首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis.  相似文献   

2.
Degradation of bacterial deoxyribonucleic acid (DNA) after infection with T4 bacteriophage was studied in an endonuclease I-deficient host. The kinetics of degradation were similar to those seen in other hosts with a normal level of this enzyme. Irradiation of extracellular phage with ultraviolet (UV) destroyed the capacity of the infecting virus to induce extensive breakdown of host DNA, which was, however, converted to high-molecular-weight material. Addition of chloramphenicol to T4-infected cells provided data which can be interpreted to indicate the involvement of at least two endodeoxyribonucleases and one exodeoxyribonuclease having a high degree of specificity. A model is proposed showing the sequential action of two endodeoxyribonucleases followed by an exodeoxyribonuclease in the degradation of host DNA. The appearance of these hydrolytic enzymes requires protein synthesis. Infections leading to partial degradation only (UV-irradiated phages, gene 46 mutants) effectively inhibited the synthesis of bacterial messenger ribonucleic acid and of beta-galactosidase.  相似文献   

3.
The shutoff of host DNA synthesis is delayed until about 8 to 10 min after infection when Escherichia coli B/5 cells were infected with bacteriophage T4 mutants deficient in the ability to induce nuclear disruption (ndd mutants). The host DNA synthesized after infection with ndd mutants is stable in the absence of T4 endonucleases II and IV, but is unstable in the presence of these nucleases. Host protein synthesis, as indicated by the inducibility of beta-galactosidase and sodium dodecyl sulfate-polyacrylamide gel patterns of isoptopically labeled proteins synthesize after infection, is shut off normally in ndd-infected cells, even in the absence of host DNA degradation. The Cal Tech wild-type strain of E. coli CT447 was found to restrict growth of the ndd mutants. Since T4D+ also has a very low efficiency of plating on CT447, we have isolated a nitrosoguanidine-induced derivative of CT447 which yields a high T4D+ efficiency of plating while still restricting the ndd mutants. Using this derivative, CT447 T4 plq+ (for T4 plaque+), we have shown that hos DNA degradation and shutoff of host DNA synthesis occur after infection with either ndd98 X 5 (shutoff delayed) or T4D+ (shutoff normal) with approximately the same kinetics as in E. coli strain B/5. Nuclear disruption occurs after infection of CT447 with ndd+ phage, but not after infection with ndd- phage. The rate of DNA synthesis after infection of CT447 T4 plq+ with ndd98 X 5 is about 75% of the rate observed after infection with T4D+ while the burst size of ndd98 X 5 is only 3.5% of that of T4D+. The results of gene dosage experiments using the ndd restrictive host C5447 suggest that the ndd gene product is required in stoichiometric amounts. The observation by thin-section electron microscopy of two distinct pools of DNA, one apparently phage DNA and the other host DNA, in cells infected with nuclear disruption may be a compartmentalization mechanism which separates the pathways of host DNA degradation and phage DNA biosynthesis.  相似文献   

4.
Phage T7 adsorbed to and lysed cells of Shigella sonnei D(2) 371-48, although the average burst size was only 0.1 phage per cell (abortive infection). No mechanism of host-controlled modification was involved. Upon infection, T7 rapidly degraded host deoxyribonucleic acid (DNA) to acid-soluble material. Phage-directed DNA synthesis was initiated normally, but after a few minutes the pool of phage DNA, including the parental DNA, was degraded. Addition of chloramphenicol, at the time of phage infection, prevented both the initiation of phage-directed DNA synthesis and the degradation of parental phage DNA. Addition of chloramphenicol 4.5 min after phage was added permitted the onset of phage-directed DNA synthesis but prevented breakdown of phage DNA. Mutants of T7 (ss(-) mutants) have been isolated which show normal growth in strain D(2) 371-48. Upon mixed infection of this strain with T7 wild type and an ss(-) mutant, infection was abortive; no complementation occurred. The DNA of the ss(-) mutants was degraded in mixed infection like that of the wild type. Revertant mutants which have lost their ability to grow on D(2) 371-48 were isolated from ss(-) mutants; they are, in essence, phenotypically like T7 wild type. Independently isolated revertants of ss(-) mutants did not produce ss(-) recombinants when they were crossed among themselves. When independently isolated ss(-) mutants were crossed with each other, wild-type recombinants were found; ss(-) mutants could then be mapped in a cluster compatible with the length of one cistron. We concluded that T7 codes for an active, chloramphenicol-sensitive function [ss(+) function (for suicide in Shigella)] which leads to the breakdown of phage DNA in the Shigella host.  相似文献   

5.
The nucleoids of Escherichia coli S/6/5 cells are rapidly unfolded at about 3 min after infection with wild-type T4 bacteriophage or with nuclear disruption deficient, host DNA degradation-deficient multiple mutants of phage T4. Unfolding does not occur after infection with T4 phage ghosts. Experiments using chloramphenicol to inhibit protein synthesis indicate that the T4-induced unfolding of the E. coli chromosomes is dependent on the presence of one or more protein synthesized between 2 and 3 min after infection. A mutant of phage T4 has been isolated which fails to induce this early unfolding of the host nucleoids. This mutant has been termed "unfoldase deficient" (unf-) despite the fact that the function of the gene product defective in this strain is not yet known. Mapping experiments indicate that the unf- mutation is located near gene 63 between genes 31 and 63. The folded genomes of E. coli S/6/5 cells remain essentially intact (2,000-3,000S) at 5 min after infection with unfoldase-, nuclear disruption-, and host DNA degradation-deficient T4 phage. Nuclear disruption occurs normally after infection with unfoldase- and host DNA degradation-deficient but nuclear disruption-proficient (ndd+), T4 phage. The host chromosomes remain partially folded (1,200-1,800S) at 5 min after infection with the unfoldase single mutant unf39 x 5 or an unfoldase- and host DNA degradation-deficient, but nuclear disruption-proficient, T4 strain. The presence of the unfoldase mutation causes a slight delay in host DNA degradation in the presence of nuclear disruption but has no effect on the rate of host DNA degradation in the absence of nuclear disruption. Its presence in nuclear disruption- and host DNA degradation-deficient multiple mutants does not alter the shutoff to host DNA or protein synthesis.  相似文献   

6.
Mutations in the D2a gene of bacteriophage T4 have recently been shown to result in the stabilization of cytosine-containing phage deoxyribonucleic acid (DNA) made after infection by phage gene 56 (deoxycytidine triphosphatase) mutants. In the experiments reported here, we investigate the role of the D2a gene in the degradation of the host chromosome. We find that if T4 endonuclease II, a product of the phage gene denA, is active, host chromosome degradation appears normal, regardless of the presence of the D2a gene product. However, if T4 endonuclease II is absent, a small amount of host chromosome degradation occurs, but only if the D2a product is present. These results are interpreted in terms of the hypothesis that D2a controls a nuclease which degrades cytosine-containing DNA. Neither D2a nor denA mutations affect the shut-off of host DNA synthesis.  相似文献   

7.
Nuclear disruption after infection of Escherichia coli with a bacteriophage T4 mutant deficient in the ability to induce endonuclease II indicates that either (i) the endonuclease II-catalyzed reaction is not the first step in host deoxyribonucleic acid (DNA) breakdown or (ii) nuclear disruption is independent of nucleolytic cleavage of the host chromosome. M-band analysis demonstrates that the host DNA remains membrane-bound after infection with either an endonuclease II-deficient mutant or T4 phage ghosts.  相似文献   

8.
We investigated the role of the T4D bacteriophage gene 28 product in folate metabolism in infected Escherichia coli cells by using antifolate drugs and a newly devised assay for folyl polyglutamate cleavage activity. Preincubation of host E. coli cells with various sulfa drugs inhibited phage production by decreasing the burst size when the phage particles produced an altered gene 28 product (i.e., after infection under permissive conditions with T4D 28ts or T4D am28). In addition, we found that another folate analog, pyrimethamine, also inhibited T4D 28ts production and T4D 28am production, but this analog did not inhibit wild-type T4D production. A temperature-resistant revertant of T4D 28ts was not sensitive to either sulfa drugs or pyrimethamine. We developed an assay to measure the enzymatic cleavage of folyl polyglutamates. The high-molecular-weight folyl polyglutamate substrate was isolated from E. coli B cells infected with T4D am28 in the presence of labeled glutamic acid and was characterized as a folate compound containing 12 to 14 labeled glutamate residues. Extracts of uninfected bacteria liberated glutamate residues from this substrate with a pH optimum of 8.4 to 8.5. Extracts of bacteriophage T4D-infected E. coli B cells exhibited an additional new folyl polyglutamate cleavage activity with a pH optimum of about 6.4 to 6.5, which was clearly distinguished from the preexisting activity in the uninfected host cells. This new activity was induced in E. coli B cells by infection with wild-type T4D and T4D amber mutants 29, 26, 27, 51, and 10, but it was not induced under nonpermissive conditions by T4D am28 or by T4D 28ts. Mutations in gene 28 affected the properties of the induced cleavage enzyme. Wild-type T4D-induced cleavage activity was not inhibited by pyrimethamine, whereas the T4D 28ts activity induced at a permissive temperature was inhibited by this folate analog. Folyl polyglutamate cleavage activity characteristic of the activity induced in host cells by wild-type T4D or by T4D gene 28 mutants was also found in highly purified preparations of these phage ghost particles. The T4D-induced cleavage activity could be inhibited by antiserum prepared against highly purified phage baseplates. We concluded that T4D infection induced the formation of a new folyl polyglutamate cleavage enzyme and that this enzyme was coded for by T4D gene 28. Furthermore, since this gene product was a baseplate tail plug component which had both its antigenic sites and its catalytic sites exposed on the phage particle, it was apparent that this enzyme formed part of the distal surface of the phage baseplate central tail plug.  相似文献   

9.
Development of Coliphage T5: Ultrastructural and Biochemical Studies   总被引:10,自引:5,他引:5       下载免费PDF全文
Electron microscopic studies of Escherichia coli infected with bacteriophage T5(+) have revealed that host nuclear material disappeared before 9 min after infection. This disappearance seemed to correspond to the breakdown of host deoxyribonucleic acid (DNA) into acid-soluble fragments. Little or no host DNA thymidine was reincorporated into phage DNA, except in the presence of 5-fluorodeoxyuridine (FUdR). Progeny virus particles were observed in the cytoplasm 20 min postinfection. Most of these particles were in the form of hexagonal-shaped heads or capsids, which were filled with electron-dense material (presumably T5 DNA). A small percentage (3 to 4%) of the phage heads appeared empty. On rare occasions, crystalline arrays of empty heads were observed. Nalidixic acid, hydroxyurea, and FUdR substantially inhibited replication of T5 DNA. However, these agents did not prevent virus-induced degradation of E. coli DNA. Most of the phage-specified structures seen in T5(+)-infected cells treated with FUdR or with nalidixic were in the form of empty capsids. Infected cells treated with hydroxyurea did not contain empty capsids. When E. coli F was infected with the DO mutant T5 amH18a (restrictive conditions), there was a small amount of DNA synthesis. Such cells contained only empty capsids, but their numbers were few in comparison to those in cells infected under permissive conditions or infected with T5(+). The cells also failed to lyse. These results confirm other reports which suggest that DNA replication is not required for the synthesis of late proteins. The data also indicate that DNA replication influences the quantity of viral structures being produced.  相似文献   

10.
Isolation of BamHI variants with reduced cleavage activities   总被引:4,自引:0,他引:4  
Derivation of the bamhIR sequence (Brooks, J. E., Nathan, P.D., Landry, D., Sznyter, L.A., Waite-Rees, P., Ives, C. C., Mazzola, L. M., Slatko, B. E., and Benner, J. S. (1991) Nucleic Acids Res., in press), the gene coding for BamHI endonuclease, has facilitated construction of an Escherichia coli strain that overproduces BamHI endonuclease (W. E. Jack, L. Greenough, L. F. Dorner, S. Y. Xu, T. Strezelecka, A. K. Aggarwal, and I. Schildkraut, submitted for publication). As expected, low-level constitutive expression of the bamhIR gene in E. coli from the Ptac promotor construct is lethal to the host unless the bamHIM gene, which encodes the BamHI methylase, is also expressed within the cell. We identified four classes of BamHI endonuclease variants deficient in catalysis by selecting for survival of a host deficient for bamHIM gene, transformed with mutagenized copies of the bamhIR gene, and then screening the surviving cell extracts for DNA cleavage and binding activities. Class I variants (G56S, G91S/T153I, T114I, G130R, E135K, T153I, T157I, G194D) displayed 0.1-1% of the wild-type cleavage activity; class II variant (D94N) lacked cleavage activity but retained wild-type DNA binding specificity; class III variants (E77K, E113K) lacked cleavage activity but bound DNA more tightly; class IV variants (G56D, G90D, G91S, R122H, R155H) lacked both binding and cleavage activities. Variants with residual cleavage activities induced the E. coli SOS response and thus are presumed to cleave chromosomal DNA in vivo. We conclude that Glu77, Asp94, and Glu113 residues are essential for BamHI catalytic function.  相似文献   

11.
The nature of pteroyl polyglutamates in uninfected and T4D bacteriophage-infected Escherichia coli B has been examined. (3)H-p-aminobenzoic acid has been used to label the folate compounds and gel permeation chromatography on glass beads to separate the folate compound by molecular size. It has been found that, although the major folate compound in uninfected bacteria is pteroyl triglutamate, E. coli B cells also contain folate compounds having as many as six glutamate residues. Infection with T4D stimulated the addition of glutamate residues to the lower-molecular-weight host pteroyl compounds, resulting in the conversion of the host compounds into the hexaglutamate form. This viral-induced conversion is chloramphenicol sensitive and appears to be due to a late phage gene product. The phage gene responsible for this conversion has not been identified. In cells infected with a T4D mutant defective in gene 28, there was an apparent production of the large pteroyl polyglutamates equivalent in size to pte(glu)(9-12). These high-molecular-weight forms were converted into pte(glu)(6) by incubation with bacterial extracts made after infection with T4D 28(+). Apparently, the product of T4D gene 28(+) is capable of specifically cleaving the high-molecular-weight polyglutamates to the form necessary for phage tail assembly.  相似文献   

12.
The distribution of ultraviolet-induced repair patches along DNA loops attached to the nuclear matrix, was investigated by digestion with DNA-degrading enzymes and neutral sucrose gradient centrifugation. When DNA was gradually removed by DNAase 1, pulse label incorporated by ultraviolet-irradiated cells during 10 min in the presence of hydroxyurea or hydroxyurea/arabinosylcytosine showed similar degradation kinetics as prelabelled DNA. No preferential association of pulse label with the nuclear matrix was observed, neither within 30 min nor 13 h after irradiation. When the pulse label was incorporated by replicative synthesis under the same conditions, a preferential association of newly-synthesized DNA with the nuclear matrix was observed. Single-strand specific digestion with nuclease S1 of nuclear lysates from ultraviolet-irradiated cells, pulse labelled in the presence of hydroxyurea/arabinosylcytosine, caused a release of about 70% of the prelabelled DNA and 90% of the pulse-labelled DNA from the rapidly sedimenting material in sucrose gradients. The results suggest no specific involvement of the nuclear matrix in repair synthesis, a random distribution of repair patches along the DNA loops, and simultaneously multiple incision events per DNA loop.  相似文献   

13.
14.
We have characterized Neurospora crassa transformants obtained with plasmid pJR2, which consists of the Neurospora glutamate dehydrogenase (am) gene cloned in pUC8 and an am132 host strain which contains a deletion encompassing the cloned fragment. Every one of 33 transformants tested showed extreme meiotic instability: less than 1 or 2% am+ progeny were obtained in initial or successive backcrosses between am+ transformants and am132 or in intercrosses between am+ progeny. Furthermore, am+ progeny from backcrosses gave a high proportion of auxotrophic (am) mitotic segregants during vegetative growth. These results indicate that the am+ character is not stably integrated into chromosomal DNA in any of the transformants tested. Nuclear DNAs from six transformants were analyzed by Southern hybridization. All six transformants contained sequences homologous to pJR2. Four showed restriction fragments expected for unmodified pJR2, but most showed additional bands. Southern blots of undigested DNAs showed that the plasmid sequences are present predominantly in high-molecular-weight form (larger than 20 kilobases). Southern blots showed that auxotrophic (am) progeny from a backcross to am132 had lost restriction bands corresponding to free plasmid but retained additional bands, apparently integrated into chromosomal DNA in a nonfunctional manner. Considered together, these results are most reasonably interpreted as follows: recombinant plasmids containing the am+ gene can replicate autonomously in N. crassa, the free plasmids are present in oligomeric or modified form or both, and plasmid sequences also integrate at multiple sites in the deletion host but in a nonfunctional manner. An alternate interpretation--that tandem repeats of the plasmid are integrated into chromosomal DNA but eliminated during meiosis--cannot be completely excluded. However, stable integration of the am gene can be obtained under a variety of other conditions, viz., using the am gene cloned in a phage lambda vector (J. A. Kinsey and J. A. Rambosek, Mol. Cell. Biol. 4:117-122, 1984), using derivatives of pJR2, or using pJR2 to transform a frameshift mutant.  相似文献   

15.
In contrast to its effect on host DNA synthesis, nuclear disruption in phage T4-infected Escherichia coli B/5 cells has no effect on the shutoff of host RNA synthesis. Host RNA synthesis is shut off normally after infection with T4 multiple mutants that fail to induce both nuclear disruption and host DNA degradation.  相似文献   

16.
17.
Synthesis of host-specific and phage-specific messenger ribonucleic acid (mRNA) was studied in bacteria infected by unmodified (T1 . B) or modified [T1 . B(P1)] bacteriophage T1. In a "standard" infection of Escherichia coli B by T1 . B (no host-controlled modification involved), the rate and amount of T1 mRNA synthesis was intermediate between those values reported for infections by a virulent phage such as T4 or a temperate phage such as lambda. The initial rate of mRNA synthesis was slightly increased after T1 . B(P1) infection of E. coli B in comparison with T1 . B infection of the same host. Little or no phage mRNA synthesis could be detected in T1 . B infection of E. coli B(P1). Phage mRNA synthesis in T1 . B(P1)-infected E. coli B(P1) cells was approximately the same in amount as that seen in T1 . B(P1) infection of E. coli B. Synthesis of host-specific mRNA continued throughout the latent period in all infections studied. However, the enzyme beta-galactosidase could not be induced, except after T1 . B infection of E. coli B(P1). In an attempt to understand the apparent differences in mRNA synthesis after infection of E. coli B by phages T1 . B or T1 . B(P1), the effect of altered T1 deoxyribonucleic acid (DNA) methylation on mRNA synthesis was studied. Methyl-deficient T1 DNA, made in cells infected with ultraviolet-irradiated phage T3, inhibited (14)C-uridine incorporation more strongly than normal T1. One passage of methyl-deficient T1 through E. coli B restored uracil incorporation rates to those seen with ordinary T1. This suggests that methylation of T1 DNA can influence the rate of phage mRNA synthesis. However, attempts to relate the difference in mRNA synthesis seen between T1 . B and T1 . B(P1) in E. coli B to the activity of the P1 modification gene were not conclusive.  相似文献   

18.
Role of Gene 52 in Bacteriophage T4 DNA Synthesis   总被引:4,自引:3,他引:1       下载免费PDF全文
In an attempt to elucidate the mechanism of delayed DNA synthesis in phage T4, Escherichia coli B cells were infected with H17 (an amber mutant defective in gene 52 possessing a "DNA-delay" phenotype). The fate of (14)C-labeled H17 parental DNA after infection was followed: we could show that this DNA sediments more slowly in neutral sucrose than wild-type DNA 3 min postinfection. In pulse-chase experiments progeny DNA was found to undergo detachment from the membrane at 12 min postinfection. Reattachment to the membrane was found to be related to an increase in rate of DNA synthesis. A nucleolytic activity that is absent from cells infected by wild-type phage and from uninfected cells could be detected in extracts prepared from mutant-infected cells. In contrast, degradation of host DNA was found to be less extensive in am H17 compared with wild-type infected cells. Addition of chloramphenicol to mutant-infected cells 10 min postinfection inhibited the appearance of a nuclease activity on one hand and suppressed the "DNA-delay" phenotype on the other hand. We conclude that the gene 52 product controls the activity of a nuclease in infected cells whose main function may be specific strand nicking in association with DNA replication. This gene product might directly attack both E. coli and phage T4 DNA, or indirectly determine their sensitivity to degradation by another nuclease.  相似文献   

19.
Host and viral deoxyribonucleic acid (DNA) metabolism in LPP-1-infected Plectonema boryanum was studied by equilibrium centrifugation in CsCl gradients. Approximately 50% of the host DNA is degraded to acid-soluble material between 3 and 7 hr after infection. Most of the acid-soluble product is reincorporated into viral DNA. Incorporation of exogenous (3)H-adenine into viral DNA can be detected very early after infection (within the first 2 hr), but the bulk of viral DNA synthesis occurs between 6 and 8 hr. Both the breakdown of host DNA and the synthesis of viral DNA require protein synthesis during the first few hours of infection.  相似文献   

20.
B. de Groot 《Genetica》1966,37(1):37-51
Evidence for exclusion as an early function of phage T4 was obtained along the following lines: a) In crosses of T2 and T4am 122, a mutant of an early phage enzyme, T2 is virtually eliminated from the progeny; b) there is no net synthesis of DNA in the mixed complexes of the non-permissive host; furthermore, there is a loss of DNA, not found in the monocomplexes of T4am 122; this suggests a specific breakdown of T2 DNA; c) a cross was made between T4 and a partially non-excludable, otherwise T2-like phage strain that did not exclude standard type T2. The gene responsible for exclusion segregated in an almost normal way and appeared to reside in-betweenh + andr at the beginning of the map segment of T4 for the early functions.The frequencies with which the genes of T2 were recovered in the progeny of this cross showed polarity, i.e. the frequency of the T2 genes along the segment of the early functions increased gradually from 0.26 for the adsorption properties to 0.44 for the UV sensitivity of T2 in correlation with the position of the genes on the map.There is a stronger effect of exclusion and a more pronounced polarity of the frequencies of recovered genes of T2 whenE. coli CR 63 is used as a host instead ofE. coli B.This work was carried out partially within the frame of the association between Euratom and the University of Leiden embodied in contract nr. 052-64-1 BIAN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号