首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock protein 10 (Hsp10) and heat shock protein 60 (Hsp60) were originally described as essential mitochondrial proteins involved in protein folding. However, both proteins have also been shown to have a number of extracellular immunomodulatory activities. Here we show that purified recombinant human Hsp10 incubated with cells in vitro reduced lipopolysaccharide (LPS)-induced nuclear factor-kappaB activation and secretion of several inflammatory mediators from RAW264.7 cells, murine macrophages, and human peripheral blood mononuclear cells. Induction of tolerance by contaminating LPS was formally excluded as being responsible for Hsp10 activity. Treatment of mice with Hsp10 before endotoxin challenge resulted in the reduction of serum tumor necrosis factor-alpha and RANTES (regulated upon activation, normal T cell expressed and secreted) levels and an elevation of serum interleukin-10 levels. Hsp10 treatment also delayed mortality in a murine graft-versus-host disease model, where gut-derived LPS contributes to pathology. We were unable to confirm previous reports that Hsp10 has tumor growth factor properties and suggest that Hsp10 exerts anti-inflammatory activity by inhibiting Toll-like receptor signaling possibly by interacting with extracellular Hsp60.  相似文献   

2.
Activation of professional antigen-presenting cells (APC) is a crucial step in the initiation of an efficient immune response. In this study we show that Hsp60 mediates immune stimulation by different mechanisms, dependent and independent of lipopolysaccharide (LPS). We have demonstrated earlier that both, Hsp60 and LPS, increase antigen-specific interferon (IFN) gamma release in T cells. Here we show that in contrast to LPS Hsp60 induces IFNalpha production in professional APC. Neutralization of IFNalpha as well as the absence of functional IFNalphabeta receptor on APC and T cells interfered with Hsp60-mediated IFNgamma secretion in antigen-dependent T cell activation, strongly suggesting that IFNalpha represents one factor contributing to Hsp60-specific immune stimulation. On the other hand, we show that Hsp60 bound to the cell surface of APC colocalizes with the LPS co-receptor CD14 and LPS binding sites. Hsp60 specifically binds bacterial LPS and both molecules synergistically enhanced IL-12p40 production in APC and IFNgamma release in antigen-dependent T cell activation. This effect was Hsp60-specific and dependent on LPS-binding by Hsp60. Furthermore, we show that Hsp60 exclusively binds to macrophages and DC but not to T or B lymphocytes and that both, T cell stimulation by Hsp60 as well as Hsp60/LPS complexes, strictly depends on the presence of professional APC and is not mediated by B cells. Taken together, our data support an extension of the concept of Hsp60 as an endogenous danger signal: besides its function as a classical danger signal indicating unplanned tissue destruction to the innate immune system, in the incident of bacterial infection extracellular Hsp60 may bind LPS and facilitate microbe recognition by lowering the threshold of pathogen-associated molecular pattern (PAMP) detection and enhancing Toll-like receptor (TLR) signaling.  相似文献   

3.
Heat shock proteins (Hsp) 60 and 70 have been intensively studied for their ability to activate innate immunity. Heat shock proteins had been shown to induce the activation of dendritic cells, T cells, and B cells. However, the possible contamination of endotoxin in heat shock protein preparations makes their function as an activator of immune system ambiguous. Here, we examined the ability of bacterial Hsp60 and Hsp70 to activate Jurkat T cells and primary T cells. We found that Burkholderia pseudomallei Hsp70 and Mycobacterium tuberculosis Hsp70 could costimulate Jurkat T cells to make IL-2 and signal through TLR5. This costimulatory activity is not due to endotoxin or contaminants signaling via TLR2 nor TLR4. However, recombinant Hsp70 expressed in Escherichia coli DeltafliC strain completely lost its ability to costimulate T cells. Thus, the activation of T cells by recombinant Hsp70 is ascribed to flagellin contamination.  相似文献   

4.
Extracellular heat shock proteins (HSPs) can stimulate antigen-specific immune responses. Using recombinant human (rhu)Hsp70, we previously demonstrated that through complex formation with exogenous antigenic peptides, rhuHsp70 can enhance cross-presentation by antigen-presenting cells (APCs) resulting in stronger T cell stimulation. T cell stimulatory activity has also been described for mycobacterial (myc)Hsp70. MycHsp70-assisted T cell activation has been reported to act through the binding of mycHsp70 to chemokine receptor 5 (CCR5), calcium signaling, phenotypic maturation, and cytokine secretion by dendritic cells (DCs). We report that highly purified rhuHsp70 and mycHsp70 proteins both strongly enhance cross-presentation of exogenous antigens. Augmentation of cross-presentation was seen for different APCs, irrespective of CCR5 expression. Moreover, neither of the purified Hsp70 proteins induced calcium signals in APCs. Instead, calcium signaling activity was found to be caused by contaminating nucleotides present in Hsp70 protein preparations. These results refute the hypothesis that mycHsp70 proteins require CCR5 expression and calcium signaling by APCs for enhanced antigen cross-presentation for T cell stimulation.  相似文献   

5.
LAPTM5 (lysosomal-associated protein transmembrane 5) is a protein that is preferentially expressed in immune cells, and it interacts with the Nedd4 family of ubiquitin ligases. Recent studies in T and B cells identified LAPTM5 as a negative regulator of T and B cell receptor levels at the plasma membrane. Here we investigated the function of LAPTM5 in macrophages. We demonstrate that expression of LAPTM5 is required for the secretion of proinflammatory cytokines in response to Toll-like receptor ligands. We also show that RAW264.7 cells knocked down for LAPTM5 or macrophages from LAPTM5(-/-) mice exhibit reduced activation of NF-κB and MAPK signaling pathways mediated by the TNF receptor, as well as multiple pattern recognition receptors in various cellular compartments. TNF stimulation of LAPTM5-deficient macrophages leads to reduced ubiquitination of RIP1 (receptor-interacting protein 1), suggesting a role for LAPTM5 at the receptor-proximate level. Interestingly, we find that macrophages from LAPTM5(-/-) mice display up-regulated levels of A20, a ubiquitin-editing enzyme responsible for deubiquitination of RIP1 and subsequent termination of NF-κB activation. Our studies thus indicate that, in contrast to its negative role in T and B cell activation, LAPTM5 acts as a positive modulator of inflammatory signaling pathways and hence cytokine secretion in macrophages. They also highlight a role for the endosomal/lysosomal system in regulating signaling via cytokine and pattern recognition receptors.  相似文献   

6.
Little is known about the pathogenesis of Entamoeba histolytica and how epithelial cells respond to the parasite. Herein, we characterized the interactions between E. histolytica and colonic epithelial cells and the role macrophages play in modulating epithelial cell responses. The human colonic epithelial cell lines Caco-2 and T84 were grown either as monoculture or co-cultured in transwell plates with differentiated human THP-1 macrophages for 24 h before stimulation with soluble amebic proteins (SAP). In naive epithelial cells, prolonged stimulation with SAP reduced the levels of heat shock protein (Hsp) 27 and 72. However in THP-1 conditioned intestinal epithelial cells SAP enhanced Hsp27 and Hsp72, which was dependent on the activation of ERK MAP kinase. Hsp synthesis induced by SAP conferred protection against oxidative and apoptotic injuries. Treatment with SAP inhibited NF-kappaB activation induced by interleukin-1beta; specifically, the NF-kappaB-DNA binding, nuclear translocation of p65 subunit, and phosphorylation of IkappaB-alpha were reduced. Gene silencing by small interfering RNA confirmed the role of Hsp27 in suppressing NF-kappaB activation at IkappaB kinase (IKK) level. By co-immunoprecipitation studies, we found that Hsp27 interacts with IKK-alpha and IKK-beta, and this association was increased in SAP-treated conditioned epithelial cells. Overexpression of wild type Hsp27 amplified the effects of SAP, whereas a phosphorylation-deficient mutant of Hsp27 abrogated SAP-induced NF-kappaB inhibition. In conditioned epithelial cells, Hsp27 was phosphorylated at serine 15 after prolonged exposure to SAP. This mechanism may explain the absence of colonic inflammation seen in the majority of individuals infected with E. histolytica.  相似文献   

7.
Heat shock protein 70 (Hsp70) has gained a lot of attention in the past decade due to its potential immunoregulatory functions. Some of the described proinflammatory functions of Hsp70 became controversial as they were based on recombinant Hsp70 proteins specimens, which were later shown to be endotoxin-contaminated. In this study we used low endotoxin inducible Hsp70 (also known as Hsp72, HSPA1A), and we observed that after a 24-h incubation of monocyte-derived immature dendritic cells (mo-iDCs) with 20 μg/ml of low endotoxin Hsp70, their ability to stimulate allogenic T cells was reduced. Interestingly, low endotoxin Hsp70 also significantly reduced T cell responses when they were simulated with either IL-2 or phytohemagglutinin, therefore showing that Hsp70 could alter T cell responses independently from its effect on mo-iDCs. We also reported a greater response of Hsp70 treatment when activated versus nonactivated T cells were used. This effect of Hsp70 was similar for all tested populations of T cells that included CD3(+), CD4(+), or CD8(+). Taken together, our observations strongly suggest that Hsp70 might dampen, rather than provoke, T cell-mediated inflammatory reactions in many clinical conditions where up-regulation of Hsp70 is observed.  相似文献   

8.
9.
The breast cancer metastasis suppressor 1 (BRMS1) is a member of a family of proteins that actively suppress tumour metastasis. Understanding BRMS1 mediated metastasis suppression is critical to the development of new therapies designed to prevent and treat patients with late stage breast cancer. To aid research into the functional aspects that underpin BRMS1 mediated metastasis suppression we have expressed and purified recombinant BRMS1 and produced BRMS1 polyclonal antibodies. Using these antibodies to immunoprecipitate endogenous BRMS1 containing complexes from MCF7 breast cancer cell lines we have identified, by mass spectrometry, the small heat shock protein Hsp27 in complex with BRMS1. We also show that the expression of both BRMS1 and Hsp27 are inversely correlated with metastatic potential.  相似文献   

10.
Production of coagulation factor VIII (FVIII) by recombinant cell lines is limited by its failure to reach or maintain the native conformation in the endoplasmic reticulum. This results in significant cytoplasmic degradation and/or aggregation of the misfolded product. The molecular chaperone Hsp70 was overexpressed in an attempt to increase the recombinant FVIII (rFVIII) secretion. The characteristics of increased Hsp70 expression were investigated by comparing a clone of BHK-21 cells expressing rFVIII (rBHK-21(host)) to a chaperone clone derived by transfection of the host clone with human Hsp70 (rBHK-21(Hsp70)) in small-scale batch cell cultures. To aid this investigation a number of fluorescence based cellular apoptosis assays were developed and optimized. These assays demonstrated sub-populations of rBHK-21(host) cells that were apoptotic in nature and were identified prior to the loss in plasma membrane integrity. Dual staining for intracellular rFVIII and caspase-3 activation showed a reduction in intracellular rFVIII in rBHK-21(host) cells that correlated with a significant increase in active caspase-3, suggesting that apoptosis was a factor limiting rFVIII secretion. In sharp contrast there was more intracellular rFVIII and less active caspase-3 in rBHK-21(Hsp70) cell cultures. Moreover when grown in batch culture, rBHK-21(Hsp70) cells released rFVIII of higher specific activity (active FVIII protein/total FVIII protein), suggesting improved product quality. Thus, increased expression of HSP70 led to an increased yield of a secreted recombinant protein by inhibition of apoptosis and promoting proper conformational maturation of rFVIII in sub-optimal bioreactor conditions.  相似文献   

11.
Polyclonal B-cell activation is a characteristic feature of AIDS and of the AIDS-related complex. Since the immunoregulatory cytokine interleukin-6 (IL-6) plays a major role in inducing B-cell differentiation, we examined the effects of native human immunodeficiency virus type 1 envelope glycoproteins gp120 and gp160 on IL-6 induction. In this study, we have demonstrated that both gp120 and gp160 have the ability to induce IL-6 mRNA and biologically active IL-6 protein secretion in peripheral blood mononuclear cells in vitro. The envelope protein preparations had no detectable endotoxin as tested by the Limulus amebocyte lysate assay, and hence we can rule out the effect of contaminating endotoxin, which is a potent inducer of IL-6 in monocyte/macrophage cell cultures. In addition, we have shown that the envelope glycoproteins act directly on CD4(+)-cloned T cells to induce IL-6 production in the absence of monocytes. These findings indicate that monocytes and T cells both contribute to the secretion of IL-6, which plays an important role in the pathogenesis of B-cell activation in human immunodeficiency virus infection.  相似文献   

12.
We have previously demonstrated that administration of the recently described cytokine IL-17 in rat airways in vivo recruits and activates neutrophils locally. In the current study, we examined whether endogenous IL-17 is involved in mediating neutrophil recruitment caused by endotoxin exposure in mouse airways. Our in vivo data show that local endotoxin exposure causes the release of free, soluble IL-17 protein 6 h later. Systemic pretreatment with a neutralizing anti-IL-17 Ab almost completely inhibits neutrophil recruitment 24 h, but not 6 h, after endotoxin exposure in the airways. Pretreatment with neutralizing anti-IL-6 and anti-macrophage inflammatory protein (MIP)-2 Abs inhibits neutrophil recruitment caused by local endotoxin exposure and IL-17, respectively. Our in vitro data show that endotoxin exposure stimulates the release of soluble IL-17 protein in T lymphocytes harvested from lung and spleen, respectively, and that this cytokine release requires coculture with airway macrophages. Intracellular IL-17 protein is detected in T lymphocytes from spleen but not in airway macrophages after coculture and stimulation of these two cell types. Finally, anti-IL-17 does not alter endotoxin-induced release of IL-6 and MIP-2 from T lymphocytes and airway macrophages in coculture. In conclusion, our results indicate that endotoxin exposure causes the release of IL-17 from T lymphocytes and that this cytokine release requires the presence of macrophages. Once released, endogenous IL-17 acts in part by inducing local release of neutrophil-mobilizing cytokines such as IL-6 and MIP-2, from nonlymphocyte, nonmacrophage cells, and this contributes to recruitment of neutrophils in the airways. These IL-17-related mechanisms constitute potential targets for pharmacotherapy against exaggerated neutrophil recruitment in airway disease.  相似文献   

13.
14.
IFN-gamma exhibits differential effects depending on the target and can induce cellular activation and enhance survival or mediate cell death via activation of apoptotic pathways. In this study, we demonstrate an alternative mechanism by which IFN-gamma enhances tumor recognition, mediated by the active release of Hsp72. We demonstrate that stimulation of 4T1 breast adenocarcinoma cells and K562 erythroleukemic cells with IFN-gamma triggers the cellular stress response, which results in the enhanced expression of total Hsp72 expression without a significant increase in cell death. Intracellular expression of Hsp72 was abrogated in cells stably transfected with a mutant hsf-1 gene. IFN-gamma-induced Hsp72 expression correlated with enhanced surface expression and consequent release of Hsp72 into the culture medium. Pretreatment of tumors with compounds known to the block the classical protein transport pathway, including monensin, brefeldin A, tunicamycin, and thapsigargin, did not significantly block Hsp72 release. However, pretreatment with intracellular calcium chelator BAPTA-AM or disruption of lipid rafts using methyl beta-cyclodextrin completely abrogated IFN-gamma-induced Hsp72 release. Biochemical characterization revealed that Hsp72 is released within exosomes and has the ability to up-regulate CD83 expression and stimulate IL-12 release by naive dendritic cells. Pretreatment with neutralizing mAb or depletion of Hsp72 completely abrogated its chaperokine function. Taken together, these findings are indicative of an additional previously unknown mechanism by which IFN-gamma promotes tumor surveillance and furthers our understanding of the central role of extracellular Hsp72 as an endogenous adjuvant and danger signal.  相似文献   

15.
Background information. Heat‐inducible Hsp72 is the founding member of the Hsp70 (heat shock proteins of 70 kDa) family of molecular chaperones. It is localized primarily in cytoplasm and nucleus but is also found extracellularly. The source of e‐Hsp72 (extracellular Hsp72) is not precisely identified and may not be the same in every situation. A number of studies demonstrated that e‐Hsp72 plays an important role in cell survival, tumour rejection and immune response. However, currently little is known about regulation of e‐Hsp72 function. In cells, Hsp72 is controlled by co‐chaperones. An abundant co‐chaperone, HspBP1 (Hsp72‐binding protein 1) was found extracellularly in the serum. In the present study we analysed the secretion and function of e‐HspBP1 (extracellular HspBP1). Results. A431 human squamous carcinoma cells accumulated Hsp72 and HspBP1 in chromogranin A‐positive granules following heat stress or in the presence of U73122, an inhibitor of phospholipase C. Following these treatments, A431 cells also increased the secretion of both proteins into the culture medium. The secreted e‐Hsp72 and e‐HspBP1 were co‐immunoprecipitated from the conditioned medium. Purified recombinant HspBP1 augmented e‐Hsp72‐mediated phosphorylation of EGFR (epidermal growth factor receptor) and its down‐stream targets, ERK1 (extracellular signal‐regulated kinase 1) and ERK2 in a concentration‐dependent manner. Finally, a HspBP1 N‐terminal domain deletion mutant and boiled recombinant HspBP1 did not affect the e‐Hsp72‐mediated activity. Conclusions. Heat stress and PLC (phospholipase C) inhibition result in the enhanced secretion of both Hsp72 and HspBP1. In an extracellular environment, the two chaperones interact both physically and functionally, leading to the activation of th EGFR—ERK1/2 signalling pathway. However, the magnitude of EGFR activation depends on the e‐HspBP1/e‐Hsp72 ratio in the medium. Extracellular chaperone‐mediated activation of EGFR can provide a survival advantage to cells under heat shock and other stresses.  相似文献   

16.
Mycobacterium tuberculosis (Mtb) survive inside macrophages by manipulating microbicidal functions such as phago-lysosome fusion, production of reactive oxygen species and nitric oxide, and by rendering macrophages non-responsive to IFN-gamma. Mtb-infected lung tissue does however not only contain macrophages, but also significant numbers of infiltrating polymorphonuclear neutrophils (PMN). These are able to phagocytose and kill ingested Mtb, but are short-lived cells that constantly need to be removed from tissues to avoid tissue damage. Phagocytosis of aged or UV-induced apoptotic PMN by macrophages induce an anti-inflammatory response in macrophages. However, in the present study, we show that engulfment of Mtb-induced apoptotic PMN by macrophages initiates secretion of TNF-alpha from the macrophages, reflecting a pro-inflammatory response. Moreover, Mtb-induced apoptotic PMN up-regulate heat shock proteins 60 and 72 (Hsp60, Hsp72) intracellularly and also release Hsp72 extracellularly. We found that both recombinant Hsp72 and released Hsp72 enhanced the pro-inflammatory response to both Mtb-induced apoptotic PMN and Mtb. This stimulatory effect of the supernatant was abrogated by depleting the Hsp72 with immunoprecipitation. These findings indicate that released Hsp72 from Mtb-infected PMN can trigger macrophage activation during the early stage of Mtb infections, thereby creating a link between innate and adaptive immunity.  相似文献   

17.
Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72bv (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72bv enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72bv in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72bv can now be used to unlock the important role Hsp72 plays in modulating immune function.  相似文献   

18.
Triggering receptor expressed in myeloid (TREM) cells 2, a receptor expressed by myeloid cells, osteoclasts and microglia, is known to play a protective role in bones and brain. Mutations of the receptor (or of its coupling protein, DAP12) sustain in fact a genetic disease affecting the two organs, the polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy (PLOSL or Nasu-Hakola disease). So far, specific agonist(s) of TREM2 have not been identified and its (their) transduction mechanisms are largely unknown. Heat shock protein 60 (Hsp60) is a mitochondrial chaperone that can also be harboured at the cell surface. By using constructs including the extracellular domain of TREM2 and the Fc domain of IgGs we have identified Hsp60 as the only TREM2-binding protein exposed at the surface of neuroblastoma N2A cells and astrocytes, and lacking in U373 astrocytoma. Treatment with Hsp60 was found to stimulate the best known TREM2-dependent process, phagocytosis, however, only in the microglial N9 cells rich in the receptor. Upon TREM2 down-regulation, the Hsp60-induced stimulation of N9 phagocytosis was greatly attenuated. Hsp60 is also released by many cell types, segregated within exosomes or shedding vesicles which might then undergo dissolution. However, the affinity of its binding ( K d = 3.8 μM) might be too low for the soluble chaperone released from the vesicles to the extracellular space to induce a significant activation of TREM2. It might in contrast be appropriate for the binding of TREM2 to Hsp60 exposed at the surface of cells closely interacting with microglia. The ensuing stimulation of phagocytosis could play protective effects on the brain.  相似文献   

19.
Inflammation leads to induction of tissue stress conditions that might contribute to the generation of mechanisms limiting ongoing immune responses. We have shown previously that peptides derived from brain tissue of mice with experimental autoimmune encephalomyelitis (EAE) complexed with the chaperone heat shock protein 70 (Hsp70-pc) induce an NK-cell-dependent tolerance for subsequent EAE sensitization. We now present data that showed that the MHC class I-related glycoprotein H60 determines Hsp70-pc-induced EAE inhibition. Hsp70-pc led to significant and selective up-regulation of H60 expression in SJL/J mice, and Ab-blocking of H60 expression led to loss of EAE tolerance. Similarly, blocking of the NK cell receptor for H60, NKG2D, also reversed the Hsp70-pc-induced EAE inhibition. In contrast, in C57BL/6 mice H60 was not expressed, and Hsp70-pc-induced tolerance was not detected. The NK cell mediated Hsp70-pc-induced tolerance to EAE was dependent on modulation of dendritic cells function leading to diminished T cell reactivity to PLP. As, no increase of H60 expression on T cells from EAE mice immunized with PLP was detected, and no enhanced loss of CD3+ H60+ over CD3+ H60- cells in Hsp70-pc-induced EAE tolerance was found direct killing of H60+ PLP-reactive cells seems not to be involved in the Hsp70-pc-induced tolerance induction. We have provided evidence that Hsp70-pc-induced tolerance for EAE, mediated by NK cells, involves induction of H60 ligand and its interaction with NKG2D receptor. NK cells tolerization of EAE depends on altered dendritic cells activity leading to enhanced death of Ag reactive cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号