively. (1)H NMR spectroscopy showed that the GSH was bound to the quercetin A ring. Spectral studies indicated that at a physiological pH the luteolin-SG conjugate was formed from a product with a UV maximum absorbance at 260 nm that was reducible by potassium borohydride. The quercetin-SG conjugate or kaempferol-SG conjugate on the other hand was formed from a product with a UV maximum absorbance at 335 nm that was not reducible by potassium borohydride. These results suggest that GSH was oxidized by apigenin/naringenin phenoxyl radicals, whereas GSH conjugate formation involved the o-quinone metabolite of luteolin or the quinoid (quinone methide) product of quercetin/kaempferol.  相似文献   

19.
Liu L  Xie Y  Song Z  Shang S  Chen X 《Molecular bioSystems》2012,8(8):2183-2187
It has been suggested that the increasing glycation in diabetes can influence the ability of plasma proteins to bind to small molecules. Herein, the influence of flavonoids on the glycation of plasma proteins was investigated. After being incubated with glucose at 37 °C, the levels of glycated albumin (HGA) were significantly improved in healthy human plasma proteins (HPP). The inhibitory effects of flavonoids against the formation of advanced glycation products (AGEs) in HPP were determined as: galangin > apigenin > kaempferol ≈ luteolin > myricetin > quercetin. After being combined with 20 μmol L?1 of quercetin for 11 days, the fresh plasma with δ-glucose caused 323.05-32.07% inhibition of HGA formation in type II diabetes plasma proteins (TPP). Luteolin showed weak inhibition of HGA formation in TPP. However, kaempferol, galangin and apigenin hardly inhibited the formation of HGA in TPP. These results showed that more hydroxyl groups on ring B of flavonoids will enhance the inhibitory effects on the HGA formation in TPP.  相似文献   

20.
Flavonoid supplementation is likely to be beneficial in improving rumen fermentation and in reducing the incidence of rumen acidosis and bloat. Flavonoids are also said to increase the metabolic performance during the peripartum period. Ruminants are constantly exposed to flavonoids present in feed. However, it is not clear if these phytochemicals can affect the activity of the gut smooth muscle. Therefore, the aim of the study was to verify the effect of three flavonoids on bovine isolated abomasum smooth muscle. The study was carried out on bovine isolated circular and longitudinal abomasal smooth muscle specimens. All experiments were conducted under isometric conditions. The effect of apigenin, luteolin and quercetin (0.001 to 100 µM) was evaluated on acetylcholine-precontracted preparations. The effect of multiple, but not cumulative, treatment and single treatment with each flavonoid on abomasum strips was compared. Apigenin (0.1 to 100 µM) dose-dependently showed myorelaxation effects. Luteolin and quercetin applied in low doses increased the force of the ACh-evoked reaction. However, if used in high doses in experiments testing a wide range of concentrations, their contractile effect either declined (luteolin) or was replaced by an antispasmodic effect (quercetin). Surprisingly, the reaction induced by flavonoids after repeated exposure to the same phytochemical was not reproducible in experiments testing only single exposure of abomasum strips to the same flavonoid used in a high concentration. Taking into account the physicochemical properties of flavonoids, this data suggests the ability of flavonoids to interfere with cell membranes and, subsequently, to modify their responsiveness. Assuming ruminant supplementation with luteolin or quercetin or their presence in daily pasture, a reduction of the likelihood of abomasum dysmotility should be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号