共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
NEKs (NIMA-related kinases) are a group of protein kinases sharing high amino acid sequence identities with NIMA (never in mitosis gene a) which control mitosis in Aspergillus nidulans. We have cloned a cDNA for human NEK3, a novel human gene structurally related to NIMA, by RT-PCR. Its open reading frame encodes a protein of 489 amino acid residues with the calculated molecular mass of 56.0 kDa and a predicted pI of 6.58. Phylogenetic analysis suggests that mouse and human NEK3s constitute a subfamily within the NIMA family of protein kinases. The expression pattern of NEK3 was studied by RT-PCR and a high level of expression was detected in testis, ovary, and brain, with low-level expression being detected in most of the tissues studied. NEK3 mRNA was detected in all the proliferating cell lines studied, and the amount did not change during the cell cycle. The human NEK3 gene was assigned to human chromosome 13 by somatic cell hybrids and 13q14.2 by radiation hybrid mapping. 相似文献
3.
mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1) 总被引:1,自引:0,他引:1
SGK1 (serum- and glucocorticoid-induced protein kinase 1) is a member of the AGC (protein kinase A/protein kinase G/protein kinase C) family of protein kinases and is activated by agonists including growth factors. SGK1 regulates diverse effects of extracellular agonists by phosphorylating regulatory proteins that control cellular processes such as ion transport and growth. Like other AGC family kinases, activation of SGK1 is triggered by phosphorylation of a threonine residue within the T-loop of the kinase domain and a serine residue lying within the C-terminal hydrophobic motif (Ser(422) in SGK1). PDK1 (phosphoinositide-dependent kinase 1) phosphorylates the T-loop of SGK1. The identity of the hydrophobic motif kinase is unclear. Recent work has established that mTORC1 [mTOR (mammalian target of rapamycin) complex 1] phosphorylates the hydrophobic motif of S6K (S6 kinase), whereas mTORC2 (mTOR complex 2) phosphorylates the hydrophobic motif of Akt (also known as protein kinase B). In the present study we demonstrate that SGK1 hydrophobic motif phosphorylation and activity is ablated in knockout fibroblasts possessing mTORC1 activity, but lacking the mTORC2 subunits rictor (rapamycin-insensitive companion of mTOR), Sin1 (stress-activated-protein-kinase-interacting protein 1) or mLST8 (mammalian lethal with SEC13 protein 8). Furthermore, phosphorylation of NDRG1 (N-myc downstream regulated gene 1), a physiological substrate of SGK1, was also abolished in rictor-, Sin1- or mLST8-deficient fibroblasts. mTORC2 immunoprecipitated from wild-type, but not from mLST8- or rictor-knockout cells, phosphorylated SGK1 at Ser(422). Consistent with mTORC1 not regulating SGK1, immunoprecipitated mTORC1 failed to phosphorylate SGK1 at Ser(422), under conditions which it phosphorylated the hydrophobic motif of S6K. Moreover, rapamycin treatment of HEK (human embryonic kidney)-293, MCF-7 or HeLa cells suppressed phosphorylation of S6K, without affecting SGK1 phosphorylation or activation. The findings of the present study indicate that mTORC2, but not mTORC1, plays a vital role in controlling the hydrophobic motif phosphorylation and activity of SGK1. Our findings may explain why in previous studies phosphorylation of substrates, such as FOXO (forkhead box O), that could be regulated by SGK, are reduced in mTORC2-deficient cells. The results of the present study indicate that NDRG1 phosphorylation represents an excellent biomarker for mTORC2 activity. 相似文献
4.
90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. 总被引:17,自引:0,他引:17
C J Jensen M B Buch T O Krag B A Hemmings S Gammeltoft M Fr?din 《The Journal of biological chemistry》1999,274(38):27168-27176
90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of the linker region at Ser(369), catalyzed by extracellular signal-regulated kinase (ERK), and at Ser(386), catalyzed by the C-terminal kinase, after its activation by ERK. In addition, the N-terminal kinase must be phosphorylated at Ser(227) in the activation loop by an as yet unidentified kinase. Here, we show that the isolated N-terminal kinase of RSK2 (amino acids 1-360) is phosphorylated at Ser(227) by PDK1, a constitutively active kinase, leading to 100-fold stimulation of kinase activity. In COS7 cells, ectopic PDK1 induced the phosphorylation of full-length RSK2 at Ser(227) and Ser(386), without involvement of ERK, leading to partial activation of RSK2. Similarly, two other members of the RSK family, RSK1 and RSK3, were partially activated by PDK1 in COS7 cells. Finally, our data indicate that full activation of RSK2 by growth factor requires the cooperation of ERK and PDK1 through phosphorylation of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways. 相似文献
5.
Evidence that 3-phosphoinositide-dependent protein kinase-1 mediates phosphorylation of p70 S6 kinase in vivo at Thr-412 as well as Thr-252 总被引:1,自引:0,他引:1
Balendran A Currie R Armstrong CG Avruch J Alessi DR 《The Journal of biological chemistry》1999,274(52):37400-37406
Protein kinase B and p70 S6 kinase are members of the cyclic AMP-dependent/cyclic GMP-dependent/protein kinase C subfamily of protein kinases and are activated by a phosphatidylinositol 3-kinase-dependent pathway when cells are stimulated with insulin or growth factors. Both of these kinases are activated in cells by phosphorylation of a conserved residue in the kinase domain (Thr-308 of protein kinase B (PKB) and Thr-252 of p70 S6 kinase) and another conserved residue located C-terminal to the kinase domain (Ser-473 of PKB and Thr-412 of p70 S6 kinase). Thr-308 of PKBalpha and Thr-252 of p70 S6 kinase are phosphorylated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) in vitro. Recent work has shown that PDK1 interacts with a region of protein kinase C-related kinase-2, termed the PDK1 interacting fragment (PIF). Interaction with PIF converts PDK1 from a form that phosphorylates PKB at Thr-308 alone to a species capable of phosphorylating Ser-473 as well as Thr-308. This suggests that PDK1 may be the enzyme that phosphorylates both residues in vivo. Here we demonstrate that PDK1 is capable of phosphorylating p70 S6 kinase at Thr-412 in vitro. We study the effect of PIF on the ability of PDK1 to phosphorylate p70 S6 kinase. Surprisingly, we find that PDK1 bound to PIF is no longer able to interact with or phosphorylate p70 S6 kinase in vitro at either Thr-252 or Thr-412. The expression of PIF in cells prevents insulin-like growth factor 1 from inducing the activation of the p70 S6 kinase and its phosphorylation at Thr-412. Overexpression of PDK1 in cells induces the phosphorylation of p70 S6 kinase at Thr-412 in unstimulated cells, and a catalytically inactive mutant of PDK1 prevents the phosphorylation of p70 S6K at Thr-412 in insulin-like growth factor 1-stimulated cells. These observations indicate that PDK1 regulates the activation of p70 S6 kinase and provides evidence that PDK1 mediates the phosphorylation of p70 S6 kinase at Thr-412. 相似文献
6.
Keshwani MM von Daake S Newton AC Harris TK Taylor SS 《The Journal of biological chemistry》2011,286(26):23552-23558
p70 ribosomal protein S6 kinase 1 (S6K1) is regulated by multiple phosphorylation events. Three of these sites are highly conserved among AGC kinases (cAMP dependent Protein Kinase, cGMP dependent Protein Kinase, and Protein Kinase C subfamily): the activation loop in the kinase domain, and two C-terminal sites, the turn motif and the hydrophobic motif. The common dogma has been that phosphorylation of the hydrophobic motif primes S6K1 for the phosphorylation at the activation loop by phosphoinositide-dependent protein kinase 1 (PDK1). Here, we show that the turn motif is, in fact, phosphorylated first, the activation loop second, and the hydrophobic motif is third. Specifically, biochemical analyses of a construct of S6K1 lacking the C-terminal autoinhibitory domain as well as full-length S6K1, reveals that S6K1 is constitutively phosphorylated at the turn motif when expressed in insect cells and becomes phosphorylated in vitro by purified PDK1 at the activation loop. Only the species phosphorylated at the activation loop by PDK1 gets phosphorylated at the hydrophobic motif by mammalian target of rapamycin (mTOR) in vitro. These data are consistent with a previous model in which constitutive phosphorylation of the turn motif provides the key priming step in the phosphorylation of S6K1. The data provide evidence for regulation of S6K1, where hydrophobic motif phosphorylation is not required for PDK1 to phosphorylate S6K1 at the activation loop, but instead activation loop phosphorylation of S6K1 is required for mTOR to phosphorylate the hydrophobic motif of S6K1. 相似文献
7.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1993,1178(2):189-193
The specificity determinants for insulin-stimulated protein kinase-I (ISPK-1) have been investigated with synthetic peptides based on naturally-occurring protein phosphoacceptor sequences. Peptides (Arg-Arg-Xaa-Ser-Xaa) that fulfill the consensus sequence for cyclic-AMP-dependent protein kinase (PK-A) are also phosphorylated readily by ISPK-1. The phosphorylation efficiency is improved by increasing the number of N-terminal arginine residues and by moving the arginyl cluster one residue further away from the serine, the nonapeptide (Arg)4-Ala-Ala-Ser-Val-Ala being the best substrate among all the short peptides tested (Km = 15 μM). Conversely, the substitution of either Thr for Ser or Lys for Arg is detrimental. Likewise, two flanking Pro residues and an Arg immediately N-terminal to the Ser act as negative specificity determinants. While the specificity of ISPK-1 shows several similarities to that of PK-A, including an absolute requirement for basic residues on the N-terminal side of the target Ser, it differs in several other respects including (1), the detrimental effect of a Lys for Arg substitution which is still compatible with some phosphorylation by ISPK-1, but not PK-A; (2), the presence of C-terminal acidic residues which are tolerated very well by ISPK-1, but are detrimental to PK-A; (3), the effect of substituting Phe for Val in the peptide Arg-Arg-Ala-Ser-Val-Ala, which improves the efficiency of phosphorylation by PK-A (lowering the Km 4-fold), but has no effect on phosphorylation by ISPK-1. These differences in peptide substrate specificity may account in part for the different rates of phosphorylation of physiological substrates for ISPK-1 and PK-A, such as the G subunit of protein phosphatase-1. 相似文献
8.
C E Poteet-Smith J A Smith D A Lannigan T A Freed T W Sturgill 《The Journal of biological chemistry》1999,274(32):22135-22138
p90 ribosomal S6 kinases (RSKs), containing two distinct kinase catalytic domains, are phosphorylated and activated by extracellular signal-regulated kinase (ERK). The amino-terminal kinase domain (NTD) of RSK phosphorylates exogenous substrates, whereas the carboxyl-terminal kinase domain (CTD) autophosphorylates Ser-386. A conserved putative autoinhibitory alpha helix is present in the carboxyl-terminal tail of the RSK isozymes ((697)HLVKGAMAATYSALNR(712) of RSK2). Here, we demonstrate that truncation (Delta alpha) or mutation (Y707A) of this helix in RSK2 resulted in constitutive activation of the CTD. In vivo, both mutants enhanced basal Ser-386 autophosphorylation by the CTD above that of wild type (WT). The enhanced Ser-386 autophosphorylation was attributed to disinhibition of the CTD because a CTD dead mutation (K451A) eliminated Ser-386 autophosphorylation even in conjunction with Delta alpha and Y707A. Constitutive activity of the CTD appears to enhance NTD activity even in the absence of ERK phosphorylation because basal phosphorylation of S6 peptide by Delta alpha and Y707A was approximately 4-fold above that of WT. A RSK phosphorylation motif antibody detected a 140-kDa protein (pp140) that was phosphorylated upon epidermal growth factor or insulin treatment. Ectopic expression of Delta alpha or Y707A resulted in increased basal phosphorylation of pp140 compared with that of WT, presenting the possibility that pp140 is a novel RSK substrate. Thus, it is clear that the CTD regulates NTD activity in vivo as well as in vitro. 相似文献
9.
Glycogen synthase kinase-3 was isolated from rabbit skeletal muscle by an improved procedure. The purification was estimated to be 67000-fold and 0.2 mg of enzyme was isolated from 5000 g muscle, corresponding to an overall yield of 7%. The preparation was homogeneous by ultracentrifugal and electrophoretic criteria. The enzyme had a relative molecular mass of 47 kDa by sedimentation equilibrium centrifugation and 51 kDa by SDS-polyacrylamide gel electrophoresis. These values demonstrate that glycogen synthase kinase-3 is monomeric. The Stokes radius of 37 nm suggests the molecule to be asymmetric. The activating factor of the Mg-ATP dependent form of protein phosphatase-1 coeluted with glycogen synthase kinase-3 activity at the final step, establishing that these two activities reside in the same protein. Glycogen synthase kinase-3 phosphorylates glycogen synthase at sites-3, while casein kinase-II phosphorylates site-5, just C-terminal to sites-3 (Picton, C., Aitken, A., Bilham, T. and Cohen, P. (1982) Eur. J. Biochem. 124, 37-45). The basis for the substrate specificities of these protein kinases was investigated using chymotryptic peptides that contain the sites phosphorylated by each enzyme. These studies showed that efficient phosphorylation of sites-3, required the presence of phosphate in site-5 and a region of polypeptide more than 20 residues C-terminal to site-5. In contrast, efficient phosphorylation by casein kinase-II does not require this C-terminal region, and the results are consistent with the view that the enzyme recognises acidic residues immediately C-terminal to site-5. 相似文献
10.
11.
Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo 下载免费PDF全文
The stress-induced host cell factors initiating the expression of the herpes simplex virus lytic cycle from the latent viral genome are not known. Previous studies have focused on the effect of specific viral proteins on reactivation, i.e., the production of detectable infectious virus. However, identification of the viral protein(s) through which host cell factors transduce entry into the lytic cycle and analysis of the promoter(s) of this (these) first protein(s) will provide clues to the identity of the stress-induced host cell factors important for reactivation. In this report, we present the first strategy developed for this type of analysis and use this strategy to test the established hypothesis that the herpes simplex virus ICP0 protein initiates reactivation from the latent state. To this end, ICP0 null and promoter mutants were analyzed for the abilities (i) to exit latency and produce lytic-phase viral proteins (initiate reactivation) and (ii) to produce infectious viral progeny (reactivate) in explant and in vivo. Infection conditions were manipulated so that approximately equal numbers of latent infections were established by the parental strains, the mutants, and their genomically restored counterparts, eliminating disparate latent pool sizes as a complicating factor. Following hyperthermic stress (HS), which induces reactivation in vivo, equivalent numbers of neurons exited latency (as evidenced by the expression of lytic-phase viral proteins) in ganglia latently infected with either the ICP0 null mutant dl1403 or the parental strain. In contrast, infectious virus was detected in the ganglia of mice latently infected with the parental strain but not with ICP0 null mutant dl1403 or FXE. These data demonstrate that the role of ICP0 in the process of reactivation is not as a component of the switch from latency to lytic-phase gene expression; rather, ICP0 is required after entry into the lytic cycle has occurred. Similar analyses were carried out with the DeltaTfi mutant, which contains a 350-bp deletion in the ICP0 promoter, and the genomically restored isolate, DeltaTfiR. The numbers of latently infected neurons exiting latency were not different for DeltaTfi and DeltaTfiR. However, DeltaTfi did not reactivate in vivo, whereas DeltaTfiR reactivated in approximately 38% of the mice. In addition, ICP0 was detected in DeltaTfiR-infected neurons exiting latency but was not detected in those neurons exiting latency infected with DeltaTfi. We conclude that while ICP0 is important and perhaps essential for infectious virus production during reactivation in vivo, this protein is not required and appears to play no major role in the initiation of reactivation in vivo. 相似文献
12.
13.
L A Charlton M Sayed I Clark-Lewis R Aebersold S L Pelech 《Journal of cellular biochemistry》1999,75(2):310-326
Two ribosomal protein S6 kinases (i.e., pp52(S6K) and pp70(S6K)) of the p70 S6 kinase family were markedly activated during meiotic maturation of Pisaster ochraceus sea star oocytes. A rapid protocol was developed for the purification from the oocyte cytosol of pp52(S6K) by approximately 50,000-fold with a specific enzyme activity of 1.6 micromol per min per mg. The purified enzyme apparently featured the N- and C-terminal regions of pp70(S6K) as it immunoreacted with antibodies directed to peptides patterned after these amino acid sequences in mammalian pp70(S6K). pp52(S6K) was inhibited by fluoride (IC(50) approximately 60 mM), but was relatively insensitive to beta-glycerolphosphate, EGTA, dithiothreitol, spermine, heparin, NaCl, and metal ions such as Mn(2+), Zn(2+), and Ca(2+). The consensus sequence for substrate phosphorylation was determined to be RXXSXR, which was partially distinct from mammalian p70(S6K) in its requirement for an amino-terminal arginine. Phosphorylation of ribosomal protein S6 by p52(S6K) occurred exclusively on serine on at least five tryptic peptides. Inhibition of sea star p52(S6K) phosphotransferase activity after treatment with protein serine/threonine phosphatases confirmed that p52(S6K) was still regulated by phosphorylation. The sea star S6 kinase was purified to near homogeneity with the regulatory and catalytic subunits of protein-serine phosphatase 2A and the heat shock protein 60. The association of an S6 kinase with phosphatase 2A was confirmed by coimmunoprecipitation of S6 kinase activity with phosphatase 2A-specific antibodies. The purified S6 kinase and the sea star oocyte system will be useful for analysis of upstream and downstream signaling events that lead to phosphorylation of the S6 protein and other targets. 相似文献
14.
mTOR is the rapamycin-sensitive kinase that confers mechanically-induced phosphorylation of the hydrophobic motif site Thr(389) in p70(S6k) 总被引:2,自引:0,他引:2
Mechanical stretch induces phosphorylation of the hydrophobic motif site Thr(389) in p70(S6k) through a rapamycin-sensitive (RS) pathway that involves a unique PI3K-independent mechanism. Rapamycin is considered to be a highly specific inhibitor of the protein kinase mTOR; however, mTOR is also considered to be a PI3K-dependent signaling molecule. Thus, questions remain as to whether mTOR is the RS element that confers mechanically-induced signaling to p70(S6k)(389). In this study, rapamycin-resistant mutants of mTOR along with mechanical stretch were used to address this question. The results indicate that mTOR is the RS element and reveal that mTOR signaling can be activated through a PI3K-independent mechanism. 相似文献
15.
Background
Protein Kinase Casein Kinase 2 (PKCK2) is an ubiquitous Ser/Thr kinase expressed in all eukaryotes. It phosphorylates a number of proteins involved in various cellular processes. PKCK2 holoenzyme is catalytically active tetramer, composed of two homologous or identical and constitutively active catalytic (α) and two identical regulatory (β) subunits. The tetramer cannot phosphorylate some substrates that can be phosphorylated by PKCK2α in isolation. The present work explores the structural basis of this feature using computational analysis and modeling.Results
We have initially built a model of PKCK2α bound to a substrate peptide with a conformation identical to that of the substrates in the available crystal structures of other kinases complexed with the substrates/ pseudosubstrates. In this model however, the fourth acidic residue in the consensus pattern of the substrate, S/T-X-X-D/E where S/T is the phosphorylation site, did not result in interaction with the active form of PKCK2α and is highly solvent exposed. Interaction of the acidic residue is observed if the substrate peptide adopts conformations as seen in β turn, α helix, or 310 helices. This type of conformation is observed and accommodated well by PKCK2α in calmodulin where the phosphorylation site is at the central helix. PP2A carries sequence patterns for PKCK2α phosphorylation. While the possibility of PP2A being phosphorylated by PKCK2 has been raised in the literature we use the model of PP2A to generate a model of PP2A-PKCK2α complex. PKCK2β undergoes phosphorylation by holoenzyme at the N-terminal region, and is accommodated very well in the limited space available at the substrate-binding site of the holoenzyme while the space is insufficient to accommodate the binding of PP2A or calmodulin in the holoenzyme.Conclusion
Charge and shape complimentarity seems to play a role in substrate recognition and binding to PKCK2α, along with the consensus pattern. The detailed conformation of the substrate peptide binding to PKCK2 differs from the conformation of the substrate/pseudo substrate peptide that is bound to other kinases in the crystal structures reported. The ability of holoenzyme to phosphorylate substrate proteins seems to depend on the accessibility of the P-site in limited space available in holoenzyme.16.
The ribosomal protein S6 in exocrine cells is phosphorylated during stimulation of exocytosis by cAMP-dependent or calcium-dependent agonists. Under both conditions the same tryptic S6 phosphopeptides (termed A, B, and C) were found [Padel, Kruppa, Jahn & S?ling (1983) FEBS Lett. 159, 112-118]. Studies have now been made of the phosphorylation pattern of protein S6 from purified guinea pig parotid ribosomes following in vitro phosphorylation with calmodulin-dependent, phospholipid-dependent, and cAMP-dependent protein kinases. Only the phospholipid-dependent enzyme led to the phosphorylation of peptides A, B, and C, while the cAMP-dependent enzyme phosphorylated only peptides A and C, and the calmodulin-dependent enzyme did not phosphorylate any of the phosphopeptides found in S6 from unstimulated or stimulated intact cells. Guinea pig parotid microsomes contain substantial phospholipid-dependent protein kinase activity. Stimulation of intact parotid glands with tetradecanoylphorbol acetate led to a significant phosphorylation of S6 and a similar tryptic S6 phosphopeptide pattern as seen with carbamoylcholine. It is concluded that activation of phospholipid-dependent protein kinase is responsible for the phosphorylation of protein S6 during stimulation with calcium-dependent and cAMP-dependent secretagogues. 相似文献
17.
S6K1alphaII is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (T229) and hydrophobic motif (HM; T389) regions of its catalytic kinase domain [S6K1alphaII(DeltaAID); deletion of C-terminal autoinhibitory domain residues 399-502]. With regard to mimicking the synergistic effect of full dual site phosphorylation, baculovirus-mediated expression and affinity purification of the His(6)-S6K1alphaII(DeltaAID)-T229E,T389E double mutant from Sf9 insect cells yielded enzyme with compromised activity. Higher activity preparations were generated using the Sf9 purified His(6)-S6K1alphaII(DeltaAID)-T389E single mutant isoform, which was in vitro phosphorylated by the upstream T229 kinase, PDK1 ( approximately 75 nmol/min/mg). Most significantly, we report that the His(6)-S6K1alphaII(DeltaAID)-T389E construct was generated in its most highly active form (250 nmol/min/mg) by baculovirus-mediated expression and purification from Sf9 insect cells that were coinfected with recombinant baculovirus expressing the catalytic kinase domain of PDK1 [His(6)-PDK1(DeltaPH)]. Approximately equal amounts of fully activated His(6)-S6K1alphaII(DeltaAID)-T389E (5+/-1 mg) and His(6)-PDK1(DeltaPH) (8+/-2 mg) were His(6) affinity co-purified 60 h after initial coinfection of 200 mL of Sf9 insect cells (2x10(6) cells/mL), which were resolved by MonoQ anion exchange chromatography. ESI-TOF mass spectrometry, MonoQ anion exchange chromatography, and kinetic assays showed His(6)-PDK1(DeltaPH) to phosphorylate T229 to approximately 100% after co-expression in Sf9 insect cells as compared to approximately 50% under in vitro conditions, raising interest to mechanistic components not fully achieved in the in vitro reaction. Generation of fully activated S6K1 will facilitate more rigorous analysis of its structure and mechanism. 相似文献
18.
Description of a protein kinase derived from insulin-treated 3T3-L1 cells that catalyzes the phosphorylation of ribosomal protein S6 and casein 总被引:18,自引:0,他引:18
Particulate preparations from insulin-treated 3T3-L1 cells retain the enhanced ability to incorporate 32P from [gamma-32P]ATP into ribosomal protein S6 (Smith, C. J., Rubin, C. S., and Rosen, O. M. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 2641-2645). A cyclic AMP-independent protein kinase that phosphorylates S6 and casein and that may be involved in the increase in S6 phosphorylation produced by insulin has been isolated based upon the observation that there is 1.5-3.0-fold higher activity in particulate preparations derived from insulin-treated cells than there is in comparable preparations from control cells. The enzyme activity was purified 2071-fold by KCl extraction, phosphocellulose chromatography, and gel filtration. The S6 phosphorylating activity was also characterized by its behavior on casein-Sepharose and DEAE-cellulose chromatography and its sedimentation in glycerol gradients. None of these procedures resolved the S6 and casein kinase activities. Some of the properties of this kinase, including a molecular weight of about 35,000, inhibition by F- or phosphate, chromatography on DEAE-cellulose and phosphocellulose, and insensitivity to inhibition by GTP, are similar to those of a previously described enzyme, casein kinase I (Dahmus, M. E. (1981) J. Biol. Chem. 256, 3319-3325; Hathaway, G. M., and Traugh, J. A. (1979) J. Biol. Chem. 254, 762-768). 相似文献
19.
20.
Inhibition of platelet function by cAMP is due at least in part to a reduction in the agonist stimulated increase in cytoplasmic calcium during cell activation. This inhibition is also associated with cAMP-dependent phosphorylation of thrombolamban, a 22 kDa phosphoprotein which is present in the same membrane fraction as the calcium-dependent ATPase. Phosphorylation of this protein has been correlated with increased uptake of calcium by microsomal membranes. The present study was undertaken to examine the interaction of thrombolamban with the Ca++-ATPase in order to assess the possibility that the increased calcium uptake was by a direct effect of thrombolamban on Ca++-ATPase activity or that thrombolamban was a component of the Ca++-ATPase. Several approaches were utilized to assess the interaction of thrombolamban with the microsomal Ca++-ATPase. Gel filtration of labeled microsomes solubilized under non-denaturing conditions showed a major peak of radioactivity (Kav 0.64) corresponding to thrombolamban which was well separated from the Ca++-ATPase activity (Kav 0.09). Chemical cross-linking studies using partially purified thrombolamban and intact microsomes showed incorporation of the phosphoprotein into a 147,000 dalton complex. Indirect immunostaining with an anti-Ca++-ATPase antibody failed to demonstrate the Ca++-ATPase in the 147,000 dalton complex. Recombination of the phosphorylated thrombolamban with the Ca++-ATPase had no effect on Ca++-ATPase activity. These results indicate that, under the conditions used in these experiments, there was no apparent interaction between thrombolamban and the microsomal Ca++-ATPase. We conclude that thrombolamban is covalently bound to the Ca++-ATPase. 相似文献