共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural changes in retinol binding protein induced by retinol removal. A molecular dynamics study 总被引:1,自引:0,他引:1
P Sandblom J Aqvist T A Jones M E Newcomer W F van Gunsteren O Tapia 《Biochemical and biophysical research communications》1986,139(2):564-570
Relationships between structure and function for retinol binding protein (RBP) are elucidated with help of a 2.0 A resolution X-ray structure of the holo-protein and an average molecular dynamics (MD) structure of the apo-form. Comparisons between MD simulations of both the apo- and holo-forms with the X-ray holo-structure show conformational changes in apo-RBP that may be functionally significant. The average three dimensional structure obtained for apo-RBP is compared to the related protein apo-beta-lactoglobulin. Available biochemical information is consistent with structure/function relationships derived here. 相似文献
2.
Nathanael H. Hunter Blair C. Bakula 《Journal of biomolecular structure & dynamics》2018,36(7):1893-1907
Structural and dynamic properties from a series of 300 ns molecular dynamics, MD, simulations of two intracellular lipid binding proteins, iLBPs, (Fatty Acid Binding Protein 5, FABP5, and Cellular Retinoic Acid Binding Protein II, CRABP-II) in both the apo form and when bound with retinoic acid reveal a high degree of protein and ligand flexibility. The ratio of FABP5 to CRABP-II in a cell may determine whether it undergoes natural apoptosis or unrestricted cell growth in the presence of retinoic acid. As a result, FABP5 is a promising target for cancer therapy. The MD simulations presented here reveal distinct differences in the two proteins and provide insight into the binding mechanism. CRABP-II is a much larger, more flexible protein that closes upon ligand binding, where FABP5 transitions to an open state in the holo form. The traditional understanding obtained from crystal structures of the gap between two β-sheets of the β-barrel common to iLBPs and the α-helix cap that forms the portal to the binding pocket is insufficient for describing protein conformation (open vs. closed) or ligand entry and exit. When the high degree of mobility between multiple conformations of both the ligand and protein are examined via MD simulation, a new mode of ligand motion that improves understanding of binding dynamics is revealed. 相似文献
3.
Differences between apo and three holo forms of the intestinal fatty acid binding protein seen by molecular dynamics computer calculations 下载免费PDF全文
It is commonly believed that binding affinity can be estimated by consideration of local changes of ligand and protein. This paper discusses a set of molecular dynamics simulations of intestinal fatty acid binding protein addressing the protein's response to presence or absence of different ligands. A 5-ns simulation was performed of the protein without a ligand, and three simulations (one 5-ns and two 2-ns) were performed with different fatty acids bound. The results indicate that, although the basic protein structure is unchanged by the presence of the ligand, other properties are significantly affected by ligand binding. For example, zero-time covariance patterns between protein, bound waters, and ligand vary between the different simulations. Moreover, the interaction energies between ligand and specific residues indicate that different ligands are stabilized in different ways. In sum, the results suggest that binding thermodynamics within this system will need to be calculated not from a subset of nearby protein:ligand interactions, but will depend on a knowledge of the motions coupling together water, protein, and ligand. 相似文献
4.
James A. Begley Susan M. Heckman Charles A. Hall 《Biochemical and biophysical research communications》1981,103(2):434-441
The interactions of transcobalamin II (TC II), intrinsic factor (IF) and R-type binding protein of cobalamin (Cb1, vitamin B12) with the hydrophobic chromatography matrix Phenyl-Sepharose CL-4B were investigated. IF-Cb1 and R-Cb1 complexes were not adsorbed on Phenyl-Sepharose at room temperature or at 4°C with buffer containing 50 mM sodium phosphate, pH 7.4 containing 150 mM sodium chloride. The TC II-Cb1 complex adsorbed and could be eluted with buffer containing 50% glycerol. IF without Cb1 adsorbed and was eluted with 50% glycerol at room temperature and 4°C. At room temperature, R binder without Cb1 eluted with buffer, but later than the R-Cb1 complex. At 4°C, R binder completely adsorbed to the matrix. TC II-without Cb1 bound to the matrix at 4°C and room temperature and could not be eluted with glycerol. These results suggest that Cb1 binding proteins can be separated and identified based on their hydrophobic properties. In addition, upon binding Cb1, TC II, IF and R-type binders undergo a conformational change such that the protein-Cb1 complex shows reduced hydrophobicity. 相似文献
5.
Molecular dynamic (MD) simulations have been performed on Tth-MCO, a hyperthermophilic multicopper oxidase from thermus thermophilus HB27, in the apo as well as the holo form, with the aim of exploring the structural dynamic properties common to the two conformational states. According to structural comparison between this enzyme and other MCOs, the substrate in process to electron transfer in an outer-sphere event seems to transiently occupy a shallow and overall hydrophobic cavity near the Cu type 1 (T1Cu). The linker connecting the β-strands 21 and 24 of the second domain (loop (β21-β24)(D2)) has the same conformation in both states, forming a flexible lid at the entrance of the electron-transfer cavity. Loop (β21-β24)(D2) has been tentatively assigned a role occluding the access to the electron-transfer site. The dynamic of the loop (β21-β24)(D2) has been investigated by MD simulation, and results show that the structures of both species have the same secondary and tertiary structure during almost all the MD simulations. In the simulation, loop (β21-β24)(D2) of the holo form undergoes a higher mobility than in the apo form. In fact, loop (β21-β24)(D2) of the holo form experiences a conformational change which enables exposure to the electron-transfer site (open conformation), while in the apo form the opposite effect takes place (closed conformation). To confirm the hypothesis that the open conformation might facilitate the transient electron-donor molecule occupation of the site, the simulation was extended another 40 ns with the electron-donor molecule docked into the protein cavity. Upon electron-donor molecule stabilization, loops near the cavity reduce their mobility. These findings show that coordination between the copper and the protein might play an important role in the general mobility of the enzyme, and that the open conformation seems to be required for the electron transfer process to T1Cu. 相似文献
6.
In the presence of 0.5 M NaCl at pH 7.1, the Ca(2+)-free apo form of recombinant bovine alpha-lactalbumin (BLA) is sufficiently stabilised in its native state to give well-resolved NMR spectra at 20 degrees C. The (1)H and (15)N NMR resonances of native apo-BLA have been assigned, and the chemical-shifts compared with those of the native holo protein. Large changes observed between the two forms of BLA are mainly limited to the Ca(2+)-binding region of the protein. These data suggest that Na(+) stabilises the native apo state through the screening of repulsive negative charges, at the Ca(2+)-binding site or elsewhere, rather than by a specific interaction at the vacant Ca(2+)-binding site. The hydrogen exchange protection of residues in the Ca(2+)-binding loop and the C-helix is reduced in the apo form compared to that in the holo form. This indicates that the dynamic behaviour of this region of the protein is substantially increased in the absence of the bound Ca(2+). Real-time NMR experiments show that the rearrangements of the structure associated with the conversion of the holo to apo form of the protein do not involve the detectable population of partially unfolded intermediates. Rather, the conversion appears to involve local reorganisations of the structure in the vicinity of the Ca(2+)-binding site that are coupled to the intrinsic fluctuations in the protein structure. 相似文献
7.
Ashoka Sreedhara Ragnar Flengsrud Thor Langsrud Purnima Kaul Vishweshwaraiah Prakash Gerd Elisabeth Vegarud 《Biometals》2010,23(6):1159-1170
Apo and holo forms of lactoferrin (LF) from caprine and bovine species have been characterized and compared with regard to
the structural stability determined by thermal denaturation temperature values (T
m), at pH 2.0–8.0. The bovine lactoferrin (bLF) showed highest thermal stability with a T
m of 90 ± 1°C at pH 7.0 whereas caprine lactoferrin (cLF) showed a lower T
m value 68 ± 1°C. The holo form was much more stable than the apo form for the bLF as compared to cLF. When pH was gradually
reduced to 3.0, the T
m values of both holo bLF and holo cLF were reduced showing T
m values of 49 ± 1 and 40 ± 1°C, respectively. Both apo and holo forms of cLF and bLF were found to be most stable at pH 7.0.
A significant loss in the iron content of both holo and apo forms of the cLF and bLF was observed when pH was decreased from
7.0 to 2.0. At the same time a gradual unfolding of the apo and holo forms of both cLF and bLF was shown by maximum exposure
of hydrophobic regions at pH 3.0. This was supported with a loss in α-helix structure together with an increase in the content
of unordered (aperiodic) structure, while β structure seemed unchanged at all pH values. Since LF is used today as fortifier
in many products, like infant formulas and exerts many biological functions in human, the structural changes, iron binding
and release affected by pH and thermal denaturation temperature are important factors to be clarified for more than the bovine
species. 相似文献
8.
One of the calcium binding proteins from Entamoeba histolytica (EhCaBP) is a 134 amino acid residue long (M(r) approximately 14.9 kDa) double domain EF-hand protein containing four Ca(2+) binding sites. CD and NMR studies reveal that the Ca(2+)-free form (apo-EhCaBP) exists in a partially collapsed form compared to the Ca(2+)-bound (holo) form, which has an ordered structure (PDB ID ). Deuterium exchange studies on the partially structured apo-EhCaBP reveal that the C-terminal domain is better structured than the N-terminal domain. The protein can be reversibly folded and unfolded upon addition of Ca(2+) and EGTA, respectively. Titration shows a slow initial folding of the apo form with increasing Ca(2+) concentration, followed by a highly cooperative folding to its final state at a certain threshold of Ca(2+). Ca(2+) and the EGTA titration taken together show that site II in the N-terminal domain has the highest affinity for Ca(2+) contrary to earlier studies. Further, this study has thrown light on the relative Ca(2+) binding affinity and specificity of each site in the intact protein. A structural model for the partially collapsed form of apo-EhCaBP and its equilibrium folding to its completely folded holo state has been suggested. Large conformational changes seen in transforming from the apo to holo form of EhCaBP suggest that this protein should be functioning as a sensor protein and might have a significant role in host-parasite recognition. 相似文献
9.
Two 700-ps molecular dynamics simulations of human alpha-lactalbumin have been compared. Both were initiated from an X-ray structure determined at pH 6.5. One simulation was designed to represent native conditions and the other the protein in solution at pH 2.0 without a bound calcium ion. The low pH conditions were modelled by protonating the aspartate, glutamate, and histidine side chains and the protein C-terminus. Significant changes were observed for the C-terminal region of the sequence in the simulation at low pH. Most notably an alpha-helix, helix D, and the C-terminal 3(10) helix were substantially disrupted relative to the simulation at high pH. These perturbations to the native fold are similar to those observed in an X-ray structure of alpha-lactalbumin at pH 4.2. In addition, larger fluctuations about side chain torsion angles were observed in the low pH simulation than in that corresponding to the higher pH. These structural and dynamical changes might be representative of the early stages of the transition to the molten-globule state of the protein known to be formed under low pH conditions in solution. 相似文献
10.
Molecular dynamics simulations have been used to model the motions and conformational behavior of the whey protein bovine beta-lactoglobulin. Simulations were performed for the protein by itself and complexed to a single retinol ligand located in a putative interior binding pocket. In the absence of the retinol ligand, the backbone loops around the opening of this interior pocket shifted inward to partially close off this cavity, similar to the shifts observed in previously reported molecular dynamics simulations of the uncomplexed form of the homologous retinol binding protein. The protein complexed with retinol does not exhibit the same conformational shifts. Conformational changes of this type could serve as a recognition signal allowing in vivo discrimination between the free and retinol complexed forms of the beta-lactoglobulin molecule. The unusual bending of the single alpha-helix observed in the simulations of retinol binding protein were not observed in the present calculations. 相似文献
11.
Molecular dynamics (MD) simulations of N-terminal peptides from lactate dehydrogenase (LDH) with increasing length and individual secondary structure elements were used to study their stability in relation to folding. Ten simulations of 1–2 ns of different peptides in water starting from the coordinates of the crystal structure were performed. The stability of the peptides was compared qualitatively by analyzing the root mean square deviation (RMSD) from the crystal structure, radius of gyration, secondary and tertiary structure, and solvent accessible surface area. In agreement with earlier MD studies, relatively short (< 15 amino acids) peptides containing individual secondary structure elements were generally found to be unstable; the hydrophobic α1-helix of the nucleotide binding fold displayed a significantly higher stability, however. Our simulations further showed that the first βαβ supersecondary unit of the characteristic dinucleotide binding fold (Rossmann fold) of LDH is somewhat more stable than other units of similar length and that the α2-helix, which unfolds by itself, is stabilized by binding to this unit. This finding suggests that the first βαβ unit could function as an N-terminal folding nucleus, upon which the remainder of the polypeptide chain can be assembled. Indeed, simulations with longer units (βαβα and βαβαββ) showed that all structural elements of these units are rather stable. The outcome of our studies is in line with suggestions that folding of the N-terminal portion of LDH in vivo can be a cotranslational process that takes place during the ribosomal peptide synthesis. 相似文献
12.
The unfolding pathways of the two forms of Plasmodium falciparum acyl carrier protein, the apo and holo forms, were determined by guanidine hydrochloride-induced denaturation. Both the apo form and the holo form displayed a reversible two-state unfolding mechanism. The analysis of isothermal denaturation data provides values for the conformational stability of the two proteins. Although both forms have the same amino acid sequence, and they have similar secondary structures, it was found that the - DeltaG of unfolding of the holo form was lower than that of the apo form at all the temperatures at which the experiments were done. The higher stability of the holo form can be attributed to the number of favorable contacts that the 4'-phosphopantetheine group makes with the surface residues by virtue of a number of hydrogen bonds. Furthermore, there are several hydrophobic interactions with 4'-phosphopantetheine that firmly maintain the structure of the holo form. We show here for the first time that the interactions between 4'-phosphopantetheine and the polypeptide backbone of acyl carrier protein stabilize the protein. As Plasmodium acyl carrier protein has a similar secondary structure to the other acyl carrier proteins and acyl carrier protein-like domains, the detailed biophysical characterization of Plasmodium acyl carrier protein can serve as a prototype for the analysis of the conformational stability of other acyl carrier proteins. 相似文献
13.
14.
Calderone V Folli C Marchesani A Berni R Zanotti G 《Journal of molecular biology》2002,321(3):527-535
Cellular retinol-binding proteins (CRBPs) are cytoplasmic retinol-specific binding proteins. Mammalian CRBPs have been thoroughly characterised previously. Here we report on the identification and X-ray structural analysis of the apo (1.7A resolution) and holo (1.4A resolution) forms of a zebrafish CRBP. According to amino acid sequence and structure analyses, the zebrafish CRBP that we have identified resembles closely mammalian CRBP II, suggesting that it is the zebrafish orthologue of this mammalian CRBP type. Zebrafish CRBP forms a tight complex with all-trans retinol, producing an absorption spectrum similar to those of mammalian holo-CRBPs, albeit slightly blue-shifted. The superposition of the alpha-carbon atoms of the liganded (complexed with retinol) and unliganded forms of zebrafish CRBP shows significant differences in correspondence of the betaC-betaD (residues 55-58) and betaE-betaF (residues 74-77) turns, providing evidence for the occurrence of conformational changes accompanying retinol binding/release. Remarkable and well-defined ligand-dependent conformational changes in the protein region comprising the two beta-turns affect both the main chain and the side-chains of several residues. The two beta-turns project towards the interior of the cavity devoid of ligand of the apoprotein. The side-chains of F57, Y60 and L77 change substantially their orientation and position in the apoprotein relative to the holoprotein. In the beta-barrel internal cavity of apo-CRBP they occupy some of the space that is otherwise occupied by bound retinol in holo-CRBP, and are displaced from these positions on ligand binding. These results indicate that a flexible area encompassing the betaC-betaD and betaE-betaF turns may serve as the ligand portal and that these turns undergo conformational changes associated with the not yet clarified mechanism of retinol binding and release in CRBPs. 相似文献
15.
Rat liver pyruvate carboxylase. Purification, detection and quantification of apo and holo forms by immuno-blotting and by an enzyme-linked immunosorbent assay. 总被引:1,自引:0,他引:1 下载免费PDF全文
A simple scheme for the purification of pyruvate carboxylase from rat liver mitochondria is described. It is rapid and provides high-purity pyruvate carboxylase with excellent yield and reproducibility. The final enzyme preparations appear to be homogeneous by the following criteria: elution behaviour on molecular-sizing matrix, SDS/polyacrylamide-gel electrophoresis, Ouchterlony double-diffusion analysis and Western blotting. Detection and quantification of nanogram amounts of pyruvate carboxylase (apo and holo forms) in total tissue homogenates by immuno-blotting and by enzyme-linked immunosorbent assay are described. The data provided suggest that under normal physiological conditions (both in vivo and in vitro) essentially all the pyruvate carboxylase molecules are biotinylated. 相似文献
16.
TrkH is a transmembrane protein that mediates uptake of K(+) through the cell membrane. Despite the recent determination of its crystallographic structure, the nature of the permeation mechanism is still unknown, that is, whether K(+) ions move across TrkH by active transport or passive diffusion. Here, molecular dynamics simulations and the umbrella sampling technique have been employed to shed light on this question. The existence of binding site S3 and two alternative binding sites have been characterized. Analysis of the coordination number renders values that are almost constant, with a full contribution from the carbonyls of the protein only at S3. This observation contrasts with observations of K(+) channels, where the contribution of the protein to the coordination number is roughly constant in all four binding sites. An intramembrane loop is found immediately after the selectivity filter at the intracellular side of the protein, which obstructs the permeation pathway, and this is reflected in the magnitude of the energy barriers. 相似文献
17.
Structure and dynamics of the fatty acid binding cavity in apo rat intestinal fatty acid binding protein. 下载免费PDF全文
V. A. Liki F. G. Prendergast 《Protein science : a publication of the Protein Society》1999,8(8):1649-1657
The structure and dynamics of the fatty acid binding cavity in I-FABP (rat intestinal fatty acid binding protein) were analyzed. In the crystal structure of apo I-FABP, the probe occupied cavity volume and surface are 539+/-8 A3 and 428 A2, respectively (1.4 A probe). A total of 31 residues contact the cavity with their side chains. The side-chain cavity surface is partitioned according to the residue type as follows: 36-39% hydrophobic, 21-25% hydrophilic, and 37-43% neutral or ambivalent. Thus, the cavity surface is neither like a typical protein interior core, nor is like a typical protein external surface. All hydrophilic residues that contact the cavity-with the exception of Asp74-are clustered on the one side of the cavity. The cavity appears to expand its hydrophobic surface upon fatty acid binding on the side opposite to this hydrophilic patch. In holo I-FABP the fatty acid chain interactions with the hydrophilic side chains are mediated by water molecules. Molecular dynamics (MD) simulation of fully solvated apo I-FABP showed global conformational changes of I-FABP, which resulted in a large, but seemingly transient, exposure of the cavity to the external solvent. The packing density of the side chains lining the cavity, studied by Voronoi volumes, showed the presence of two distinctive small hydrophobic cores. The MD simulation predicts significant structural perturbations of the cavity on the subnanosecond time scale, which are capable of facilitating exchange of I-FABP internal water. 相似文献
18.
Expression of holo and apo forms of spinach acyl carrier protein-I in leaves of transgenic tobacco plants. 总被引:8,自引:1,他引:8 下载免费PDF全文
Acyl carrier protein (ACP) is a chloroplast-localized cofactor of fatty acid synthesis, desaturation, and acyl transfer. We have transformed tobacco with a chimeric gene consisting of the tobacco ribulose-1,5-bisphosphate carboxylase promoter and transit peptide and the sequence encoding the mature spinach ACP-I. Spinach ACP-I was expressed in the transformed plants at levels twofold to threefold higher than the endogenous tobacco ACPs as determined by protein immunoblots and assays of ACP in leaf extracts. In addition to these elevated levels of the holo form, there were high levels of apoACP-I, a form lacking the 4'-phosphopantetheine prosthetic group and not previously detected in vivo. The mature forms of both apoACP-I and holoACP-I were located in the chloroplasts, indicating that the transit peptide was cleaved and that attachment of the prosthetic group was not required for uptake into the plastid. There were also significant levels of spinach acyl-ACP-I, demonstrating that spinach ACP-I participated in tobacco fatty acid metabolism. Lipid analyses of the transformed plants indicated that the increased ACP levels caused no significant alterations in leaf lipid biosynthesis. 相似文献
19.
Eberini I Guerini Rocco A Ientile AR Baptista AM Gianazza E Tomaselli S Molinari H Ragona L 《Proteins》2008,71(4):1889-1898
The correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules. Binding was found to be regulated by a dynamic process and a conformational rearrangement was associated with this event. We report here the results of molecular dynamics (MD) simulations performed on apo and holo cL-BABP with the aim of further characterizing the protein regions involved in motion propagation and of evaluating the main molecular interactions stabilizing bound ligands. Upon binding, the root mean square fluctuation values substantially decrease for CD and EF loops while increase for the helix-loop-helix region, thus indicating that the portal area is the region mostly affected by complex formation. These results nicely correlate with backbone dynamics data derived from NMR experiments. Essential dynamics analysis of the MD trajectories indicates that the major concerted motions involve the three contiguous structural elements of the portal area, which however are dynamically coupled in different ways whether in the presence or in the absence of the ligands. Motions of the EF loop and of the helical region are part of the essential space of both apo and holo-BABP and sample a much wider conformational space in the apo form. Together with NMR results, these data support the view that, in the apo protein, the flexible EF loop visits many conformational states including those typical of the holo state and that the ligand acts stabilizing one of these pre-existing conformations. The present results, in agreement with data reported for other iLBPs, sharpen our knowledge on the binding mechanism for this protein family. 相似文献
20.
Molecular dynamics simulations of protein-tyrosine phosphatase 1B. I. ligand-induced changes in the protein motions. 下载免费PDF全文
Activity of enzymes, such as protein tyrosine phosphatases (PTPs), is often associated with structural changes in the enzyme, resulting in selective and stereospecific reactions with the substrate. To investigate the effect of a substrate on the motions occurring in PTPs, we have performed molecular dynamics simulations of PTP1B and PTP1B complexed with a high-affinity peptide DADEpYL, where pY stands for phosphorylated tyrosine. The peptide sequence is derived from the epidermal growth factor receptor (EGFR988-993). Simulations were performed in water for 1 ns, and the concerted motions in the protein were analyzed using the essential dynamics technique. Our results indicate that the predominately internal motions in PTP1B occur in a subspace of only a few degrees of freedom. Upon substrate binding, the flexibility of the protein is reduced by approximately 10%. The largest effect is found in the protein region, where the N-terminal of the substrate is located, and in the loop region Val198-Gly209. Displacements in the latter loop are associated with the motions in the WPD loop, which contains a catalytically important aspartic acid. Estimation of the pKa of the active-site cysteine along the trajectory indicates that structural inhomogeneity causes the pKa to vary by approximately +/-1 pKa unit. In agreement with experimental observations, the active-site cysteine is negatively charged at physiological pH. 相似文献