首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size and size distribution of unilamellar phospholipid vesicles present in unsonicated phosphatidic acid and mixed phosphatidic acid/phosphatidylcholine dispersions were determined by gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy. The vesiculation in these dispersions was induced by a transient increase in pH as described previously (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683–1687). The resulting phospholipid dispersions are heterogeneous consisting of small unilamellar vesicles (average radius r < 50 nm) and large unilamellar vesicles (average r ranging from about 50 to 500 nm). The smallest vesicles with r = 11 ± 2 nm are observed with dispersions of pure phosphatidic acid, the population of these vesicles amounting to about 80% of the total lipid. With increasing phosphatidylcholine content the radius of the small unilamellar vesicles increases and at the same time the population of small unilamellar vesicles decreases. The average radius of small unilamellar vesicles present in phosphatidic acid/phosphatidylcholine dispersions (mole ratio, 1:1) is 17.5 ± 2 nm, the population of these vesicles amounting to about 70% of the total lipid. By a combination of gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy it was possible to characterize the large unilamellar vesicles. This population is heterogeneous with its mean radius also increasing with increasing phosphatidylcholine content. After separating the large unilamellar vesicles from small unilamellar vesicles on Sepharose 4B it can be shown by quasi-elastic light scattering that in pure phosphatidic acid dispersions 80–90% of the large unilamellar vesicle population consist of vesicles with a mean radius of 170 nm. In mixed phosphatidic acid/phosphatidylcholine dispersions this radius increases to about 265 nm as the phosphatidylcholine content is raised to 90 mol%.  相似文献   

2.
Spontaneous size changes of small unilamellar vesicles with initial mean diameters of 25 nm measured by quasi-elastic light scattering (QELS) and electron microscopy are reported. After the size conversion the vesicles have mean diameters of about 70 nm and are of the unilamellar and multilamellar type. The fact that auto-oxidation initiates this process is established by the comparison of the results for vesicles which differ only in the degree of auto-oxidation. The role of phosphatidylcholine hydroperoxides as fusogens is discussed.  相似文献   

3.
The effect of the positive surface charge of unilamellar liposomes on the kinetics of their interaction with rat peritoneal macrophages was investigated using three sizes of liposomes: small unilamellar vesicles (approx. 25 nm diameter), prepared by sonication, and large unilamellar vesicles (100 nm and 160 nm diameter), prepared by the Lipoprep dialysis method. Charge was varied by changing the proportion of stearylamine added to the liposomal lipids (egg phosphatidylcholine and cholesterol, molar ratio 10:2.5). Increasing the stearylamine content of large unilamellar vesicles over a range of 0-25 mol% enhanced the initial rate of vesicle-cell interaction from 0.1 to 1.4 microgram lipid/min per 10(6) cells, and the maximal association from 5 to 110 micrograms lipid/10(6) cells. Cell viability was greater than 90% for cells incubated with large liposomes containing up to 15 mol% stearylamine but decreased to less than 50% at stearylamine proportions greater than 20 mol%. Similar results were obtained with small unilamellar vesicles except that the initial rate of interaction and the maximal association were less sensitive to stearylamine content. The initial rate of interaction, with increasing stearylamine up to 25 mol%, ranged from 0.5 to 0.7 microgram lipid/min per 10(6) cells, and the maximal association ranged from 20 to 70 micrograms lipid/10(6) cells. A comparison of the number and entrapped aqueous volume of small and large vesicles containing 15 mol% stearylamine revealed that although the number of large vesicles associated was 100-fold less than the number of small vesicles, the total entrapped aqueous volume introduced into the cells by large vesicles was 10-fold greater. When cytochalasin B, a known inhibitor of phagocytosis, was present in the medium, the cellular association of C8-LUV was reduced approx. 25% but association of SUV increased approx. 10-30%. Modification of small unilamellar vesicles with an amino mannosyl derivative of cholesterol did not increase their cellular interaction over that of the corresponding stearylamine liposomes, indicating that cell binding induced by this glycolipid may be due to the positive charge of the amine group on the sugar moiety. The results demonstrate that the degree of liposome-cell interaction with macrophages can be improved by increasing the degree of positive surface charge using stearylamine. Additionally, the delivery of aqueous drugs to cells can be further improved using large unilamellar vesicles because of their greater internal volume. This sensitivity of macrophages to vesicle charge and size can be used either to increase or reduce liposome uptake significantly by this cell type  相似文献   

4.
Cholesterol transfer from small and large unilamellar vesicles   总被引:3,自引:0,他引:3  
The rates of transfer of [14C]cholesterol from small and large unilamellar cholesterol/egg yolk phosphatidylcholine vesicles to a common vesicle acceptor were compared at 37 degrees C. The rate of exchange of cholesterol between vesicles of identical cholesterol concentrations (20 mol%) did not differ from the rate of transfer from donor vesicles containing 20 mol% cholesterol to egg yolk PC vesicles. Further, the rate of transfer of [14C]cholesterol from vesicles containing 15 mol% dicetyl phosphate (to confer a negative charge) was not different from the rate of transfer from neutral vesicles. However, the half-time for transfer of [14C]cholesterol from large unilamellar donor vesicles was about 5-times greater (10.2 h, 80 nm diameter) than from small unilamellar vesicles (2.3 h, 23 nm diameter). These data suggest that increased curvature in small unilamellar vesicles reduces cholesterol-nearest neighbor interactions to allow a more rapid transfer of cholesterol into the aqueous phase.  相似文献   

5.
 It has been reported that repetitive freeze-thaw cycles of aqueous suspensions of dioleoylphosphatidylcholine form vesicles with a diameter smaller than 200 nm. We have applied the same treatment to a series of phospholipid suspensions with particular emphasis on dioleoylphosphatidylcholine/dioleoylphosphatidic acid (DOPC/DOPA) mixtures. Freeze-fracture electron microscopy revealed that these unsaturated lipids form unilamellar vesicles after 10 cycles of freeze-thawing. Both electron microscopy and broad-band 31P NMR spectra indicated a disparity of the vesicle sizes with a highest frequency for small unilamellar vesicles (diameters ≤30 nm) and a population of larger vesicles with a frequency decreasing exponentially as the diameter increases. From 31P NMR investigations we inferred that the average diameter of DOPC/DOPA vesicles calculated on the basis of an exponential size distribution was of the order of 100 nm after 10 freeze-thaw cycles and only 60 nm after 50 cycles. Fragmentation by repeated freeze-thawing does not have the same efficiency for all lipid mixtures. As found already by others, fragmentation into small vesicles requires the presence of salt and does not take place in pure water. Repetitive freeze-thawing is also efficient to fragment large unilamellar vesicles obtained by filtration. If applied to sonicated DOPC vesicles, freeze-thawing treatment causes fusion of sonicated unilamellar vesicles into larger vesicles only in pure water. These experiments show the usefulness of NMR as a complementary technique to electron microscopy for size determination of lipid vesicles. The applicability of the freeze-thaw technique to different lipid mixtures confirms that this procedure is a simple way to obtain unilamellar vesicles. Received: 2 September 1999 / Revised version: 27 February 2000 / Accepted: 27 February 2000  相似文献   

6.
The effect of increasing concentrations of lipid X (2,3-bis(3-hydroxymyristoyl)-alpha-D-glucosamine 1-phosphate) on the phase behaviour of EPC (egg phosphatidylcholine) and EPE (egg phosphatidylethanolamine) is studied at a pH greater than or equal to 7 where lipid X carries one to two negative charges. Small amounts of lipid X (molar ratio approximately 0.01) induce continuous swelling of EPC and EPE bilayers and consequently the formation of large unilamellar vesicles in excess water. In many respects, the effect of lipid X on EPC and EPE bilayers is similar to that of phosphatidic acid. However, lipid X/EPC mixtures form micelles in excess lipid X whereas mixtures of phosphatidic acid/EPC vesiculate at all ratios. The same is true for lipid X/EPE mixtures. Small unilamellar vesicles of an average diameter of 40 nm form spontaneously upon dispersion of a dry lipid X/EPE film (molar ratio = 10). Unsonicated dispersions of lipid X/EPC (molar ratio = 1) are subjected to pH-jump treatment which involves raising of the pH to 11-12 and subsequent lowering of the pH to between 7.5 and 8.5. Such a treatment has little effect on the vesicle size and size distribution as compared to a control dispersion at pH 8.2. The mean size is determined to be 92 +/- 60 nm. Electron micrographs of freeze-fractured samples of lipid X/EPC (molar ratio = 1) reveal the presence of mainly micelles at pH 12. Upon lowering the pH to neutrality these micelles become unstable and aggregate/fuse rapidly to unilamellar vesicles (average diameter 95 +/- 40 nm). Sonication of equimolar mixtures of lipid X and EPC at pH 7 yields small unilamellar vesicles of a diameter of 20-25 nm as well as mixed micelles of a size between 15 and 17 nm. This behaviour is again different from that of mixed EPC/phosphatidic acid dispersions which form small unilamellar vesicles. The presence of lipid X in such mixtures does not prevent the aggregation/fusion to larger vesicles during freezing of the dispersion. As with pure EPC bilayers, stabilization is, however, achieved in the presence of 10% sucrose. This indicates that the covalently bonded glucosamine group of lipid X cannot substitute water of hydration in neighbouring EPC molecules.  相似文献   

7.
Cytochrome P-450 and NADPH cytochrome P-450 reductase were incorporated into large unilamellar lipid vesicles (200–300 nm in diameter) removing octylglucoside from mixed micelles by dialysis. The large size of the protein-containing liposomes guarantees a negligibly small vesicle tumbling. Such large vesicles are better suited for studies of protein rotation in reconstituted membranes than vesicles prepared by use of bile salts. At present the octylglucoside reconstituted monooxygenase system seems to be the most appropriate model for studying protein-protein and protein-lipid interactions in liver microsomes due to the similarity with respect to the main structural and functional properties, including size.  相似文献   

8.
F A Nezil  S Bayerl    M Bloom 《Biophysical journal》1992,61(5):1413-1426
Deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) and freeze-fracture electron microscopy were used to study spontaneous vesiculation in model membranes composed of POPC:POPS with or without cholesterol. The NMR spectra indicated the presence of a central isotropic line, the intensity of which is reversibly and linearly dependent upon temperature in the L alpha phase, with no hysteresis when cycling between higher and lower temperatures. Freeze-fracture microscopy showed small, apparently connected vesicles that were only present when the samples were frozen (for freeze-fracture) from an initial temperature of 40-60 degrees C, and absent when the samples are frozen from an initial temperature of 20 degrees C. Analysis of motional narrowing was consistent with the isotropic lines being due to lateral diffusion in (and tumbling of) small vesicles (diameters approximately 50 nm). These results were interpreted in terms of current theories of shape fluctuations in large unilamellar vesicles which predict that small daughter vesicles may spontaneously "erupt" from larger parent vesicles in order to expel the excess area created by thermal expansion of the bilayer surface at constant volume. Assuming that all the increased area due to increasing temperature is associated with the isotropic lines, the NMR results allowed a novel estimate of the coefficient of area expansion alpha A in multilamellar vesicles (MLVs) which is in good agreement with micromechanical measurements upon giant unilamellar vesicles of similar composition. Experiments performed on unilamellar vesicles, which had been placed upon glass beads, confirmed that alpha A determined in this way is unchanged compared with the MLV case. Addition of the highly positively charged (extrinsic) myelin basic protein (MBP) to a POPC:POPS system showed that membrane eruptions of the type described here occur in response to the presence of this protein.  相似文献   

9.
A method has been developed for making large unilamellar vesicles (LUV) with low polydispersity. The LUV, constituted of dioleoylphosphatidic acid (DOPA), 300 nm in diameter are made by a modification of the pH adjustment technique (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683–1687). This size is 10 times that (30 nm) of vesicles prepared by prolonged sonication. Vesicle size is increased stepwise by adding cholesterol (to a maximum of 40 mol% cholesterol) to form vesicles in 0.15 M KCl with up to 600 nm diameter. The vesicle size is measured by photon correlation spectroscopy, electron microscopy, and by measurement of the internal volume with cyanocobalamin while calculating the number of DOPA molecules per vesicle. Vesicles are stable for at least three weeks. Sepharose 4B column chromatography of the preparation yields a peak of fractions with the same polydispersity as the original sample and shows that 30 to 40% of the original lipid in a sample is recovered as LUV. Less than 2% of the sample forms small unilamellar vesicles (SUV) (diameter = 30 nm), which emerge from the column in a separate peak. Since the remaining lipid is not suspended in the buffer during vesicle formation, for most purposes the vesicles may be used immediately after titration so that they can be prepared in less than 40 min.  相似文献   

10.
A method has been developed for making large unilamellar vesicles (LUV) with low polydispersity. The LUV, constituted of dioleoylphosphatidic acid (DOPA), 300 nm in diameter are made by a modification of the pH adjustment technique (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683-1687). This size is 10 times that (30 nm) of vesicles prepared by prolonged sonication. Vesicle size is increased stepwise by adding cholesterol (to a maximum of 40 mol% cholesterol) to form vesicles in 0.15 M KCl with up to 600 nm diameter. The vesicle size is measured by photon correlation spectroscopy, electron microscopy, and by measurement of the internal volume with cyanocobalamin while calculating the number of DOPA molecules per vesicle. Vesicles are stable for at least three weeks. Sepharose 4B column chromatography of the preparation yields a peak of fractions with the same polydispersity as the original sample and shows that 30 to 40% of the original lipid in a sample is recovered as LUV. Less than 2% of the sample forms small unilamellar vesicles (SUV) (diameter = 30 nm), which emerge from the column in a separate peak. Since the remaining lipid is not suspended in the buffer during vesicle formation, for most purposes the vesicles may be used immediately after titration so that they can be prepared in less than 40 min.  相似文献   

11.
K M Eum  G Riedy  K H Langley  M F Roberts 《Biochemistry》1989,28(20):8206-8213
Small unilamellar vesicles which form when gel-state long-chain phosphatidylcholines are mixed with micellar short-chain lecithins undergo an increase in size as the long-chain species melts to its liquid-crystalline form. Analysis of the vesicle population with quasi-elastic light scattering shows that the particle size increases from 90-A radius to greater than 5000-A radius. Resonance energy transfer experiments show total mixing of lipid probes with unlabeled vesicles only when the Tm of the long-chain phosphatidylcholine is exceeded. This implies that the large size change represents a fusion process. Aqueous compartments are also mixed during this transition. 31P NMR analysis of the vesicle mixtures above the phase transition shows a great degree of heterogeneity with large unilamellar particles coexisting with oligo- and multilamellar structures. Upon cooling the vesicles below the Tm, the original size distribution (e.g., small unilamellar vesicles) is obtained, as monitored by both quasi-elastic light scattering and 31P NMR spectroscopy. This temperature-induced fusion of unilamellar vesicles is concentration dependent and can be abolished at lower total phospholipid concentrations. It occurs over a wide range of long-chain to short-chain ratios and occurs with 1-palmitoyl-2-stearoylphosphatidylcholine and dimyristoylphosphatidylcholine as well. Characterization of this fusion event is used to understand the anomalous kinetics of water-soluble phospholipases toward these unusual vesicles.  相似文献   

12.
Summary The use of tannic acid has been proposed to improve the preservation of phospholipids in tissues. We investigated the effects of tannic acid on the preservation of small unilamellar vesicles, prepared from sonicated aqueous suspensions of phospholipids.With cryo-electron microscopy it is demonstrated that small unilamellar vesicles are formed after sonication of the phospholipid suspensions. Fixation of vesicles without tannic acid results in extraction of the phospholipids during dehydration and embedding. Fixation of vesicles containing phosphatidyl choline with tannic acid, with or without glutaraldehyde, results in a fast (within a second) aggregation of the vesicles and the resulting sediment can be dehydrated and embedded when a postfixation in osmium tetroxide is carried out. Small unilamellar vesicles fixed in this way are retrieved in thin sections as multilamellar vesicles with a periodicity of about 5 nm for dimyristoylphosphatidyl choline and about 6 nm for dioleoylphosphatidyl choline.By using 13C-phosphatidyl choline it was also demonstrated that tannic acid prevents to a large extend the extraction of phosphatidyl choline during fixation, dehydration and embedding. This dual effect of tannic acid on phosphatidyl choline, aggregation and fixation, should be considered when using tannic acid in tissue preparation.  相似文献   

13.
The effects of embedding up to 60 mol% of α-tocopherol (α-Toc) on the morphology and structure of the egg phosphatidylcholine (PC) membrane were studied using spectroscopic techniques. The resulting vesicles were subjected to turbidometric and dynamic light scattering measurements to evaluate their size distribution. The α-Toc intrinsic fluorescence and its quenching was used to estimate the tocopherol position in the membrane. Optical microscopy was used to visualize morphological changes in the vesicles during the inclusion of tocopherol into the 2 mg/ml PC membrane. The incorporation of up to 15 mol% of tocopherol molecules into PC vesicles is accompanied by a linear increase in the fluorescence intensity and the simultaneous formation of larger, multilamellar vesicles. Increasing the tocopherol concentration above 20 mol% induced structural and morphological changes leading to the disappearance of micrometer-sized vesicles and the formation of small unilamellar vesicles of size ranging from 30 to 120 nm, mixed micelles and non-lamellar structures.  相似文献   

14.
The interaction between cytochrome c and its heme-free precursor apocytochrome c and chemically prepared fragments of these basic proteins with phosphatidylserine containing model membrane systems was studied by differential scanning calorimetry and carboxyfluorescein release experiments. Addition of apocytochrome c and fragments derived from the N-terminus cause a pronounced and linear decrease of the enthalpy (delta H) of the gel to liquid-crystalline phase transition of dielaidoylphosphatidylserine. In contrast, fragments derived from the C-terminus cause a smaller reduction in delta H; a similar trend was observed for the ability of the fragments to cause an increased carboxyfluorescein release from unilamellar vesicles. In addition, the covalent attachment of the heme at cysteine residues 14 and 17 greatly reduced the ability of both the intact protein and the N-terminal fragments to decrease delta H. Using a protein translocation assay based on large unilamellar vesicles containing enclosed trypsin it was found that at gel state temperatures the ability of apocytochrome c to partially translocate the bilayer (reach the opposite membrane/water interface) was greatly reduced. The implications of these findings for the import mechanism of apocytochrome c in mitochondria are shortly indicated.  相似文献   

15.
Vesicles of variable sizes produced by a rapid extrusion procedure   总被引:41,自引:0,他引:41  
Previous studies from this laboratory have shown that large unilamellar vesicles can be efficiently produced by extrusion of multilamellar vesicles through polycarbonate filters with a pore size of 100 nm (Hope, M.J., Bally, M.B., Webb, G. and Cullis, P.R. (1985) Biochim. Biophys. Acta 812, 55-65). In this work it is shown that similar procedures can be employed for the production of homogeneously sized unilamellar or plurilamellar vesicles by utilizing filters with pore sizes ranging from 30 to 400 nm. The unilamellarity and trapping efficiencies of these vesicles can be significantly enhanced by freezing and thawing the multilamellar vesicles prior to extrusion. This procedure is particularly applicable when very high lipid concentrations (400 mg/ml) are used, where extrusion of the frozen and thawed multilamellar vesicles through 100 and 400 nm filters results in trapping efficiencies of 56 and 80%, respectively. Freeze-fracture electron microscopy revealed that vesicles produced at these lipid concentrations exhibit size distributions and extent of multilamellar character comparable to systems produced at lower lipid levels. These results indicate that the freeze-thaw and extrusion process is the technique of choice for the production of vesicles of variable sizes and high trapping efficiency.  相似文献   

16.
Large unilamellar vesicles, prepared by a petroleum ether vaporization method, were compared to multilamellar vesicles with respect to a number of physical and functional properties. Rotational correlation time approximations, derived from ESR spectra of both hydrophilic (3-doxyl cholestane) and hydrophobic (3-doxyl androstanol) steroid spin probes, indicated similar molecular packing of lipids in bilayers of multilamellar and large unilamellar liposomes. Light scattering measurements demonstrated a reduction in apparent absorbance of large unilamellar vesicles, suggesting loss of multilamellar structure which was confirmed by electron microscopy. Furthermore, large unilamellar vesicles exhibited enhanced passive diffusion rates of small solutes, releasing a greater percentage of their contents within 90 min than multilamellar vesicles, and reflecting the less restricted diffusion of a unilamellar system. The volume trapping capacity of large unilamellar vesicles far exceeded that of multilamellar liposomes, except in the presence of a trapped protein, soy bean trypsin inhibitor, which reduced the volume of the aqueous compartments of large unilamellar vesicles. Finally, measurement of vesicle diameters from electron micrographs of large unilamellar vesicles showed a vesicle size distribution predominantly in the range of 0.1--0.4 micron with a mean diameter of 0.21 micron.  相似文献   

17.
Small unilamellar vesicles of egg phosphatidylcholine (PC) or dimyristoylphosphatidylcholine, mixed with small unilamellar vesicles labelled with 2-(10-(1-pyrene)decanoyl)phosphatidylcholine, exhibit a constant average size and excimer to monomer (E/M) ratio for several hours when incubated at pH 3.6 at a temperature higher than the phase transition temperature (Tc) of the lipids. Addition of bovine serum albumin to this system produces a transient turbidity increase, a fast decrease in the E/M ratio, a partial loss of vesicle-entrapped [14C]sucrose and a measurable leak-in of externally added sucrose. Sepharose 4B filtration of the system demonstrates that the E/M ratio decrease is strictly paralleled by the formation of liposomes which exhibit a low E/M ratio and a hydrodynamic radius larger than that of small unilamellar vesicles. These data demonstrate that the E/M ratio decrease can be unequivocally ascribed to a vesicle-vesicle fusion process induced by serum albumin. The rate of serum-albumin induced fusion of small unilamellar vesicles is: (a) maximal at a stoichiometric ratio of approx. 2 albumins per vesicle: (b) sensitive to the nature of the lipid and; (c) not altered when human serum albumin replaces bovine serum albumin. The rate of albumin-induced fusion of dimyristoylphosphatidylcholine small unilamellar vesicles is higher below the Tc of the lipid and increases with temperature above the Tc. The formation of protein-bound aggregates with defined stoichiometries and a high local vesicle concentration, as well as changes in the local degree of hydration, are proposed to be the driving forces for the protein-induced vesicle fusion in this system.  相似文献   

18.
N E Gabriel  M F Roberts 《Biochemistry》1986,25(10):2812-2821
Stable unilamellar vesicles formed spontaneously upon mixing aqueous suspensions of long-chain phospholipid (synthetic, saturated, and naturally occurring phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin) with small amounts of short-chain lecithin (fatty acid chain lengths of 6-8 carbons) have been characterized by using NMR spectroscopy, negative staining electron microscopy, differential scanning calorimetry, and Fourier transform infrared (FTIR) spectroscopy. This method of vesicle preparation can produce bilayer vesicles spanning the size range 100 to greater than 1000 A. The combination of short-chain lecithin and long-chain lecithin in its gel state at room temperature produces relatively small unilamellar vesicles, while using long-chain lecithin in its liquid-crystalline state produces large unilamellar vesicles. The length of the short-chain lecithin does not affect the size distribution of the vesicles as much as the ratio of short-chain to long-chain components. In general, additional short-chain decreases the average vesicle size. Incorporation of cholesterol can affect vesicle size, with the solubility limit of cholesterol in short-chain lecithin micelles governing any size change. If the amount of cholesterol is below the solubility limit of micellar short-chain lecithin, then the addition of cholesterol to the vesicle bilayer has no effect on the vesicle size; if more cholesterol is added, particle growth is observed. Vesicles formed with a saturated long-chain lecithin and short-chain species exhibit similar phase transition behavior and enthalpy values to small unilamellar vesicles of the pure long-chain lecithin prepared by sonication. As the size of the short-chain/long-chain vesicles decreases, the phase transition temperature decreases to temperatures observed for sonicated unilamellar vesicles. FTIR spectroscopy confirms that the incorporation of the short-chain lipid in the vesicle bilayer does not drastically alter the gauche bond conformation of the long-chain lipids (i.e., their transness in the gel state and the presence of multiple gauche bonds in the liquid-crystalline state).  相似文献   

19.
Recombinant human interleukin-2 (rhIL-2) was incorporated in liposomes for potential therapeutic applications using a novel process. In this process, rhIL-2 caused the formation of large, unique multilamellar vesicles (MLVs) from small unilamellar vesicles (SUVs) of dimyristoylphosphatidylcholine (DMPC). Vesicle coalescence occurred most rapidly at 19 degrees C, between the pre- and main phase transition temperatures of DMPC, and showed a dependence upon pH (pH <5.5), ionic strength (>50 mM) and the initial size of the unilamellar vesicles (相似文献   

20.
We have investigated the behavior of two populations of doxorubicin (DXR)-containing phospholipid vesicles with regard to various physical and pharmacological parameters. DXR-containing liposomes were prepared by ultrasonic irradiation, the lipid composition being phosphatidylglycerol (or phosphatidylserine), phosphatidylcholine and cholesterol. The vesicles were fractionated into oligolamellar vesicles (OLV) and small unilamellar vesicles (SUV) by preparative differential ultracentrifugation (150,000 x g for 1 h). Unentrapped DXR was removed by gel exclusion chromatography. OLV and SUV liposomes differed in size (mean diameters, 247 +/- 113 nm and 61 +/- 16 nm, respectively) and number of lamellae (two for OLV, one for SUV). Drug entrapment per unit of lipid was three to 5-fold higher in OLV than in SUV. In both liposome populations more than 95% of the entrapped drug was membrane-associated. Physical studies on these two vesicle populations revealed higher motional restriction and greater susceptibility to iodide-mediated fluorescence collisional quenching of DXR in the small vesicles. OLV showed superior stability in the presence of plasma as determined by the fraction of DXR retained by the vesicles. It was also found that the tissue distribution of DXR in SUV follows a pattern different from that of DXR in OLV and resembling that of soluble DXR. In accordance with these differences in patterns of tissue distribution, animal studies demonstrated that DXR in OLV is significantly less toxic than DXR in SUV and more effective in a tumor model with predominant involvement of the liver. These results indicate that vesicle size and/or number of lamellae play an important role in optimizing liposome-mediated delivery of DXR, and that oligolamellar liposomes are distinctively superior to small unilamellar liposomes when fluid phase formulations (Tm less than 37 degrees C) with bilayer-associated DXR are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号