首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During oocyte maturation and zygote development chromosomes undergo cyclic changes, alternaing the condensed and decondensed states. In oocytes, zygotes and perhaps in other cells, the chromosome cycle appears to be controlled in same way by common cytoplasmic factors. Among them, maturation-promoting factor (MPF) plays a particularly important role, although the germinal vesicle substances and cytoplasmic membrane vesicles are indispensable for the chromosomal changes. MPF precursor is stored in fully grown oocytes of most species, but replenishing MPF after its fall during cell cycles requires protein synthesis. During oocyte maturation protein synthesis increases following the activation of MPF, and the synthesized proteins bind with chromosomes that have condensed to a metaphase state. The temporal correlation between the appearance of MPF with chromosome condensation activity and spindle formation observed in various cells suggest a major role played by MPF in the control of chromosome and microtubule assembly cycles. Thus, MPF is a regulator that coordinates the functions of various cell components to advance the chromosome cycle from interphase to metaphase. Therefore, a key to understanding the control of the chromosome cycle lies in knowing factors on which MPF activity is dependent. Although some physiological parameters of the cell are known to affect MPF activity, including Ca ion levels, intracellular pH, protein synthesis activity, cAMP levels, and protein phosphorylation, it seems difficult to assign the control of MPF cycles to any of these parameters. On the contrary, MPF cycles appear to regulate changes in these parameters. Rather, since MPF has the ability to amplify itself by activating its precursor, thus being involved in the MPF-generating system in the cell, the MPF cycle may be an autonomous process. This notion may be supported by the recent observation of the oscillatory activity of MPF in cytosols extracted from frog eggs. We propose theoretical models to explain the MPF oscillator in the cell.  相似文献   

2.
Xenopus oocytes and the biochemistry of cell division   总被引:31,自引:0,他引:31  
J L Maller 《Biochemistry》1990,29(13):3157-3166
The control of cell proliferation involves both regulatory events initiated at the plasma membrane that control reentry into the cell cycle and intracellular biochemical changes that direct the process of cell division itself. Both of these aspects of cell growth control can be studied in Xenopus oocytes undergoing meiotic maturation in response to mitogenic stimulation. All mitogenic signaling pathways so far identified lead to the phosphorylation of ribosomal protein S6 on serine residues, and the biochemistry of this event has been investigated. Insulin and other mitogens activate ribosomal protein S6 kinase II, which has been cloned and sequences in oocytes and other cells. This enzyme is activated by phosphorylation on serine and threonine residues by an insulin-stimulated protein kinase known as MAP-2 kinase. MAP kinase itself is also activated by direct phosphorylation on threonine and tyrosine residues in vivo. These results reconstitute one step of the insulin signaling pathway evident shortly after insulin receptor binding at the membrane. Several hours after mitogenic stimulation, a cell cycle cytoplasmic control element is activated that is sufficient to cause entry into M phase. This control element, known as maturation-promoting factor or MPF, has been purified to near homogeneity and shown to consist of a complex between p34cdc2 protein kinase and cyclin B2. In addition to apparent phosphorylation of cyclin, regulation of MPF activity involves synthesis of the cyclin subunit and its periodic degradation at the metaphase----anaphase transition. The p34cdc2 kinase subunit is regulated by phosphorylation/dephosphorylation on threonine and tyrosine residues, being inactive when phosphorylated and active when dephosphorylated. Analysis of phosphorylation sides in histone H1 for p34cdc2 has revealed a consensus sequence of (K/R)S/TP(X)K/R, where the elements in parentheses are present in some but not all sites. Sites with such a consensus are specifically phosphorylated in mitosis and by MPF in the protooncogene pp60c-src. These results provide a link between cell cycle control and cell growth control and suggest that changes in cell adhesion and the cytoskeleton in mitosis may be regulated indirectly by MPF via protooncogene activation. S6 kinase II is also activated upon expression of MPF in cells, indicating that MPF is upstream of S6 kinase on the mitogenic signaling pathway. Further study both of the signaling events that lead to MPF activation and of the substrates for phosphorylation by MPF should lead to a comprehensive understanding of the biochemistry of cell division.  相似文献   

3.
In mammalian females, oocytes are stored in the ovary and meiosis is arrested at the diplotene stage of prophase I. When females reach puberty oocytes are selectively recruited in cycles to grow, overcome the meiotic arrest, complete the first meiotic division and become mature (ready for fertilization). At a molecular level, the master regulator of prophase I arrest and meiotic resumption is the maturation-promoting factor (MPF) complex, formed by the active form of cyclin dependent kinase 1 (CDK1) and Cyclin B1. However, we still do not have complete information regarding the factors implicated in MPF activation.In this study we document that out of three mammalian serum-glucocorticoid kinase proteins (SGK1, SGK2, SGK3), mouse oocytes express only SGK1 with a phosphorylated (active) form dominantly localized in the nucleoplasm. Further, suppression of SGK1 activity in oocytes results in decreased CDK1 activation via the phosphatase cell division cycle 25B (CDC25B), consequently delaying or inhibiting nuclear envelope breakdown. Expression of exogenous constitutively active CDK1 can rescue the phenotype induced by SGK1 inhibition. These findings bring new insights into the molecular pathways acting upstream of MPF and a better understanding of meiotic resumption control by presenting a new key player SGK1 in mammalian oocytes.  相似文献   

4.
Full-grown amphibian oocytes that had been arrested at meiotic prophase I contained an activity that prevented the cell cycle from progressing beyond a G2-like stage. Injection of the contents of germinal vesicles (GV-content) or cytoplasm obtained from oocytes of the frog Rana rugosa prevented fertilized eggs of Cynops pyrrhogaster or Bufo japonicus from cleaving. The nuclei in the arrested eggs consisted of thin chromosomes and nucleolus-like particles enclosed within clear nuclear membrane and their volume increased as a function of time after injection. Cycling of maturation-promoting factor (MPF) did not occur in the injected eggs, but DNA synthesis was not disturbed. The injection of exogenous MPF into the eggs induced the reinitiation of the cell cycle with progression to the M phase and subsequent cleavage. Furthermore, the injection into the full-grown oocytes of Bufo inhibited induction of the maturation of oocytes by progesterone. These results demonstrate that a factor that arrests the cell cycle either at a G2-like stage of mitosis or at prophase in meiosis is present both in the GV and cytoplasm of frog oocytes. We refer to this factor as a G2-specific cytostatic factor (G2-CSF). G2-CSF may play an important role not only in the physiological arrest at prophase I in meiosis, but also in regulation of the G2/M transition in the cell cycle of early embryonic cells.  相似文献   

5.
In unfertilized eggs from vertebrates, the cell cycle is arrested in metaphase of the second meiotic division (metaphase II) until fertilization or activation. Maintenance of the long-term meiotic metaphase arrest requires mechanisms preventing the destruction of the maturation promoting factor (MPF) and the migration of the chromosomes. In frog oocytes, arrest in metaphase II (M II) is achieved by cytostatic factor (CSF) that stabilizes MPF, a heterodimer formed of cdc2 kinase and cyclin. At the metaphase/anaphase transition, a rapid proteolysis of cyclin is associated with MPF inactivation. In Drosophila, oocytes are arrested in metaphase I (M I); however, only mechanical forces generated by the chiasmata seem to prevent chromosome separation. Thus, entirely different mechanisms may be involved in the meiotic arrests in various species. We report here that in mouse oocytes a CSF-like activity is involved in the M II arrest (as observed in hybrids composed of fragments of metaphase II-arrested oocytes and activated mitotic mouse oocytes) and that the high activity of MPF is maintained through a continuous equilibrium between cyclin B synthesis and degradation. In addition, the presence of an intact metaphase spindle is required for cyclin B degradation. Finally, MPF activity is preferentially associated with the spindle after bisection of the oocyte. Taken together, these observations suggest that the mechanism maintaining the metaphase arrest in mouse oocytes involves an equilibrium between cyclin synthesis and degradation, probably controlled by CSF, and which is also dependent upon the three-dimensional organization of the spindle.  相似文献   

6.
It has been known in amphibians and starfishes that a cytoplasmic factor called maturation-promoting factor (MPF), produced in maturing oocytes under the influence of the maturation-inducing hormones, can induce germinal vesicle breakdown (GVBD) and the subsequent process of meiotic maturation. The present study revealed that injection of cytoplasm of maturing starfish oocytes (starfish MPF) into immature sea cucumber oocytes brought about maturation of the recipients. Amphibian MPF obtained from mature oocytes of Xenopus laevis or Bufo bufo was found to induce maturation of starfish oocytes following injection. Cytoplasm taken from cleaving starfish blastomeres induced maturation when injected into immature starfish oocytes. The maturation-inducing activity of cytoplasm of starfish blastomeres changed along with the mitotic cell cycle during 1- to 4-cell stages so far tested and reached a peak just before cleaving. Furthermore, an extract of mammalian cultured cells, CHO or V-79, synchronized in M phase, induced GVBD in starfish oocytes following injection, whereas S phase extract had little activity. These facts suggest that MPF generally brings about nuclear membrane breakdown in both meiosis and mitosis, and that the nature of MPF is very similar among vertebrates and invertebrates.  相似文献   

7.
The cytoplasmic localisation of factors capable of influencing the behaviour of nuclei has long been considered a potential mechanism for generating cell differences during development. Yoshio Masui was instrumental in identifying two cytoplasmic factors, maturation promoting factor (MPF) and cytostatic factor (CSF), defining the first biological assay for their isolation and characterisation. These biological assays involved the transfer of cytoplasm between amphibian oocytes, MPF being able to promote meiotic maturation (progression to MII) and CSF to stabilise the MII state. Masui was subsequently involved in developing a ‘cell-free’ system with the potential for analysis not just of MPF and CSF, but many aspects of nucleo-cytoplasmic interaction. Masui and Markert initially showed that MPF activity could be generated in enucleate oocytes following progesterone stimulation, indicating a cytoplasmic origin. Masui subsequently showed that MPF activity was distributed unevenly through the egg of Rana pipiens during maturation. In this review we will consider the historical context in which the MPF assays were established, then briefly consider some of the molecular components that are now known to influence MPF activation. We will then consider evidence for the asymmetric activation of MPF and the possibility that the nucleus contributes to MPF activation in early embryos.  相似文献   

8.
The cell cycle of most organisms is highlighted by characteristic changes in the appearance and activity of the nucleus. Structural changes in the nucleus are particularly evident when a cell begins to divide. At this time, the nuclear envelope is disassembled, the chromatin condenses into metaphase chromosomes, and the chromosomes associate with a newly formed spindle. Upon completion of cell division the nuclear envelope reassembles around the chromosomes as they form telophase nuclei, and subsequently interphase nuclei, in the daughter cells. The cytoplasmic control of nuclear behavior has been the theme of Yoshio Masui's research for much of his career. His pioneering demonstration that the cytoplasm of maturing amphibian oocytes causes the resumption of the meiotic cell cycle when it is injected into an immature oocyte provided unequivocal evidence that a cytoplasmic factor could initiate the transition from interphase to metaphase (M-phase) in intact cells. As described in several reviews in this and the previous issue of Biology of the Cell (see Beckhelling and Ford; Duesbery and Vande Woude; Maller), Masui initially called this activity maturation promoting factor (MPF), but when it was realized that it was a ubiquitous regulator of both mitotic and meiotic cell cycles, MPF came to stand for M-phase promoting factor. Biochemical evidence indicates that MPF activity is composed of a mitotic B-type cyclins and cyclin-dependent kinase 1. The increase in the protein kinase activity of cdk1 initiates the changes in the nucleus associated with oocyte maturation and with the entry into mitosis. This article will attempt to provide a brief summary of the responses of the nucleus to the activation of MPF. In addition, the effect of MPF inactivation on nuclear envelope assembly at the end of mitosis will be discussed. This article is written as a tribute to Yoshio Masui on his retirement from the University of Toronto, and as an expression of gratitude for his guidance while I was a student in his laboratory. I have felt very privileged to have known him as a mentor and a friend.  相似文献   

9.
This article briefly reviews the classical cell cycle studies using oocytes and zygotes of mainly amphibians in the past century. The discussions are focused on the investigations into the cytoplasmic factors that regulate meiosis during oocyte maturation and the initiation of mitosis during fertilisation, which were carried out in the author's lab between 1967 and 1987. This chronicle traces the development of the problems and the direction in which their solutions were attempted in the course of these investigations. The author tries to answer the following questions: why he decided to study oocyte maturation, how he discovered progesterone as a maturation-inducing hormone, how he discovered and characterised the cytoplasmic regulators of the cell cycle, Maturation-Promoting Factor (MPF) and Cyto-Static Factor (CSF), and how he invented the method of observing cell cycle processes in a cytoplasmic extract in vitro.  相似文献   

10.
11.
Protein kinase cascades in meiotic and mitotic cell cycle control   总被引:24,自引:0,他引:24  
Eukaryotic cell cycle progression during meiosis and mitosis is extensively regulated by reversible protein phosphorylation. Many cell surface receptors for mitogens are ligand-stimulated protein-tyrosine kinases that control the activation of a network of cytoplasmic and nuclear protein-serine (threonine) kinases. Over 30 plasma membrane associated protein-tyrosine kinases are encoded by proto-oncogenes, i.e., genes that have the potential to facilitate cancer when disregulated. Proteins such as ribosomal protein S6, microtubule-associated protein-2, myelin basic protein, and casein have been used to detect intracellular protein-serine (threonine) kinases that are activated further downstream in growth factor signalling transduction cascades. Genetic analysis of yeast cell division control (cdc) mutants has revealed another 20 or so protein-serine (threonine) kinases. One of these, specified by the cdc-2 gene in Schizosaccharomyces pombe, has homologs that are stimulated during M phase in maturing sea star and frog oocytes and mammalian somatic cells. Furthermore, during meiotic maturation in these echinoderm and amphibian oocytes, this is followed by activation of many of the same protein-serine (threonine) kinases that are stimulated when quiescent mammalian somatic cells are prompted with mitogens to traverse from G0 to G1 phase. These findings imply that a similar protein kinase cascade may oversee progression at multiple points in the cell cycle.  相似文献   

12.
Recent advances in cell biology indicate that the interactions between two proteins, cdc2 and cyclin, together with the activity of the cdc2/cyclin complex called MPF in the cytoplasm form the basis of a universal biochemical control mechanism for the cell division cycle in eukaryotes. Based on experimental facts that total cdc2 level is constant throughout the cell cycle and that onset of mitosis is subsequent to activation of MPF, we propose and analyze two different but related models — an ordinary differential equations model and a delay differential equations model — for the control of the early embryonic cell division cycle. Assuming very general reaction terms in the model equations, it is shown that MPF activation and rapid cyclin degradation triggered by active MPF drive cells to alternate between interphase and mitosis, the two phases of the cell cycle.S. Busenberg passed away on April 3, 1993 from complications of ALS (Lou Gehrig's disease). His research was supported by NSF Grant DMS-9112821Research was carried out at Harvey Mudd College and was supported by NSF Grant HRD-9252994  相似文献   

13.
During meiosis, the cytostatic factor (CSF) activity stabilizes the activity of the M-phase promoting factor (MPF) in metaphase II arrested vertebrate oocytes. Upon oocyte activation, the inactivation of both MPF and CSF enables the entry into the first embryonic mitotic cell cycle. Using a biological assay based on cell-fusion (hybrid between a parthenogenetically activated egg entering the first mitotic division and an activated oocyte), we observed that in activated mouse oocytes a first drop in CSF activity is detectable as early as 20 min post-activation. This suggests that CSF is inactivated upon MPF inactivation. However, CSF activity increases again to reach a maximum 60 min post-activation and gradually disappears during the following 40 min. Thus, in activated mouse oocytes (undergoing the transition to interphase) CSF activity fluctuates before definitive inactivation. We found that hybrids arrested in M-phase, thus containing CSF activity after oocyte activation, have activated forms of MAP kinases while hybrids in interphase have inactive forms of these enzymes. We postulate that CSF inactivation in mouse oocytes proceeds in two steps. The initial inactivation of CSF, required for MPF inactivation, is transient and does not require MAP kinase inactivation. The final inactivation of CSF, required for normal embryonic cell cycle progression, is dependent upon the inactivation of MAP kinases.  相似文献   

14.
DNA synthesis and nuclear division in the developing frog egg are controlled by fluctuations in the activity of M-phase promoting factor (MPF). The biochemical mechanism of MPF regulation is most easily studied in cytoplasmic extracts of frog eggs, for which careful experimental studies of the kinetics of phosphorylation and dephosphorylation of MPF and its regulators have been made. In 1998 Marlovits et al. used these data sets to estimate the kinetic rate constants in a mathematical model of the control system originally proposed by Novak & Tyson. In a recent publication, we showed that a gradient-based optimisation algorithm finds a locally optimal parameter set quite close to the 'Marlovits' estimates. In this paper, we combine global and local optimisation strategies to show that the 'refined Marlovits' parameter set, with one minor but significant modification to the Novak & Tyson equations, is the unique, best-fitting solution to the parameter estimation problem.  相似文献   

15.
Oocytes induced to undergo meiotic maturation by progesterone possess a cytoplasmic activity that causes germinal vesicle breakdown (GVBD). The cytoplasmic factor postulated to be responsible for this activity is designated as the maturation promoting factor (MPF). The activity of MPF was assayed by injecting cytoplasm into fully-grown oocytes to induce GVBD. It was found that maturing oocyte cytoplasm possesses MPF activity before GVBD begins. Treatment of progesterone stimulated oocytes with cycloheximide, either applied externally or injected, inhibited the appearance of MPF in the cytoplasm as well as GVBD when the inhibitor treatment was initiated before the cytoplasm exhibited MPF activity. In contrast, the same treatment did not inhibit GVBD when it was applied to oocytes after the cytoplasm possessed MPF activity. Furthermore, cycloheximide treatment of recipient oocytes did not inhibit the induction of GVBD by injected cytoplasm containing MPF. Cytoplasm of oocytes injected with MPF subsequently possessed MPF activity as high as that of the original donor cytoplasm in spite of its extensive dilution. This suggests that amplification of MPF took place in the recipient. Cycloheximide treatment did not inhibit the amplification of MPF. It was concluded that cycloheximide inhibits only the initial phase of induction of MPF activity, but neither its amplification nor its action on the nucleus that causes GVBD. From these results, a hypothesis concerning the cytoplasmic mechanism for the induction of GVBD has been proposed.  相似文献   

16.
Mechanisms controlling disintegration or breakdown of the germinal vesicle (GVBD) in Rana oocytes were investigated. A secondary cytoplasmic maturation promoting factor (MPF), produced in response to steroid stimulation, was shown to induce maturation when injected into immature recipient oocytes. Exposure of immature Rana oocytes to cycloheximide following injection of MPF or steroid treatment completely inhibited such maturation. Results indicate that injected MPF required protein synthesis for germinal vesicle breakdown and thus acted at some translational level. These results contrast with data obtained in Xenopus oocytes where injected MPF induced maturation in the presence of cycloheximide. Cytoplasmic MPF was also produced in Rana oocytes following treatment with lanthanum salts. This activity was similarly inhibited by cycloheximide. Time course studies conducted to compare the onset of cycloheximide insensitivity in steroid-treated and MPF-injected oocytes demonstrated that MPF-injected oocytes become insensitive to cycloheximide prior to steroid-treated germ cells. These results suggest that MPF acts as an intermediary in progesterone-induced maturation. Insensitivity to cycloheximide occurred several hours prior to the onset of germinal vesicle breakdown in both MPF-injected and steroid-treated oocytes. The data indicate that injected MPF in Rana does not induce nuclear disintegration directly, but rather requires amplification and/or autocatalytic synthesis of additional MPF or other factors for maturation to be induced. Molecular mechanisms involved in nuclear disintegration are discussed in relation to these species differences.  相似文献   

17.
Regulation of amphibian oocyte maturation   总被引:14,自引:0,他引:14  
Xenopus oocyte maturation is a model system for studying the control of cell proliferation and the regulation of the cell cycle. Addition of progesterone or insulin to oocytes releases a G2 block and stimulates progression through meiosis to an unfertilized egg. The release of the G2 block is a consequence of a decrease in cAMP mediated entirely or in part by an inhibition of adenylate cyclase. The mechanism of cyclase inhibition involves a membrane steroid receptor controlling the rate of guanine nucleotide exchange. Subsequent events include an increase in intracellular pH and the phosphorylation of ribosomal protein S6. The latter event may play a role in translational control of maturation. Late events in maturation involve the appearance of the maturation-promoting factor (MPF), a cytoplasmic protein responsible for causing nuclear envelope breakdown, chromosome condensation, and spindle formation. MPF oscillates in meiotic and mitotic cell cycles. The events caused by MPF can now be obtained in crude extracts with retention of cell cycle control by calcium, providing a framework for rapid progress in characterizing MPF and its regulation.  相似文献   

18.
Changes in the extent of protein phosphorylation and their possible correlation with changes in the activity of maturation-promoting (MPF) factor were investigated throughout meiotic maturation and following activation of amphibian and starfish oocytes. Despite several exceptions in the pattern of phosphorylation of individual proteins, high and low levels of protein phosphorylation were found to be correlated with high and low levels of MPF activity. Both the extent of protein phosphorylation and MPF activity were found to drop upon parthenogenetic activation and to cycle synchronously thereafter in the amphibian. In contrast no drop in MPF activity or in the extent of protein phosphorylation was observed following activation of starfish oocytes with ionophore A23187. This suggests that changes of protein phosphorylation and of MPF activity are rather related to the progression of the cell cycle than directly to Ca2+-dependent activation reaction. In amphibians global protein kinase activity in homogenates was found to drop with MPF activity following activation. Changes in the ratio of threonine vs serine phosphorylation were also investigated during the course of meiotic maturation and activation in both amphibian and starfish oocytes: changes in the activity of MPF were found to be better correlated with changes in threonine than serine phosphorylation.  相似文献   

19.
We used kinase assays and confocal microscopy to study the interaction of cell cycle proteins with microtubule organising centres (MTOC) and chromatin in ascidian oocytes during meiosis. The activity of maturation promoting factor (MPF) and mitogen activated protein kinase (MAPK) appear not to be correlated in control oocytes. MPF activity peaks during metaphase I and II of the meiotic cell cycle whereas the activity of MAPK peaks at telophase I and is subsequently degraded to remain at low levels for the remainder of meiosis. The protein synthesis inhibitor emetine induces the degradation in MPF activity in unfertilized metaphase-I (M-I) oocytes, while MAPK is unaffected. Emetine does not alter the activities of these cell cycle kinases in fertilized oocytes during meiosis I but MPF activity remains low while MAPK activity is high for an elongated time period and oocytes do not complete meiosis I. Emetine induces maternal MTOC duplication in unfertilized M-I oocytes and prevents sperm aster growth in fertilized oocytes, but it does not alter the M-I meiotic apparatus in unfertilized oocytes. These experiments suggest that neither MPF alone nor emetine-sensitive proteins are responsible for M-I arrest in ascidian oocytes, MAPK may ensure this stability. In addition, we showed that the maternal MTOC is present at M-I but suppressed from duplicating in an emetine-sensitive manner.  相似文献   

20.
During mouse oocyte maturation the regulation of the activity of a cytoplasmic maturation-promoting factor (MPF) was examined. The mouse MPF activity was determined based on its ability to induce maturation in immature starfish oocytes after microinjection with the cytoplasm from mouse oocytes. MPF appeared initially at germinal vesicle breakdown (GVBD), and its activity fluctuated in exact correspondence with meiotic cycles, reaching a peak at each metaphase and almost disappearing at the time of emission of the first polar body. Cycloheximide affected neither the initial MPF appearance nor GVBD. Thereafter, however, in the presence of cycloheximide the meiotic spindle was not formed and MPF disappeared, although the chromosomes remained condensed. After removing cycloheximide, MPF reappeared and was followed by the first metaphase and subsequently by polar body emission. Finally the meiotic cycle progressed to the second metaphase. Thus, for the appearance of MPF, there is a critical period shortly before the first metaphase, after which protein synthesis is required. In the presence of either cytochalasin D or colcemid, MPF activity remained at elevated levels. Addition of cycloheximide to such cytochalasin-treated oocytes, in which the meiotic cycle was arrested at the first metaphase, caused the MPF levels to decrease and was followed by movement of chromosomes to both poles where they decondensed and two nucleus-like structures were formed. Thus, the disappearance of MPF may initiate the metaphase-anaphase transition. Furthermore, detailed cytological examination revealed that chromosomes in cytochalasin-treated oocytes were monovalent while those treated only with cycloheximide were divalent, suggesting that dissociation of the synapsis is a prerequisite for chromosome decondensation after the disappearance of MPF. In all these respects, MPF seems to be a metaphase-promoting factor rather than just a maturation-promoting factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号