首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The ultraviolet A (UVA, 320–400 nm) component of sunlight has the potential to generate an oxidative stress in cells and tissue so that antioxidants (both endogenous and exogenous) strongly influence the biological effects of UVA. The expression of several genes (including heme oxygenase-1, HO-1; collagenase; the CL100 phosphatase and the nuclear oncogenes, c-fos and c-jun) is induced following physiological doses of UVA to cells and this effect can be strongly enhanced by removing intracellular glutathione or enhancing singlet oxygen lifetime. We have observed that heme is released from microsomal heme-containing proteins by UVA and other oxidants and that activation of HO-1 expression by UVA correlates with levels of heme release. UVA radiation also leads to an increase in labile iron pools (either directly or via HO-1) and eventual increases in ferritin levels. The role of heme oxygenase in protection of skin fibroblasts is probably an emergency inducible defense pathway to remove heme liberated by oxidants. The slower increase in ferritin levels is an adaptive response which serves to keep labile iron pools low and thereby reduce Fenton chemistry and oxidant-induced chain reactions involving lipid peroxidation. In keratinocytes, the primary target of UVA radiation, heme oxygenase levels are constitutively high (because of HO-2 expression). Since there is a corresponding increase in basal levels of ferritin the epidermis appears to be well protected constitutively against the oxidative stress generated by UVA.  相似文献   

2.
Redox regulation and oxidant activation of heme oxygenase-1   总被引:4,自引:0,他引:4  
The ultraviolet A (UVA, 320-400 nm) component of sunlight has the potential to generate an oxidative stress in cells and tissue so that antioxidants (both endogenous and exogenous) strongly influence the biological effects of UVA. The expression of several genes (including heme oxygenase-1, HO-1; collagenase; the CL100 phosphatase and the nuclear oncogenes, c-fos and c-jun) is induced following physiological doses of UVA to cells and this effect can be strongly enhanced by removing intracellular glutathione or enhancing singlet oxygen lifetime. We have observed that heme is released from microsomal heme-containing proteins by UVA and other oxidants and that activation of HO-1 expression by UVA correlates with levels of heme release. UVA radiation also leads to an increase in labile iron pools (either directly or via HO-1) and eventual increases in ferritin levels. The role of heme oxygenase in protection of skin fibroblasts is probably an emergency inducible defense pathway to remove heme liberated by oxidants. The slower increase in ferritin levels is an adaptive response which serves to keep labile iron pools low and thereby reduce Fenton chemistry and oxidant-induced chain reactions involving lipid peroxidation. In keratinocytes, the primary target of UVA radiation, heme oxygenase levels are constitutively high (because of HO-2 expression). Since there is a corresponding increase in basal levels of ferritin the epidermis appears to be well protected constitutively against the oxidative stress generated by UVA.  相似文献   

3.
Up-regulation of heme oxygenase 1 (HO-1) by ultraviolet A (UVA; 320-380 nm) irradiation of human skin cells protects them against oxidative stress. The role of Nrf2 in up-regulation of HO-1 and other phase II genes is well established. The mechanism underlying Bach1-mediated HO-1 repression is less well understood although cellular localization seems to be crucial. Because prolonged HO-1 overexpression is likely to be detrimental, it is crucial that activation of the gene is transient. We now show that UVA irradiation of cultured human skin fibroblasts enhances accumulation of Bach1 mRNA and protein severalfold. Endogenous Bach1 protein accumulates in the nucleus after 8h and may occupy MARE sites after HO-1 activation thus providing a compensatory mechanism to control HO-1 overexpression. Overexpression of Bach1, together with MafK, represses basal and UVA-mediated HO-1 protein expression, whereas silencing of the Bach1 gene by Bach1-specific siRNAs causes robust enhancement of constitutive HO-1 levels. UVA treatment of cells in which Bach1 has been silenced leads to higher levels of induction of the HO-1 protein. Although Bach1 protein is exported from the nucleus 12h after UVA irradiation, the release of free cellular heme from microsomal heme-containing proteins is immediate rather than delayed. Although heme does promote the export of Bach1 via the Crm1/exportin 1 pathway and is involved in the delayed UVA-mediated export of the protein, it is not clear how this occurs.  相似文献   

4.
5.
Heme oxygenase (HO) breaks down heme to iron, biliverdin, and carbon monoxide, and activity of this enzyme increases in many tissues and cell types after exposure to oxidative stress. There is evidence that increased HO activity is involved in long-term protective mechanisms against oxidative stress. We studied the effect of artificially overexpressed HO activity on the cytotoxicity of oxidative ultraviolet A (UVA) radiation after loading human cells with the HO substrate ferric heme (hemin). In contrast to the reported long-term protection attributed to HO activity, cells overexpressing HO activity were hypersensitive to UVA radiation shortly after heme treatment when compared with control cells. Cells overexpressing HO activity showed an increased rate of heme consumption and a higher level of accumulated free chelatable iron when compared with control cells. The hypersensitivity of cells overexpressing HO to UVA radiation after heme treatment was apparently caused by the increased accumulation of chelatable iron, because the iron chelator desferrioxamine strongly reduced the hypersensitivity. One day after the heme treatment, cells overexpressing HO activity were no longer hypersensitive to UVA radiation. We conclude that increased HO activity can temporarily increase the sensitivity of cells to oxidative stress by releasing iron from heme.  相似文献   

6.
The in vivo effect of menadione bisulfite adduct on both hepatic oxidative stress and heme oxygenase induction was studied. A marked increase in lipid peroxidation was observed 1 h after menadione bisulfite adduct administration. To evaluate liver antioxidant enzymatic defenses, superoxide dismutase, catalase and glutathione peroxidase activities were determined. Antioxidant enzymes significantly decreased 3 h after menadione bisulfite adduct injection. Heme oxygenase activity appeared 6 h after treatment, peaking 9 h after menadione bisulfite adduct administration. Such induction was preceded by a decrease in the intrahepatic GSH pool and an increase in hydrogen peroxide steady-state concentration, both effects taking place some hours before induction of heme oxygenase. Iron ferritin levels and ferritin content began to increase 6 h after heme oxygenase induction, and these increases were significantly higher 15 h after treatment and remained high for at least 24 h after menadione bisulfite adduct injection. Administration of bilirubin entirely prevented heme oxygenase induction as well as the decrease in hepatic GSH and the increase in lipid peroxidation when administered 2 h before menadione bisulfite adduct treatment. These results indicate that the induction of heme oxygenase by menadione bisulfite adduct may be a general response to oxidant stress, by increasing bilirubin and ferritin levels and could therefore provide a major cellular defense mechanism against oxidative damage.  相似文献   

7.
Heme oxygenase-1 is the heme catabolic enzyme induced in human dermal fibroblasts by environmental stress. We report an increase of heme oxygenase-1 message in lens epithelial cells after exposure to UVA radiation, followed by a 10-fold increase of protein expression. The size of message was larger than previously demonstrated for fibroblasts. The relationship between heme oxygenase-1 activation and iron metabolism was investigated by measurement of activities of both cytosolic and mitochondrial cis-aconitase enzymes. A 2-fold increase in mitochondrial cis-aconitase activity in UVA-exposed cells coincided with the time of maximal heme oxygenase-1 expression. We propose that modulation of cis-aconitase activity at the translational level by an increase of cellular iron is an important consequence of heme oxygenase-1 activation. This might be a novel aspect of the protective role of heme oxygenase-1 in modulating the response of cells challenged with oxidative stress.  相似文献   

8.
Physiological heme degradation is mediated by the heme oxygenase system consisting of heme oxygenase and NADPH-cytochrome P-450 reductase. Biliverdin IX alpha is formed by elimination of one methene bridge carbon atom as CO. Purified NADPH-cytochrome P-450 reductase alone will also degrade heme but biliverdin is a minor product (15%). The enzymatic mechanisms of heme degradation in the presence and absence of heme oxygenase were compared by analyzing the recovery of 14CO from the degradation of [14C]heme. 14CO recovery from purified NADPH-cytochrome P-450 reductase-catalyzed degradation of [14C]methemalbumin was 15% of the predicted value for one molecule of CO liberated per mole of heme degraded. 14CO2 and [14C]formic acid were formed in amounts (18 and 98%, respectively), suggesting oxidative cleavage of more than one methene bridge per heme degraded, similar to heme degradation by hydrogen peroxide. The reaction was strongly inhibited by catalase, but superoxide dismutase had no effect. [14C]Heme degradation by the reconstituted heme oxygenase system yielded 33% 14CO. Near-stoichiometric recovery of 14CO was achieved after addition of catalase to eliminate side reactions. Near-quantitative recovery of 14CO was also achieved using spleen microsomal preparations. Heme degradation by purified NADPH-cytochrome P-450 reductase appeared to be mediated by hydrogen peroxide. The major products were not bile pigments, and only small amounts of CO were formed. The presence of heme oxygenase, and possibly an intact membrane structure, were essential for efficient heme degradation to bile pigments, possibly by protecting the heme from indiscriminate attack by active oxygen species.  相似文献   

9.
10.
Heat shock induction of heme oxygenase mRNA in human Hep 3B hepatoma cells   总被引:2,自引:0,他引:2  
Heat shock treatment of human Hep 3B hepatoma cells led to the induction of mRNA for microsomal heme oxygenase. The maximum induction of heme oxygenase mRNA (5----7-fold) was observed with treatment of cells at 43.5 degrees C, for 60 min. The heat-mediated induction of heme oxygenase mRNA was blocked by simultaneous treatment of cells with actinomycin D or cycloheximide. In contrast to Hep 3B cells, cells of another human hepatoma line, Hep G2, showed little induction of heme oxygenase mRNA by heat treatment. These findings suggest that heat shock treatment induces heme oxygenase mRNA in certain human hepatoma cells, but not in others.  相似文献   

11.
The synthesis of 34-kDa stress protein was enhanced, with a simultaneous increase in heme oxygenase activity, when mouse macrophages were exposed to diethylmaleate or sodium arsenite. After 7 h of exposure to the sulfhydryl agents, the 34-kDa protein was the most actively synthesized protein. Immunoblot analysis showed that the induced 34-kDa protein reacted with an antibody raised against bovine heme oxygenase. Cadmium ions or 1-chloro-2,4-dinitrobenzene also induced the 34-kDa protein which reacted with the antibody. Treatments of the cells with buthionine sulfoximine or hydrogen peroxide weakly induced the protein, while diamide treatment or heat shock was without effect. These results are consistent with our previous findings that heavy metal ions including arsenite and cadmium ions induce heme oxygenase (32-kDa stress protein) in human cell lines [Taketani, S., Kohno, H., Yoshinaga, T., & Tokunaga, R. (1989) FEBS Lett. 245, 173-176], and also suggest that the formation of glutathione conjugate with sulfhydryl-reactive agents may mediate the induction of the stress protein in mouse peritoneal macrophages.  相似文献   

12.
Repeated administration of human chorionic gonadotropin to rats results in a maximal depression of testicular microsomal heme and cytochrome P-450 levels at 24 h, followed by increases that plateau at pretreatment levels by day six. Associated with the depressed levels of microsomal heme and cytochrome P-450 is an increase of testicular microsomal heme oxygenase activity at 12-24 h. Testicular mitochondrial delta-aminolevulinic acid synthase activity was increased at 24 h, and remained elevated throughout the 9-day treatment period. Pretreatment with 1,4,6-androstatrien-3,17-dione, an aromatase inhibitor, failed to prevent the depression of testicular microsomal heme or cytochrome P-450 or increased heme oxygenase activity caused by repeated administration of human chorionic gonadotropin, and administration of estradiol benzoate failed to alter testicular microsomal heme oxygenase activity suggesting that these parameters were not related to altered testicular estrogen content caused by increased aromatase activity. These results suggest that increased testicular heme oxygenase activity is associated with decreased microsomal heme and cytochrome P-450 content during human chorionic gonadotropin-induced desensitization.  相似文献   

13.
In heme degradation catalyzed by the reconstituted heme oxygenase system, 8 to 9 mol of dioxygen and 11 to 12 mol of NADPH were consumed per mol of hemin lost, and about half the amount of dioxygen consumed could be accounted for by the production of hydrogen peroxide, which accumulated in the reaction mixture. Production of hydrogen peroxide in the heme oxygenase reaction did not appear to be due to the bimolecular dismutation of superoxide anions but rather seemed to be due to dissociation of a "peroxo" species formed on heme or intermediates of heme degradation. The hydrogen peroxide produced appeared to cause a considerable degree of non-specific degradation of heme (not leading to the formation of biliverdin) and also caused an inactivation of heme oxygenase. By taking into account the amount of dioxygen incorporated into hydrogen peroxide and some other factors, it could be deduced that 3 mol of dioxygen is consumed for the formation of 1 mol of biliverdin in the heme oxygenase reaction.  相似文献   

14.
The in vivo effect of hemin on both hepatic oxidative stress and heme oxygenase induction was studied. A marked increase in lipid peroxidation was observed 1 hr after hemin administration. Heme oxygenase-1 activity and expression appeared 6 hr after treatment, reaching a maximum between 12 and 15 hr after hemin administration. Such induction was preceded by a decrease in the soluble and enzymatic defenses, both effects taking place some hours before induction of heme oxygenase. Ferritin content began to increase 6 hr after heme oxygenase induction, and these increases were significantly higher 15 hr after treatment and remained high for at least 24 hr after hemin injection. Co-administration of tin protoporphyrin IX, a potent inhibitor of heme oxygenase, completely prevented the enzyme induction and the increase in ferritin levels, increasing the appearance of oxidative stress parameters. Administration of bilirubin, prevented the heme oxygenase induction as well as the decrease in hepatic GSH and the increase of lipid peroxidation when it was administered 2 hr before hemin treatment. These results indicate that the induction of heme oxygenase by hemin may be a general response to oxidant stress, by increasing bilirubin and ferritin levels and could therefore provide a major cellular defense mechanism against oxidative damage.  相似文献   

15.
The in vivo effect of the known herbicide, paraquat, on both hepatic oxidative stress and heme metabolism was studied. A marked increase in lipid peroxidation and a decrease in reduced glutathione (GSH) content were observed 1 h after paraquat administration. The activity of liver antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase was decreased 3 h after paraquat injection. Heme oxygenase-1 induction started 9 h after treatment, peaking at 15 h. delta-aminolevulinic acid synthase induction occurred once heme oxygenase had been enhanced, reaching its maximum (1.5-fold of control) at 16 h. delta-aminolevulinic acid dehydratase activity was 40% inhibited at 3 h showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of alpha-tocopherol (35 mmol/kg body weight) 2 h before paraquat treatment entirely prevented the increase in thiobarbituric acid reactive substances (TBARS) content, the decrease in GSH levels as well as heme oxygenase-1 and delta-aminolevulinic acid synthase induction. This study shows that oxidative stress produced by paraquat leads to an increase in delta-aminolevulinic acid synthase and heme oxygenase-1 activities, indicating that the herbicide affects both heme biosynthesis and degradation.  相似文献   

16.
A radioimmunoassay was developed to assess the response of testicular HO-1 to agents known to increase the microsomal heme oxygenase activity. Treatment of rats with human chorionic gonadotropin (hCG) increased the microsomal heme oxygenase activity in rat testis. The following data suggest that the increase was specific to the HO-1 isozyme: (a) The elution profile of heme oxygenase activity from a DEAE-Sephacel column showed an increase in the HO-1 peak, but not in the HO-2 peak, (b) the Western immunoblot of the testis microsomes showed an increase in HO-1 protein, and (c) the amount of HO-1 protein that was present in the microsomes, when measured by radioimmunoassay, was doubled. Using radioimmunoassay, it was shown that other agents known to increase the testicular heme oxygenase, sodium arsenate and sodium arsenite, also increased the microsomal content of HO-1. An inhibitor of the testicular microsomal heme oxygenase activity, cadmium, also increased the microsomal HO-1 protein. The findings suggest that inducibility of HO-1 extends to tissues other than the liver, in this instance, the testis, and further support the possibility that HO-1 is the only inducible form of heme oxygenase.  相似文献   

17.
Heme oxygenase is an Mr 32,000 microsomal enzyme which catalyzes the rate-limiting step in the oxidative catabolism of heme to yield equimolar quantities of biliverdin IX alpha, carbon monoxide, and iron. In the present investigation, evidence is presented suggesting that immunochemical and structural differences exist between bovine spleen heme oxygenase and heme oxygenase enzymes from other mammalian species. Using an antibody directed against bovine spleen heme oxygenase, enzyme-linked immunosorbent assays, Western blotting experiments, and cell-free translation immunoprecipitation studies showed that bovine spleen heme oxygenase is only weakly immunochemically related to heme oxygenase from rat spleen. This observation was supported by the fact that a rat spleen heme oxygenase cDNA probe did not hybridize significantly to bovine spleen heme oxygenase mRNA in Northern analyses nor to restriction fragments containing the bovine heme oxygenase gene in Southern analyses. Tryptic peptides were prepared from bovine spleen heme oxygenase and the amino acid sequences of nine peptides comprising 94 amino acid residues were determined, providing the first information on the primary structure of bovine spleen heme oxygenase. Comparison of the sequences of these tryptic peptides with regions of the deduced amino acid sequences of rat spleen and human macrophage heme oxygenase revealed sequence similarities ranging from 55 to 100%. Several peptides displaying the highest degree of sequence similarity were found to occur in regions of the heme oxygenase molecule postulated to contain the heme binding site, indicating that despite the immunochemical and apparent structural differences between bovine spleen heme oxygenase and the rat and human enzymes, functionally important amino acid residues have been conserved in the evolution of mammalian heme oxygenase genes.  相似文献   

18.
The concerted activity of two microsomal enzymes, heme oxygenase and NADPH-cytochrome c (P-450) reductase, is required for isomer-specific oxidation of heme molecule; heme oxygenase is commonly believed to be rate limiting in this activity. In this report, we provide evidence strongly suggesting the rate-limiting role of the reductase in oxidation of heme molecule in rat testis. In the testis and the liver of rats treated with Cd (20 mumol/kg, sc, 24 h) heme oxygenase activity, assessed by the formation of bilirubin, was decreased by 50% and increased by 7-fold, respectively. In these animals, the reductase activity was decreased by nearly 75% in the testis, but remained unchanged in the liver. Similarly, the reductase activity in the liver was not altered when heme oxygenase activity was increased by 20-fold in response to bromobenzene treatment. Addition of purified testicular reductase preparation (purified over 4000-fold), or hepatic reductase, to the testicular microsomes of Cd-treated rats obliterated the Cd-mediated inhibition of heme oxygenase activity. The chromatographic separation of heme oxygenase and the reductase of the testicular microsomal fractions revealed that the reductase activity was markedly decreased (75%) while the heme oxygenase activity, when assessed in the presence of exogenous reductase, was not affected by in vivo Cd treatment. In vitro, the membrane-bound reductase preparation obtained from the testis was more sensitive to the inhibitory effect of Cd than the liver preparation. However, the purified reductase preparations from the testis and the liver exhibited a similar degree of sensitivity to Cd. Based on the molar ratio of heme oxygenase to the reductase in the microsomal membranes of the liver and the testis it appeared that the testicular heme oxygenase, which is predominantly HO-2 isoform, interacts with the reductase less effectively than HO-1; in the induced liver, heme oxygenase is predominantly the HO-1 isoform. It is suggested that due to the low abundance of NADPH-cytochrome c (P-450) reductase and the apparently lower affinity of the enzyme for HO-2, the reductase exerts a regulatory action on heme oxygenase activity in the testis.  相似文献   

19.
Heme oxygenase (HO) is a microsomal enzyme that oxidatively cleaves heme to form biliverdin, releasing iron and carbon monoxide (CO). Thus, HO not only controls the availability of heme for the synthesis of hemeproteins but also generates CO, which binds to the heme moiety of hemoproteins, thereby affecting their enzymatic activity. The present study was undertaken to explore changes in the relative expression of renal HO-1 and HO-2 in response to modulators and the effect on blood pressure regulation in spontaneously hypertensive rats (SHR). Immunohistochemistry confirmed a cobalt protoporphyrin (CoPP)-mediated increase in HO-1 protein. After a single injection of CoPP (5 mg/100 gram body weight) in 7-week-old SHR, blood pressure significantly decreased (p<0.01) while renal HO activity increased 6-fold over controls. CoPP pretreatment deceased the levels of the renal cytochrome P450-derived arachidonic acid metabolite, 20-HETE, a powerful vasoconstrictor, by 65% in renal tissue. Western blot analysis demonstrated that CoPP significantly increased HO-1 protein expression in the cortex and outer medulla and, to a lesser degree, in the inner medulla of the rat kidney. HO-2 was constitutively expressed in all parts of the kidney, and did not significantly change after treatment with CoPP. These results indicate that selective induction of cortical and outer medullary HO-1 is associated with a decrease in 20-HETE and blood pressure, suggesting an important role for HO-1 activity in the regulation of urine volume, electrolyte excretion and blood pressure.  相似文献   

20.
Intracellular site of synthesis of microsomal heme oxygenase in pig spleen   总被引:1,自引:0,他引:1  
In the pig spleen the specific activity of heme oxygenase was two to three times higher in smooth microsomes than in rough microsomes, whereas the total heme oxygenase activities recovered in the two microsomal fractions were similar. Free and bound polysomes were isolated from pig spleen and nascent peptides on these polysomes were analyzed by employing [3H]puromycin and a heme oxygenase-specific rabbit antibody (IgG). It was shown that free polysomes are the major site of heme oxygenase synthesis. In addition, cell-free synthesis of heme oxygenase was performed in a reticulocyte lysate system with free and bound polysomes isolated from pig spleen, and the results obtained again indicated that heme oxygenase is synthesized predominantly on free polysomes. The heme oxygenase newly synthesized on free polysomes may be incorporated first into the rough portion of endoplasmic reticulum either before or after its release from polysomes, although the specific activity of this enzyme at the steady state is considerably higher in the smooth region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号