首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of aromatization of 4-androstenedione (AD) and 7-hydroxylation of dehydroepiandrosterone (DHEA) by different neuronal cell lines from fetal rat and mouse brain was compared to that of embryonic rat hippocampal cells in primary culture. The (3)H-labeled steroids were incubated with the cells and the metabolites extracted and separated by thin layer chromatography (TLC), as well as analyzed by high-performance liquid chromatography (HPLC) for further identification. All cell types produced estrone (E(1)) and estradiol (E(2)) from [(3)H]AD but the rate of aromatization was lowest with the rat hippocampal cells in primary culture. With [(3)H]DHEA, BHc.2 mouse hippocampal cells and E(t)C.1 neurons behaved like the mixed cells from rat hippocampus, forming 7-hydroxy DHEA as the almost exclusive product. In contrast, mouse brain BV2 microglia were virtually unable to hydroxylate DHEA at C-7 and yielded estrogen and more testosterone (T) than other cell types tested. These experiments highlight the pivotal role of 3beta-hydroxysteroid dehydrogenase/ketoisomerase in the control of AD formation for its subsequent aromatization to estrogen. It raises the possibility that differences in metabolism of DHEA by certain brain cells could account for differences in their immunomodulatory and neuroprotective functions. Some could exert their effects by converting DHEA to its 7-hydroxylated form while others, like BV2 microglia, by converting DHEA primarily to other C-19 steroids and to estrogen by way of AD.  相似文献   

2.
A method is described for simultaneous assessment of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), and their 7-hydroxylated metabolites in cortex and subcortex of the rat brain. The procedure for determination of unconjugated steroids and DHEAS involved diethyl ether extraction of the homogenized tissue, solvent partition of the dry extract, and final quantification by specific radioimmunoassays. In addition, determination of 7-hydroxy-dehydroepiandrosterone sulfates required solvolysis, followed by high-performance liquid chromatography for separation of 7-hydroxylated metabolites from their precursor. The losses during this process were monitored by measurement of spiked radioactivity of [(3)H]testosterone or [(3)H]dehydroepiandrosterone sulfate. The content of dehydroepiandrosterone sulfate in both brain tissues was of the order of ten(s) nmol/g tissue irrespective its type (cortex or subcortex), while concentrations of other steroids were about 10 times lower in both tissues. In contrast to the ratio of sulfated/unconjugated DHEA, the levels of unconjugated 7-hydroxylated metabolites and their sulfates were close to each other. The reproducibility of the method with respect to coefficients of variation varied from 12 to 25%. An age-related decrease of sulfated dehydroepiandrosterone in the cortex of animals was also observed.  相似文献   

3.
Studies to elucidate the role of dehydroepiandrosterone (DHEA) metabolism in neuroprotection have compared its relative 7-hydroxylation against estrogen formation by way of 4-androstenedione (AD) in various rodent brain cell lines. In all cases, the 7alpha- and 7beta-hydroxy epimers of DHEA were found to be the dominant products with one notable exception. BV2 mouse microglia were virtually unable to hydroxylate DHEA at C-7 and converted AD to a major unknown metabolite not observed with mouse BHc hippocampal cells. In this paper, we describe the identification of this compound based on its physical properties and analysis by TLC and HPLC. Its identity as 3beta-hydroxy-4-androstene-17-one, the Delta(4)-isomer of DHEA, was confirmed by mass spectrometry (LC/MS), as well as by reverse isotope dilution analysis involving co-crystallization with the synthetic steroid. Possible mechanisms for the formation of this isomer of DHEA by BV2 microglia are proposed, together with that of other C-19 steroids detected which include testosterone (T), 5alpha-dihydrotestosterone and 5alpha-androstanedione.  相似文献   

4.
In order to delineate differences in the mechanism of androgen action in epithelium (E) and stroma (S) of the human prostate, we studied the 17 beta-hydroxysteroid dehydrogenase (17 beta-HSDH) in these tissues of benign prostatic hyperplasia (BPH). Tissue was obtained by suprapubic prostatectomy. E and S were separated; samples were homogenized in buffer and incubated with [3H] steroids (4-androstenedione (Ae), estrone (E1), or dehydroepiandrosterone (DHEA] and NADH (4.2 mmol/l) as cosubstrate for 60 min at 37 degrees C. Separation and quantification of the metabolites were performed by TLC and LSC, respectively. The main results were: (1) Following incubation with DHEA and E1, only the metabolites 5-androstene-3 beta,17 beta-diol and estradiol, respectively, were found. Following incubation with Ae, testosterone, 5 alpha-dihydrotestosterone and 5 alpha-androstane-3 alpha-(beta),17 beta-diol were detected as metabolites (the sum of these metabolites were used for calculations). (2) The Michaelis constants were identical in E and S (mean +/- SEM (n), mumol/l, Ae 6.92 +/- 1.01, E1 7.84 +/- 0.69, DHEA 3.73 +/- 0.38). (3) The maximum velocity rate for the three substrates in E was 5-10-fold that in S (P at least less than 0.01), the value in the whole tissue homogenate (WT) being intermediate (pmol/mg protein h), for Ae: E 383 +/- 56, S 40 +/- 3, WT 75 +/- 13; for E1: E 362 +/- 71, S 33 +/- 4, WT 63 +/- 8; for DHEA: E 132 +/- 21, S 26 +/- 4, WT 36 +/- 4. On the basis of these results the role of 17 beta-HSDH in forming active androgens and estrogens from less potent precursors is discussed in the stromal and epithelial compartment of the human prostate.  相似文献   

5.
BackgroundActaea racemosa L., also known as black cohosh, is a popular herb commonly used for the treatment of menopausal symptoms. Because of its purported estrogenic activity, black cohosh root extract (BCE) may trigger breast cancer growth.Study design/methodsThe potential effects of standardized BCE and its main constituent actein on cellular growth rates and steroid hormone metabolism were investigated in estrogen receptor alpha positive (ERα+) MCF-7 and -negative (ERα-) MDA-MB-231 human breast cancer cells. Cell numbers were determined following incubation of both cell lines with the steroid hormone precursors dehydroepiandrosterone (DHEA) and estrone (E1) for 48 h, in the presence and absence of BCE or actein. Using a validated liquid chromatography-high resolution mass spectrometry assay, cell culture supernatants were simultaneously analyzed for the ten main steroids of the estrogen pathway.ResultsInhibition of MCF-7 and MDA-MB-231 cell growth (up to 36.9%) was observed following treatment with BCE (1-25 µg/ml) or actein (1-50 µM). Incubation of MCF-7, but not of MDA-MB-231 cells, with DHEA and BCE caused a 20.9% reduction in DHEA-3-O-sulfate (DHEA-S) formation, leading to a concomitant increase in the androgens 4-androstene-3,17-dione (AD) and testosterone (T). Actein was shown to exert an even stronger inhibitory effect on DHEA-S formation in MCF-7 cells (up to 89.6%) and consequently resulted in 12- to 15-fold higher androgen levels compared with BCE. The formation of 17β-estradiol (E2) and its glucuronidated and sulfated metabolites was not affected by BCE or actein after incubation with the estrogen precursor estrone (E1) in either cell line.ConclusionsThe results of the present study demonstrated that actein and BCE do not promote breast cancer cell growth or influence estrogen levels. However, androgen formation was strongly stimulated by BCE and actein, which may contribute to their ameliorating effects on menopausal symptoms in women. Future studies monitoring the levels of AD and T upon BCE supplementation of patients are warranted to verify an association between BCE and endogenous androgen metabolism.  相似文献   

6.
In order to characterize the main enzymatic systems involved in androgen and estrogen formation as well as metabolism in ZR-75-1 human breast cancer cells, incubation of intact cells was performed for 12 or 24 h at 37 degrees C with tritiated estradiol (E2), estrone (E1), androst-5-ene-3 beta, 17 beta-diol (5-ene-diol), dehydroepiandrosterone (DHEA), testosterone (T), androstenedione (4-ene-dione), dihydrotestosterone (DHT) or androsterone (ADT). The extra- and intracellular steroids were extracted, separated into free steroids, sulfates and non-polar derivatives (FAE) and identified by HPLC coupled to a Berthold radioactivity monitor. Following incubation with E2, 5-ene-diol or T, E1, DHEA and 4-ene-dione were the main products, respectively, thus indicating high levels of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD). When 4-ene-dione was used, on the other hand, a high level of transformation into 5 alpha-androstane-3,17-dione (A-dione), Epi-ADT and ADT was found, thus indicating the presence of high levels of 5 alpha-reductase as well as 3 alpha- and 3 beta-hydroxysteroid dehydrogenase. Moreover, some T was formed, due to oxidation by 17 beta-HSD. No estrogen was detected with the androgen precursors T or 4-ene-dione, thus indicating the absence of significant aromatase activity. Moreover, significant amounts of sulfates and non-polar derivatives were found with all the above-mentioned substrates. The present study shows that ZR-75-1 human breast cancer cells possess most of the enzymatic systems involved in androgen and estrogen formation and metabolism, thus offering an excellent model for studies of the control of sex steroid formation and action in breast cancer tissue.  相似文献   

7.
Chalbot S  Morfin R 《Steroids》2005,70(4):319-326
Both dehydroepiandrosterone (DHEA) and epiandrosterone (EpiA) are substrate for cytochrome P450 species and enzymes that produce 7alpha- and 7beta-hydroxylated metabolites in the brain and other organs. In contrast to DHEA and EpiA, the 7-hydroxylated derivatives were shown to mediate neuroprotection, and 7beta-hydroxy-EpiA was the most potent. The suggested use of any of these steroids as drugs administered per os for neuroprotection requires the assessment of their metabolism in the human intestine and liver. To achieve this, we produced radio-labeled 7alpha-hydroxy-DHEA, 7beta-hydroxy-DHEA, 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA that were used as substrates in incubations with human intestine microsomes supplemented with reduced or oxidized cofactors. Identity of the radio-labeled metabolites obtained was determined by gas chromatography/mass spectrometry after comparison with authentic steroid references. The proportions of metabolites produced resulted from their radioactivity contents. The only metabolite obtained with DHEA, EpiA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA substrates was its 17beta-reduced derivative, thus inferring the presence of 17beta-hydroxysteroid oxidoreductases in the human intestine microsomes. In addition to the 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA substrates, their 17beta-reduced metabolites were obtained with 7beta-hydroxy-EpiA and 7alpha-hydroxy-EpiA, respectively. The identity of the enzyme responsible for the 7alpha-hydroxy-EpiA/7beta-hydroxy-EpiA inter-conversion is unknown. The incubation conditions used produced these metabolites in low but significant yields that suggest their presence in the portal blood before access to the liver.  相似文献   

8.
Nakamagoe M  Tabuchi K  Nishimura B  Hara A 《Steroids》2011,76(13):1443-1450
As neuroactive steroids, sex steroid hormones have non-reproductive effects. We previously reported that 17β-estradiol (βE2) had protective effects against gentamicin (GM) ototoxicity in the cochlea. In the present study, we examined whether the protective action of βE2 on GM ototoxicity is mediated by the estrogen receptor (ER) and whether other estrogens (17α-estradiol (αE2), estrone (E1), and estriol (E3)) and other neuroactive steroids, dehydroepiandrosterone (DHEA) and progesterone (P), have similar protective effects. The basal turn of the organ of Corti was dissected from Sprague-Dawley rats and cultured in a medium containing 100 μM GM for 48 h. The effects of βE2 and ICI 182,780, a selective ER antagonist, were examined. In addition, the effects of other estrogens, DHEA and P were tested using this culture system. Loss of outer hair cells induced by GM exposure was compared among groups. βE2 exhibited a protective effect against GM ototoxicity, but its protective effect was antagonized by ICI 182,780. αE2, E1, and E3 also protected hair cells against gentamicin ototoxicity. DHEA showed a protective effect; however, the addition of ICI 182,780 did not affect hair cell loss. P did not have any effect on GM-induced outer hair cell death. The present findings suggest that estrogens and DHEA are protective agents against GM ototoxicity. The results of the ER antagonist study also suggest that the protective action of βE2 is mediated via ER but that of DHEA is not related to its conversion to estrogen and binding to ER. Further studies on neuroactive steroids may lead to new insights regarding cochlear protection.  相似文献   

9.
Either [3H] progesterone (0.5 or 5 nmol/5 muCi), 5alpha-[3H] pregnane-3,20-dione (5 nmol/5 muCi) or [14C] progesterone (6.6 nmol/0.2 muCi) plus 5alpha-[3H]-pregnane-3,20-dione (1 or 6.6 nmol/0.6 muCi), suspended in 0.05 ml of physiological saline solution, was injected into each testis of 32- and 90-day-old rats. Following injection, radioactive metabolites in testis and spermatic vein blood were extracted, isolated, measured and identified by column and paper chromatographies, with derivative formation and recrystallization to constant specific activity. In the blood and testis of older prepubertal rats, major 17-OH-C21 and C19 metabolites of progesterone were 5alpha-reduced steroids such as 3alpha, 17alpha-dihydroxy-5alpha-pregnan-20-one, 5alpha-androstane-3alpha,17beta-diol and androsterone. Following injection of [14C] progesterone plus 5alpha-[3H] pregnane-3,20-dione into 32-day-old rat testis, no significant augmentation of the isotope from progesterone was observed in 5alpha-reduced C19 steroids as compared with 5alpha-reduced 17-OH-C21 steroids, indicating that 5alpha-reduced C19 steroids were mainly formed from 5alpha-reduced 17-OH-C21 steroids in older prepubertal testis. In the blood and testis of adult rats, small amounts of 5alpha-reduced metabolites were shown to be produced from progesterone, while active 17alpha-hydroxylation of 5alpha-pregnane-3,20-dione followed by C17-C20-lyase reaction was demonstrated. These findings seem to indicate that formation of 5alpha-reduced C19 steroids from progesterone by the 5alpha-reduced pathway is a major pathway of androgen biosynthesis in older prepubertal rat testis in vivo.  相似文献   

10.
Le Bail JC  Lotfi H  Charles L  Pépin D  Habrioux G 《Steroids》2002,67(13-14):1057-1064
Metabolism of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), and androstene-3,17-dione (delta(4)) was performed at their physiological plasma concentrations in MCF-7 cell cultures (1 microM, 10 and 2 nM, respectively). Final metabolic products of these steroids were separated by HPLC-radioactive flow detection and identified by LC/MS or MS/MS. Typical and specific mass fragmentation spectra identified the presence of estrone (E(1)), 17beta-estradiol (E(2)), delta(4), DHEA, 5-androstene-3beta,17beta-diol (delta(5)), and testosterone as principal DHEAS metabolites. Other steroids, such as androstenedione, androsterone, and DHEA fatty acid esters at very low concentrations (from pM to nM), were also obtained after steroid incubation. This highly specific method allowed us to conclude whether a metabolite and enzymatic activity of interest were present in MCF-7 cells or not. We also showed that DHEAS at its physiological plasma concentration may be converted into estrogens and estrogen-like compounds in breast cancer cells. The estrogenic action of DHEAS on breast cancer cells was also measured by bioluminescence in a stably transfected human breast cancer MCF-7 cell line with a reporter gene that allowed expression of the firefly luciferase enzyme under the control of an estrogen regulatory element.  相似文献   

11.
Dehydroepiandrosterone (DHEA) fatty acyl esters once incorporated in high density lipoprotein (HDL) induce a stronger vasodilatory response in rat mesenteric arteries ex vivo compared to native HDL. We studied the role of HDL receptor, scavenger receptor class B, type 1 (SR-B1), as well as estrogen and androgen receptors in the vasodilatory response of HDL-associated DHEA fatty acyl esters. Using cultured human vascular endothelial cells (HUVEC), we investigated the possible internalization and cellular response of HDL-associated DHEA esters. We prepared DHEA ester-enriched HDL by incubating human plasma in the presence of DHEA. After isolation and purification, HDL was added in cumulative doses to arterial rings precontracted with noradrenaline. Inhibition of the function of SR-B1 almost completely abolished maximal vasorelaxation by DHEA-enriched HDL while estrogen or androgen receptor blockage had no significant effect. When HUVECs were incubated in the presence of [3H]DHEA ester-enriched HDL, the amount of intracellular [3H]-radioactivity increased steadily during 24 h. Blocking of SR-B1 reduced this uptake by a mean of 30%. The proportion of unesterified [3H]DHEA, as analyzed by thin-layer chromatography, increased intracellularly and in the cell culture media after several hours of incubation of the cells in the presence of [3H]DHEA ester-enriched HDL. This indicated slow hydrolysis of DHEA fatty acyl esters and subsequent excretion of unesterified DHEA by the cells. In conclusion, DHEA-enriched HDL induced vasorelaxation via the SR-B1-facilitated pathway. However, this vasodilation is not likely to be attributed to rapid hydrolysis of HDL-associated DHEA esters by the vascular endothelium.  相似文献   

12.
The biosynthetic abnormality in Smith-Lemli-Opitz syndrome (SLOS) is a deficiency of 7-dehydrocholesterol (7DHC) reductase, the enzyme responsible for catalyzing the final step in the Kandutsch-Russell pathway for cholesterol synthesis. Because the disposition of 7DHC and 8-dehydrocholesterol [8DHC; cholesta-5,8(9)-dien-3beta-ol] produced in this syndrome is little understood, we have analyzed urine from three young infants by gas chromatography/mass spectrometry to characterize its steroid metabolites. All steroid metabolites of adrenal origin found in normal infant urine were also found in urine from the patients with SLOS but in reduced amount. Quantitatively, the major steroids in these SLOS patients were identified by mass spectrometry as homologs of normal neonatal steroids possessing an additional double bond. Generally, two forms of each steroid were present in a similar amount. Because of the markedly increased levels of 7DHC and 8DHC in SLOS, these almost certainly represented the 5,7 and 5,8(9) unsaturated forms of each metabolite. The most abundant steroids were tentatively identified as 3beta,16alpha-dihydroxy-5,7-pregnadien-20-one and 3beta,16alpha-dihydroxy-5,8(9)-pregnadien-20-one, although similar 21-hydroxylated steroids and homologs of 16alpha-hydroxy-DHEA were also found. This study shows that all enzymatic steps used by cholesterol in the DHEA synthetic pathway are also functional for 7DHC and 8DHC.  相似文献   

13.
The regulation of the production of steroids and steroid sulfates and the activity of aromatase in human luteinized granulosa cells were investigated. The cells were cultured for 48 h in the presence or absence of hCG and FSH. Basal production of pregnenolone (Pre, 0.3 +/- 0.03 ng/micrograms protein) and progesterone (P, 19.3 +/- 1.7 ng/micrograms protein) were high compared with that of other steroids beyond P in the steroidogenic pathway. The concentration of 17 alpha-hydroxyprogesterone (17-OHP) was lower 0.17 +/- 0.06 ng/micrograms and that of other steroids in the 4-ene and 5-ene pathways and steroid sulfates less than 0.05 ng/micrograms. Both hCG and FSH (100 ng/ml) stimulated the production of Pre and P 3- to 5-fold, but only minimal stimulation of other steroids and steroid sulfates was observed. Aromatase activity of granulosa-luteal cells was measured from the rate of formation of 3H2O from 1 beta-[3H]androstenedione (1 beta[3H]A) after exposing the cells to hCG, FSH or estradiol (E2) for 48 h. Basal aromatase activity was relatively low, but hCG and FSH stimulated aromatase 8- and 4-fold, respectively. The incubation of granulosa-luteal cells with E2 did not affect basal aromatase activity, but E2 augmented FSH-stimulated aromatase 1.4-fold (P less than 0.025). The results suggest that there is low 17 alpha-hydroxylase and steroid sulfokinase activity in human granulosa-luteal cells. Aromatase activity in these cells is regulated by both hCG and FSH, and intra-ovarian estrogens may regulate granulosa cell aromatase activity.  相似文献   

14.
Gonads of premetamorphosing larval (PML), transforming (TL) and newly metamorphosed (juvenile) sea lampreys (JL) (Petromyzon marinus) were incubated in vitro with tritiated pregnenolone ([(3)H]P(5)), progesterone ([(3)H]P(4)), and androstenedione ([(3)H]A(4)) to identify the major products of steroidogenesis in early developmental stages. Reverse-phase high-performance liquid chromatography, using two mobile phase gradients, was used to separate the radioactive steroid metabolites. 7alpha-Hydroxylase activity was evident, based on the loss of radioactivity from [(3)H]P(5) labelled at position 7, appearing as tritiated water, and on the appearance of radiolabelled 7alpha-hydroxypregnenolone in the incubation medium. In addition, there was evidence of the synthesis of 15alpha-hydroxylated steroids from the three steroid precursors used. For the progestogen precursors, one of the major 15alpha -hydroxylated metabolites synthesized by both testis and ovarian tissue co-eluted with authentic 15alpha-hydroxyprogesterone, and for [(3)H]A(4), the product was predominantly [(3)H]15alpha-hydroxyandrostenedione. Additional polar steroids were produced, some of which co-eluted with authentic 15alpha-hydroxytestosterone and 15alpha-hydroxyestradiol, whereas others could not be correlated with the authentic 15alpha- or 15beta-hydroxylated steroids available. Ovarian tissues from PML and TL developmental stages synthesized several very non-polar compounds, some of which were present as unconjugated compounds, and others only in the conjugated fraction. These molecules had retention times consistent with pregnanes, and their presence in the incubation medium was therefore indicative of the presence of 5alpha-reductase. These metabolites were not present in the incubation medium from testis, or the JL ovary, suggesting that there is no expression of 5alpha-reductase activity in these tissues. Traces of 17beta-estradiol were found in the incubation medium from ovarian tissue incubated with P(5), but not following incubation with P(4) or A(4). Testosterone was not present in the incubation medium from either ovarian or testis fragments incubated with any of the substrates used.  相似文献   

15.
The cytochrome P4507B1 (P4507B1) in the human hippocampus is responsible for the production of 7alpha-hydroxylated derivatives of dehydroepiandrosterone (DHEA) and other 3beta-hydroxylated neurosteroids. Minor quantities of the 7beta-hydroxylated derivatives are also produced. Neuroprotective action of these 7-hydroxysteroids was reported. Recombinant human P4507B1 was prepared from yeast coexpressing the human hippocampal P450 cDNA and the human P450 reductase genes. Microsomal P4507B1 activity was tested in the presence of NADPH and (14)C-labeled steroid substrates to deduce kinetic parameters and to study inhibitor responses. The K(M) values obtained for DHEA, pregnenolone, epiandrosterone, 5alpha-androstane-3beta,17beta-diol and estrone were 1.90 +/- 0.06, 1.45 +/- 0.03, 1.05 +/- 0.12, 0.8 +/- 0.04 and 1.20 +/- 0.26 microM, respectively. Production of limited amounts of 7beta-hydroxylated derivatives was also observed, but only with DHEA, 5alpha-androstane-3beta,17beta-diol and epiandrosterone. K(M) values determined for 7beta-hydroxylation were identical to those for 7alpha-hydroxylation. The DHEA 7alpha-hydroxylation was inhibited by estrone and estradiol (mixed type inhibition) and by the [25-35] beta-amyloid peptide (non-competitive inhibition). These results indicate that in human, the 7-hydroxylation catalysed by P4507B1 preferentially takes place on DHEA, 5alpha-androstane-3beta,17beta-diol and epiandrosterone with major and minor formation of 7alpha- and 7beta-hydroxylated derivatives, respectively. Both estrogens and a beta-amyloid component inhibit the P4507B1-mediated production of the 7-hydroxysteroid metabolites.  相似文献   

16.
The zonal testis of the dogfish (Squalus acanthias) has proven advantageous to study biochemical changes in relation to stage of spermatogenesis, including information on steroidogenic enzymes and steroid receptors. To investigate whether sulfotransferase is part of a mechanism regulating the availability of biologically active hormone in close proximity to receptors, we measured in vitro conversion of [3H]estrone (E1) to sulfoconjugated metabolites in cytosolic subfractions of testes grossly dissected according to germ cell composition (premeiotic-PrM, meiotic-M, and postmeiotic-PoM stages). Assays were carried out in the presence of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) at 22 degrees C and optimized for time (60 min) and protein (500 micrograms/ml). Michaelis-Menten kinetics and saturation analysis gave the following reaction constants for [3H]E1: Km = 0.33 microM, Vmax = 2.5 pmol/min/mg; and for PAPS: Km = 33 microM, Vmax = 1.1 pmol/min/mg; competition studies carried out in the absence or presence of 1- or 5-fold excess radioinert steroids indicated that estrogen (E2 > E1) as well as androgens (T = DHEA > 5 alpha dihydrotestosterone, DHT) were effective inhibitors. Sulfotransferase activity was found to be stage-related, being highest in PoM regions (2.31 +/- 0.24 pmol/min/mg protein) when compared to M and PrM regions (1.22 +/- 0.22 and 1.28 +/- 0.21 pmol/min/mg protein, respectively). Sulfoconjugation and the intratesticular distribution of steroid sulfates were also measured in vivo by perfusion of the intact testis with [3H]androgen or -estrogen. The pathway of blood flow via the genital artery was epigonal organ-->PoM-->M-->PrM (mature-->immature). Perfused [3H]E2, T, and DHT were all extensively metabolized in a one-pass, 1 hr perfusion, less than 10% of perfused [3H] steroid being recovered from testicular tissues as unchanged steroid. In general, recovery of polar metabolites was greater than non-polar metabolites from all three substrates. Sequential hydrolysis with glucuronidase and glusulase indicated that sulfoconjugation is a minor component (< 20%) of several "inactivating" pathways, which include glucuronide conjugation, 17-ketosteroid synthesis, and pathways leading to unidentified polar metabolites. No consistent stage-related distribution patterns were observed for any of the metabolite subfractions; however, total recovered radioactive steroid (polar plus non-polar) formed a decreasing concentration gradient from point of entry of perfusate (PoM region) to point of exit (PrM region). These data support the conclusion that access to receptors by steroid ligands may be controlled by a balance between activating and inactivating pathways.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
1. 1 alpha-Hydroxy[7-3H]cholecalciferol (specific radioactivity of 2-Ci/mmol) was synthesized, and its metabolism in chicks studied. 2. 1 alpha-Hydroxy[7-3H]cholecalciferol was metabolized very rapidly in the chick to 1 alpha,25-dihydroxy[7-3H]cholecalciferol and to a metabolite less polar than 1 alpha-hydroxycholecalciferol. Intestine exhibited highest accumulation of 1 alpha-25-dihydroxy[7-3H]cholecalciferol, and liver exhibited highest accumulation of the non-polar metabolite. 3. Tissue uptake of 1 alpha-hydroxy[7-3H]cholecalciferol and its metabolites in chicks that were dosed continuously for 16 days with 1 alpha-hydroxy[7-3H]cholecalciferol did not exceed by very much that observed in tissues obtained from chicks that were dosed with a single injection of 1 alpha-hydroxy[7-3H]cholecalciferol 24 h before killing, except for liver and kidney. 4. Lowest accumulation of metabolites was noted in muscle and bone, and for the latter, highest uptake of 1 alpha,25-dihydroxy[7-3H]cholecalciferol was noted in the epiphysial periosteum and the metaphysis. 5. Formation of 1 alpha,24,25-trihydroxy[7-3H]cholecalciferol was not observed in the chicks that were dosed continuously with 1 alpha-hydroxy[7-3H]cholecalciferol, despite the fact that plasma calcium and phosphorus were normal and despite the presence of renal 24-hydroxylase activity. 6. The vitamin D status of the chicks did not appear to affect the metabolic profile of the administered 1 alpha-hydroxy[7-3H]cholecalciferol.  相似文献   

18.
19.
Seminal fluid represents a milieu enabling spermatozoa to break the ovum membrane and suppress its immune response and, at the same time, to protect male germ cells against infects. Among constituents of the seminal fluid various steroids, including dehydroepiandrosterone (DHEA) and its sulphate, were detected. With respect to immunomodulatory and antioxidative properties of the latter steroids and its 7-hydroxylated metabolites, believed to be at least in some instances the locally active species, their presence in seminal fluid is of particular interest. Here for the first time unconjugated 3β,7-dihydroxy-5-androsten-17-one (7-OH-DHEA) and its 7β-hydroxyisomer have been detected and quantified in semen. Eight semen samples were extracted with diethyl ether and following evaporation and solvent partition both isomers were detected by gas chromatography–mass fragmentometry using the ions m/z 358 and 343 for quantification. Another portion was separated by HPLC and in the fractions corresponding to 7-OH-DHEA isomers the steroids were measured by recently developed specific radioimmunoassays (RIA). Mean concentrations of 7-OH-DHEA as measured by RIA amounted 5.75±1.29 and 5.39±0.75 nmol/l (mean±SEM) for 7- and 7β-OH-DHEA, respectively.  相似文献   

20.
El Kihel L 《Steroids》2012,77(1-2):10-26
Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号