首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We have shown that extracellular calcium [Ca(+2)](e) induces cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production via an ERK signaling pathway in osteoblasts. In this study, we examined the roles of protein kinase C (PKC) and A (PKA) signaling pathways in the [Ca(+2)](e) induction of COX-2 in primary calvarial osteoblasts from mice transgenic for -371 bp of the COX-2 promoter fused to a luciferase reporter. Neither PKC specific inhibitors nor downregulation of the PKC pathway by phorbol myristate acetate (PMA) affected the [Ca(+2)](e) stimulation of COX-2 mRNA or promoter activity. In contrast, PKA inhibitors, used at doses that inhibited forskolin-stimulated luciferase activity by 90%, reduced [Ca(+2)](e)-stimulated COX-2 mRNA expression and promoter activity by 80-90%. [Ca(+2)](e) also stimulated a 2- to 3-fold increase in cAMP production. Hence, the [Ca(+2)](e) induction of COX-2 mRNA expression and promoter activity was independent of the PKC pathway and dependent on the PKA signaling pathway.  相似文献   

2.
3.
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.  相似文献   

4.
Fluid flow induces Rankl expression in primary murine calvarial osteoblasts   总被引:5,自引:0,他引:5  
Mechanical loading of bone generates fluid flow within the mineralized matrix that exerts fluid shear stress (FSS) on cells. We examined effects of FSS on receptor activator of nuclear factor kappa B ligand (RANKL), a critical factor for osteoclast formation. Primary murine osteoblasts were subjected to pulsatile FSS (5 Hz, 10 dynes/cm(2)) for 1 h and then returned to static culture for varying times (post-FSS). Protein levels were measured by Western analysis and mRNA by Northern analysis, RT-PCR and quantitative PCR. There were 20- to 40-fold increases in RANKL mRNA at 2-4 h post-FSS. RANKL protein was induced by 2 h post-FSS and remained elevated for at least 8 h. Effects were independent of cyclooxygenase-2 activity. Small increases (up to three-fold) in mRNA of the decoy receptor for RANKL, osteoprotegerin, were seen. Five min of FSS, followed by static culture, was as effective in stimulating RANKL mRNA as 4 h of continuous FSS. FSS induced cAMP activity, and H-89, a protein kinase A (PKA) inhibitor, blocked the FSS induction of RANKL. H-89 also inhibited the PKC pathway, but specific PKC inhibitors, GF109203X and Go6983, did not inhibit FSS-induced RANKL. FSS induced phosphorylation of ERK1/2, and PD98059, an inhibitor of the ERK pathway, inhibited the FSS induction of RANKL mRNA 60%-90%. Thus, brief exposure to FSS resulted in sustained induction of RANKL expression after stopping FSS, and this induction was dependent on PKA and ERK signaling pathways. Increased RANKL after mechanical loading may play a role in initiating bone remodeling.  相似文献   

5.
6.
It is well established that bone metastases comprise bone; however, the exact factors/mechanisms involved remain unknown. We hypothesized that tumor cells secreted factors capable of altering normal bone metabolism. The aims of the present study were to (1) determine the effects of secretory products isolated from HT-39 cells, a human breast cancer cell line, on osteoprogenitor cell (MC3T3-E1 cells) behavior, and (2) identify tumor-derived factor(s) that alters osteoblast activities. Conditioned media (CM) from HT-39 cells were collected following a 24-h serum-free culture. The ability of CM to alter gene expression in MC3T3-E1 cells was determined by Northern analysis. CM effects on cell proliferation and mineralization ability were determined using a Coulter counter and von Kossa stain, respectively. MC3T3-E1 cells were treated with CM plus noggin, a factor known to block bone morphogenic proteins (BMPs), to determine whether BMPs, shown to be present in CM, were linked with CM effects on MC3T3-E1 cell activity. In addition, inhibitors of MAP kinase kinase (MEK), protein kinase C (PKC), and protein kinase A were used to identify the intracellular signaling pathway(s) by which the active factors in CM regulated osteoblast behavior. CM treatment significantly enhanced BSP mRNA (2.5-fold over control), but had no effect on cell proliferation. Mineralization assay showed that CM enhanced mineral nodule formation compared to controls. Noggin inhibited CM-induced upregulation of BSP mRNA, suggesting that BMPs were responsible for upregulating BSP gene expression in MC3T3-E1 cells. The PKC inhibitor blocked CM-mediated upregulation of BSP, suggesting involvement of the PKC pathway in regulating BSP expression. BMPs secreted by HT-39 cells may be responsible for enhancing BSP expression in MC3T3-E1 cells. Continued studies targeted at determining the role of BMPs in regulating bone metabolism are important for understanding the pathogenesis of bone diseases.  相似文献   

7.
Zinc is an essential element for bone formation; however, its role in osteoblast has not been well understood. In the present study, we hypothesized that zinc could increase osteogenetic function by stimulating osteoblast proliferation and osteoprotegerin (OPG) activity. To test this hypothesis, osteoblastic MC3T3-E1 cells were cultured and treated with various concentrations of zinc (0, 10, 30, 50, 70, 110, 130, and 150 μM) for 24 and 48 h. 3-[4,5-dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide assay showed that cell proliferation was significantly stimulated with 50 μM zinc treatment. Furthermore, under the same treatment condition, OPG expression was significantly increased as evidenced by the results of RT-PCR and ELISA. However, the zinc-induced OPG expression was significantly attenuated when MC3T3-E1 cells were co-treated with either protein kinase C (PKC) inhibitor, GF109203X, or the Inhibitor of mitogen-activated extracellular signal-regulated kinase 1 (MEK1), PD98059. Moreover, OPG expression was further increased when MC3T3-E1 cells were treated with PMA (the activator of protein of kinase C) in the presence of zinc. These results suggested that zinc would increase osteogenic function by stimulating PKC and MAPK signaling pathways.  相似文献   

8.
目的:探讨MC3T3-E1细胞在流体剪切力作用下LEF-1的表达。方法:通过流体剪切加载系统对MC3T3-E1爬片细胞施加12dyn/cm的流体剪切力,分别作用0h,2h,4h,8h,12h,用RT-PCR方法检测细胞受力前后LEF-1 mRNA表达的变化;应用免疫荧光双标记法检测不同时间点流体剪切力作用下MC3T3-E1细胞中的LEF-1 mRNA表达改变。结果:RT-PCR和免疫荧光双标记法的结果表明12dyn/cm 8h流体剪切力作用下的MC3T3-E1细胞LEF-1 mRNA的表达较其它各组明显增强。结论:通过流体剪切力力学刺激,激活了成骨细胞LEF-1/TCF1转录活动,LEF-1 mRNA的表达增强可能是成骨细胞经典Wnt信号通路对剪切应力的应答反应。  相似文献   

9.
10.
Tang SY  Xie H  Yuan LQ  Luo XH  Huang J  Cui RR  Zhou HD  Wu XP  Liao EY 《Peptides》2007,28(3):708-718
The aim of this study was to investigate the effects of apelin on proliferation and apoptosis of mouse osteoblastic MC3T3-E1 cells. APJ was expressed in MC3T3-E1 cells. Apelin did not affect Runx2 expression, alkaline phosphatase (ALP) activity, osteocalcin and type I collagen secretion, suggesting that it has no effect on osteoblastic differentiation of MC3T3-E1 cells. However, apelin stimulated MC3T3-E1 cell proliferation and inhibited cell apoptosis induced by serum deprivation. Our study also shows that apelin decreased cytochrome c release and caspase-3, capase-8 and caspase-9 activation in serum-deprived MC3T3-E1 cells. Apelin activated c-Jun N-terminal kinase (JNK) and Akt (phosphatidylinositol 3-kinase downstream effector), and the JNK inhibitor SP600125, the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 or the Akt inhibitor 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO) inhibited its effects on proliferation and serum deprivation-induced apoptosis. Furthermore, apelin protected against apoptosis induced by the glucocorticoid dexamethasone or TNF-alpha. Apelin stimulates proliferation and suppresses serum deprivation-induced apoptosis of MC3T3-E1 cells and these actions are mediated via JNK and PI3-K/Akt signaling pathways.  相似文献   

11.
T Sakai  Y Okano  Y Nozawa  N Oka 《Cell calcium》1992,13(5):329-340
Effects of protein kinase C (PKC) on bradykinin (BK)-induced intracellular calcium mobilization, consisting of rapid Ca2+ release from internal stores and a subsequent sustained Ca2+ inflow, were examined in Fura-2-loaded osteoblast-like MC3T3-E1 cells. The sustained Ca2+ inflow as inferred with Mn2+ quench method was blocked by Ni2+ and a receptor-operated Ca2+ channel blocker SK&F 96365, but not by nifedipine. The short-term pretreatment with phorbol 12-myristate 13-acetate (PMA), inhibited BK-stimulated Ca2+ inflow, and the prior treatment with PKC inhibitors, H-7 or staurosporine, enhanced the initial internal release and reversed the PMA effect. Moreover, 6 h pretreatment with PMA caused similar effect on the BK-induced inflow to that obtained with PKC inhibitors, whereas 24 h pretreatment was necessary to affect the internal release. On the other hand, the translocation and down-regulation of PKC isozymes were examined after PMA treatment of MC3T3-E1 cells by immunoblot analyses of PKCs with the isozyme-specific antibodies. 6 h treatment with PMA induced down-regulation of PKC beta, whereas longer treatment was needed for down-regulation of PKC alpha. Taken together, it was suggested that the BK-induced initial Ca2+ peak and the sustained Ca2+ inflow through the activation of a receptor-operated Ca2+ channel, are differentially regulated by PKC isozymes alpha and beta, respectively, in osteoblast-like MC3T3-E1 cells.  相似文献   

12.
Bone metastases from prostate cancer cause abnormal new bone formation, however, the factors involved and the pathways leading to the response are incompletely defined. We investigated the mechanisms of osteoblast stimulatory effects of LNCaP prostate carcinoma cell conditioned media (CM). MC3T3-E1 osteoblastic cells were cultured with CM from confluent LNCaP cells. LNCaP CM stimulated MAP kinase, cell proliferation (3H-thymidine incorporation), and protein synthesis (14C-proline incorporation) in the MC3T3-E1 cells. The increases in cell proliferation and protein synthesis were prevented by inhibition of the MAP kinase pathway. IGF-I mimicked the effects of the CM on the MC3T3-E1 cells and inhibition of IGF-I action decreased the LNCaP CM stimulation of 3H-thymidine and 14C-proline incorporation and MAP kinase activity. The findings indicate that IGF-I is an important factor for the stimulatory effects of LNCaP cell CM on cell proliferation and protein synthesis in osteoblastic cells, and that MAP kinase is a component of the signaling pathway for these effects.  相似文献   

13.
14.
Prostaglandins are now recognized to be important regulators for both bone formation and resorption. Among them, prostaglandin E(1) (PGE(1)) has been reported to stimulate cAMP accumulation and to induce alkaline phosphatase (ALP) activity, a marker of differentiation, in osteoblast-like cells. Recently, we have shown that p38 mitogen-activated protein (MAP) kinase pathway regulates ALP activity in response to activation of Gi protein-coupled receptors in mouse osteoblast-like MC3T3-E1 cells (Suzuki et al., Endocrinology 140 (1999) 3177). In the present study, we investigated whether p38 MAP kinase is involved in ALP activation by PGE(1) in MC3T3-E1 osteoblast-like cells. PGE(1) dose-dependently enhanced ALP activities in the concentration range between 1 nM and 1 microM in MC3T3-E1 cells. SB203580, a specific inhibitor of p38 MAP kinase, blocked the increase in ALP activity induced by PGE(1). Further analysis with western blotting suggested that PGE(1) induced an increase in tyrosine (Tyr) phosphorylation of p38 MAP kinase. Both Bt(2)cAMP, a permeable analogue of cAMP, and forskolin, which directly activates adenylate cyclase, also induced an increase in Tyr phosphorylation of p38 MAP kinase. H-89, a potent inhibitor of protein kinase A (PKA), significantly suppressed PGE(1)-induced Tyr phosphorylation of p38 MAP kinase. The results of this study suggest that PGE(1) stimulates p38 MAP kinase through the activation of PKA, resulting in the enhancement of ALP activity.  相似文献   

15.
In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway.  相似文献   

16.
17.
18.
Mechanical loading of bone is important for the structural integrity of the skeleton and the maintenance of bone mass. Mechanically loading bone generates fluid shear stress (FSS) across the surface of bone cells resulting in the induction of cyclooxygenase-2 (COX-2) and release of prostaglandins, both of which are necessary for mechanically induced bone formation. However, the mechanisms by which cells transduce FSS-induced signals across the membrane and into the cell remain poorly understood. Focal adhesions, which are specialized sites of attachment between cells and the extracellular matrix, play a role in signal transduction and have been proposed to function as mechanosensors. To directly test whether focal adhesions mediate mechanotransduction in bone cells, we inhibited the formation of focal adhesions by 1). culturing MC3T3-E1 osteoblasts on bovine serum albumin (BSA), which does not contain integrin binding sites or by 2). treating cells cultured on fibronectin with soluble Arg-Gly-Asp-Ser (RGDS) peptide to specifically block integrin-fibronectin interactions. We then subjected the cells to FSS and measured COX-2 induction and PGE(2) release. Both COX-2 induction and PGE(2) release in response to FSS were significantly decreased when osteoblasts were treated with soluble RGDS peptide compared with controls. However, RGDS peptide treatment did not affect FSS-induced ERK phosphorylation. Interestingly, osteoblasts cultured on BSA to suppress focal adhesion formation secreted fibronectin and increased focal adhesion formation over time, which correlated with the induction of COX-2 in response to FSS. Together, these results suggest that fibronectin-induced formation of focal adhesions promotes FSS-induced PGE(2) release and upregulation of COX-2 protein.  相似文献   

19.
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-kappaB (NF-kappaB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-kappaB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast- and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号