首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The DNA polymerase-encoding gene of Bacillus subtilis bacteriophage SPO1.   总被引:2,自引:0,他引:2  
V Scarlato  S Gargano 《Gene》1992,118(1):109-113
The bacteriophage SPO1 DNA polymerase-encoding gene, which contains a self-splicing intron, has been sequenced and its amino acid (aa) sequence has been deduced. The aa sequence of SPO1 DNA polymerase shows a high degree of similarity with that of DNA polymerase I from Escherichia coli (Po1I). Alignment with the sequences of Po1I, and the phi 29 and SPO1 DNA polymerases indicate that the aa residues that have been implicated in 3'----5' exonuclease activities are conserved.  相似文献   

3.
4.
Human DNA polymerase N (POLN or pol nu) is the most recently discovered nuclear DNA polymerase in the human genome. It is an A-family DNA polymerase related to Escherichia coli pol I, human POLQ, and Drosophila Mus308. We report the first purification of the recombinant enzyme and examination of its biochemical properties, as a step toward understanding the functions of POLN. Unusual for an A-family DNA polymerase, POLN is a low fidelity enzyme incorporating T opposite template G with a frequency of 0.45 and G opposite template T with a frequency of 0.021. The frequency of misincorporation of T opposite template G is higher than any other known DNA polymerase. POLN has a processivity of DNA synthesis (1-100 nucleotides) similar to the exonuclease-deficient Klenow fragment of E. coli pol I, is inhibited by dideoxynucleotides, and resistant to aphidicolin. The strand displacement activity of POLN was higher than exonuclease-deficient Klenow fragment. Furthermore, POLN can perform translesion synthesis past thymine glycol, a common endogenous and radiation-induced product of reactive oxygen species damage to DNA. Thymine glycol blocks DNA synthesis by most DNA polymerases, but POLN was particularly adept at efficient and accurate translesion synthesis past a 5S-thymine glycol.  相似文献   

5.
W Zhu  J Ito 《Nucleic acids research》1994,22(24):5177-5183
In order to establish the evolutionary relationship between the family A and B DNA polymerases, we have closely compared the 3'-->5' exonuclease domains between the Klenow fragment of E.coli DNA polymerase I (a family A DNA polymerase) and the bacteriophage PRD1 DNA polymerase, the smallest member of the DNA polymerase family B. Although the PRD1 DNA polymerase has a smaller 3'-->5' exonuclease domain, its active sites appear to be very similar to those of the Klenow fragment. Site-directed mutagenesis studies revealed that the residues important for the 3'-->5' exonuclease activity, particularly metal binding ligands for the Klenow fragment, are all conserved in the PRD1 DNA polymerase as well. The metal binding ligands are also essential for the strand-displacement activity of the PRD1 DNA polymerase. Based on these results and the studies by others in various systems, we conclude that family A and B DNA polymerases, at least in the 3'-->5' exonuclease domain, are structurally as well as evolutionarily related.  相似文献   

6.
The catalytic subunit (alpha) of mitochondrial DNA polymerase (pol gamma) shares conserved DNA polymerase and 3'-5' exonuclease active site motifs with Escherichia coli DNA polymerase I and bacteriophage T7 DNA polymerase. A major difference between the prokaryotic and mitochondrial proteins is the size and sequence of the region between the exonuclease and DNA polymerase domains, referred to as the spacer in pol gamma-alpha. Four gamma-specific conserved sequence elements are located within the spacer region of the catalytic subunit in eukaryotic species from yeast to humans. To elucidate the functional roles of the spacer region, we pursued deletion and site-directed mutagenesis of Drosophila pol gamma. Mutant proteins were expressed from baculovirus constructs in insect cells, purified to near homogeneity, and analyzed biochemically. We find that mutations in three of the four conserved sequence elements within the spacer alter enzyme activity, processivity, and/or DNA binding affinity. In addition, several mutations affect differentially DNA polymerase and exonuclease activity and/or functional interactions with mitochondrial single-stranded DNA-binding protein. Based on these results and crystallographic evidence showing that the template-primer binds in a cleft between the exonuclease and DNA polymerase domains in family A DNA polymerases, we propose that conserved sequences within the spacer of pol gamma may position the substrate with respect to the enzyme catalytic domains.  相似文献   

7.
T Uemori  Y Ishino  H Doi    I Kato 《Journal of bacteriology》1995,177(8):2164-2177
We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.  相似文献   

8.
Nucleotide incorporation opposite an oxidative form of adenine, 2-hydroxyadenine (2-OH-Ade) was investigated. When a primed template with 2-OH-Ade was treated with an exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I (KFexo-), recombinant rat DNA polymerase beta (pol beta) or calf thymus DNA polymerase alpha (pol alpha), incorporation of dTMP and dAMP was observed. In addition, KFexo- inserted dGMP as well. A steady-state kinetic study indicated that the insertion of dAMP and dTMP opposite the DNA lesion occurred with similar frequency with KFexo- and pol beta. Insertion of dTMP opposite 2-OH-Ade was favored to that of dAMP by pol alpha. Chain extension from the A.2-OH-Ade pair is less favored than that from the T.2-OH-Ade pair by all three DNA polymerase. Analysis of full-length products of in vitro DNA synthesis showed that dTMP and dAMP were incorporated by DNA polymerases and that exonuclease-proficient and -deficient Klenow fragments also inserted dGMP opposite 2-OH-Ade. These results suggest that formation of 2-OH-Ade from A in DNA will induce A-->T and A-->C transversions in cells.  相似文献   

9.
Mitochondrial DNA polymerase gamma (pol gamma) is active in base excision repair of AP (apurinic/apyrimidinic) sites in DNA. Usually AP site repair involves cleavage on the 5' side of the deoxyribose phosphate by AP endonuclease. Previous experiments suggested that DNA pol gamma acts to catalyze the removal of a 5'-deoxyribose phosphate (dRP) group in addition to playing the conventional role of a DNA polymerase. We confirm that DNA pol gamma is an active dRP lyase and show that other members of the family A of DNA polymerases including Escherichia coli DNA pol I also possess this activity. The dRP lyase reaction proceeds by formation of a covalent enzyme-DNA intermediate that is converted to an enzyme-dRP intermediate following elimination of the DNA. Both intermediates can be cross-linked with NaBH(4). For both DNA pol gamma and the Klenow fragment of pol I, the enzyme-dRP intermediate is extremely stable. This limits the overall catalytic rate of the dRP lyase, so that family A DNA polymerases, unlike pol beta, may only be able to act as dRP lyases in repair of AP sites when they occur at low frequency in DNA.  相似文献   

10.
The intervening domain of the thermostable Thermus aquaticus DNA polymerase (TAQ: polymerase), which has no catalytic activity, has been exchanged for the 3'-5' exonuclease domain of the homologous mesophile Escherichia coli DNA polymerase I (E.coli pol I) and the homologous thermostable Thermotoga neapolitana DNA polymerase (TNE: polymerase). Three chimeric DNA polymerases have been constructed using the three-dimensional (3D) structure of the Klenow fragment of the E.coli pol I and 3D models of the intervening and polymerase domains of the TAQ: polymerase and the TNE: polymerase: chimera TaqEc1 (exchange of residues 292-423 from TAQ: polymerase for residues 327-519 of E.coli pol I), chimera TaqTne1 (exchange of residues 292-423 of TAQ: polymerase for residues 295-485 of TNE: polymerase) and chimera TaqTne2 (exchange of residues 292-448 of TAQ: polymerase for residues 295-510 of TNE: polymerase). The chimera TaqEc1 showed characteristics from both parental polymerases at an intermediate temperature of 50 degrees C: high polymerase activity, processivity, 3'-5' exonuclease activity and proof-reading function. In comparison, the chimeras TaqTne1 and TaqTne2 showed no significant 3'-5' exonuclease activity and no proof-reading function. The chimera TaqTne1 showed an optimum temperature at 60 degrees C, decreased polymerase activity compared with the TAQ: polymerase and reduced processivity. The chimera TaqTne2 showed high polymerase activity at 72 degrees C, processivity and less reduced thermostability compared with the chimera TaqTne1.  相似文献   

11.
Kamiya H  Maki H  Kasai H 《Biochemistry》2000,39(31):9508-9513
The insertion specificities of an oxidized dATP analogue, 2-hydroxydeoxyadenosine 5'-triphosphate (2-OH-dATP), were determined using the alpha (catalytic) subunit of Escherichia coli DNA polymerase III and the exonuclease-deficient Klenow fragment of DNA polymerase I. In contrast to our previous observation that mammalian DNA polymerase alpha incorporated the oxidized nucleotide opposite T and C, these two E. coli DNA polymerases incorporated 2-OH-dATP opposite T and G on the DNA template. Steady-state kinetic studies indicated that the alpha subunit incorporated 2-OH-dATP 10 times more frequently opposite T than opposite G. On the other hand, the incorporation of 2-OH-dATP opposite T by the exonuclease-deficient Klenow fragment was 2 orders of magnitude more efficient than that opposite G. These results indicate that the misinsertion specificity of 2-OH-dATP differs between replicative and repair-type DNA polymerases, and provide a biochemical basis for the mutations induced by 2-OH-dATP in E. coli.  相似文献   

12.
A DNA duplex covalently cross-linked between specific bases has been prepared. This and similar duplexes are substrates for the polymerase and exonuclease activities of the Klenow fragment of Escherichia coli DNA polymerase I and T4 and T7 DNA polymerases. The action of Klenow fragment on these duplexes indicates that the polymerase site does not require that the DNA duplex undergo strand separation for activity, whereas the exonuclease site requires that at least four base pairs of the primer strand must melt out for the exonucleolytic removal of nucleotides from the primer terminus. The exonucleolytic action of T4 and T7 DNA polymerases requires that only two and three bases respectively melt out for excision of nucleotides from the primer terminus. Klenow fragment and T4 DNA polymerase are able to polymerize onto duplexes incapable of strand separation, whereas T7 DNA polymerase seems to require that the primer terminus be at least three bases from the cross-linked base pair. A DNA duplex with a biotin covalently linked to a specific base has been prepared. In the presence of the biotin binding protein avidin, the exonucleolytic activity of Klenow fragment requires that the primer terminus be at least 15 base pairs downstream from the base with the biotin-avidin complex. On the other hand, the polymerase activity of Klenow fragment required that the primer terminus be at least six base pairs downstream from the base with the biotin-avidin complex. These results suggest that the polymerase and exonuclease sites of Klenow are physically separate in solution and exhibit different substrate structural requirements for activity.  相似文献   

13.
In order to further understand how DNA polymerases discriminate against incorrect dNTPs, we synthesized two sets of dNTP analogues and tested them as substrates for DNA polymerase α (pol α) and Klenow fragment (exo) of DNA polymerase I (Escherichia coli). One set of analogues was designed to test the importance of the electronic nature of the base. The bases consisted of a benzimidazole ring with one or two exocyclic substituent(s) that are either electron-donating (methyl and methoxy) or electron-withdrawing (trifluoromethyl and dinitro). Both pol α and Klenow fragment exhibit a remarkable inability to discriminate against these analogues as compared to their ability to discriminate against incorrect natural dNTPs. Neither polymerase shows any distinct electronic or steric preferences for analogue incorporation. The other set of analogues, designed to examine the importance of hydrophobicity in dNTP incorporation, consists of a set of four regioisomers of trifluoromethyl benzimidazole. Whereas pol α and Klenow fragment exhibited minimal discrimination against the 5- and 6-regioisomers, they discriminated much more effectively against the 4- and 7-regioisomers. Since all four of these analogues will have similar hydrophobicity and stacking ability, these data indicate that hydrophobicity and stacking ability alone cannot account for the inability of pol α and Klenow fragment to discriminate against unnatural bases. After incorporation, however, both sets of analogues were not efficiently elongated. These results suggest that factors other than hydrophobicity, sterics and electronics govern the incorporation of dNTPs into DNA by pol α and Klenow fragment.  相似文献   

14.
15.
Graham SE  Syeda F  Cisneros GA 《Biochemistry》2012,51(12):2569-2578
Recent single-molecule F?rster resonance energy transfer studies of DNA polymerase I have led to the proposal of a postinsertion fidelity-checking site. This site is hypothesized to ensure proper base pairing of the newly inserted nucleotide. To help test this hypothesis, we have used energy decomposition, electrostatic free energy response, and noncovalent interaction analysis analyses to identify residues involved in this putative checking site. We have used structures of DNA polymerase I from two different organisms, the Klenow fragment from Escherichia coli and the Bacillus fragment from Bacillus stearothermophilus. Our results point to several residues that show altered interactions for three mispairs compared to the correctly paired DNA dimer. Furthermore, many of these residues are conserved among A family polymerases. The identified residues provide potential targets for mutagenesis studies for investigation of the fidelity-checking site hypothesis.  相似文献   

16.
Studies of sequence repeat expansions from duplexes consisting of DNA repeat sequences greater than three bases are currently lacking. These studies are needed in order to gain a better understanding of DNA expansions in general and as a first step in understanding expansions of longer sequence repeats that have been implicated in human diseases. We have undertaken an in vitro study of tetranucleotide, hexanucleotide, and octanucleotide repeat expansions from short DNA duplexes using Taq DNA polymerase. Expansions of hexanucleotide repeats were also studied with the Klenow fragment of DNA polymerase I and with T4 DNA polymerase. Studies with Taq DNA polymerase show that expansions occur more readily as the length of the repeat sequence decreases but are generally more efficient at reaction temperatures closer to the melting point of the starting duplex. A mechanism for the observed expansions with Taq DNA polymerase is proposed that does not invoke strand slippage or DNA structure. Studies at 37 degrees C with Klenow pol I and T4 DNA polymerase indicate that the template-switching and/or strand-displacement activities of the polymerases used can play a major role in the apparent in vitro expansions of short repetitive DNA duplexes.  相似文献   

17.
Arana ME  Potapova O  Kunkel TA  Joyce CM 《Biochemistry》2011,50(46):10126-10135
The fidelity of DNA synthesis by A-family DNA polymerases ranges from very accurate for bacterial, bacteriophage, and mitochondrial family members to very low for certain eukaryotic homologues. The latter include DNA polymerase ν (Pol ν) which, among all A-family polymerases, is uniquely prone to misincorporating dTTP opposite template G in a highly sequence-dependent manner. Here we present a kinetic analysis of this unusual error specificity, in four different sequence contexts and in comparison to Pol ν's more accurate A-family homologue, the Klenow fragment of Escherichia coli DNA polymerase I. The kinetic data strongly correlate with rates of stable misincorporation during gap-filling DNA synthesis. The lower fidelity of Pol ν compared to that of Klenow fragment can be attributed primarily to a much lower catalytic efficiency for correct dNTP incorporation, whereas both enzymes have similar kinetic parameters for G-dTTP misinsertion. The major contributor to sequence-dependent differences in Pol ν error rates is the reaction rate, k(pol). In the sequence context where fidelity is highest, k(pol) for correct G-dCTP incorporation by Pol ν is ~15-fold faster than k(pol) for G-dTTP misinsertion. However, in sequence contexts where the error rate is higher, k(pol) is the same for both correct and mismatched dNTPs, implying that the transition state does not provide additional discrimination against misinsertion. The results suggest that Pol ν may be fine-tuned to function when high enzyme activity is not a priority and may even be disadvantageous and that the relaxed active-site specificity toward the G-dTTP mispair may be associated with its cellular function(s).  相似文献   

18.
19.
20.
We used the known sequence of the Saccharomyces cerevisiae DNA polymerase gamma to clone the genes or cDNAs encoding this enzyme in two other yeasts, Pychia pastoris and Schizosaccharomyces pombe, and one higher eukaryote, Xenopus laevis. To confirm the identity of the final X.laevis clone, two antisera raised against peptide sequences were shown to react with DNA polymerase gamma purified from X.laevis oocyte mitochondria. A developmentally regulated 4.6 kb mRNA is recognized on Northern blots of oocyte RNA using the X.laevis cDNA. Comparison of the four DNA polymerase gamma gene sequences revealed several highly conserved sequence blocks, comprising an N-terminal 3'-->5'exonuclease domain and a C-terminal polymerase active center interspersed with gamma-specific gene sequences. The consensus sequences for the DNA polymerase gamma exonuclease and polymerase domains show extensive sequence similarity to DNA polymerase I from Escherichia coli. Sequence conservation is greatest for residues located near the active centers of the exo and pol domains of the E.coli DNA polymerase I structure. The domain separating the exonuclease and polymerase active sites is larger in DNA polymerase gamma than in other members of family A (DNA polymerase I-like) polymerases. The S.cerevisiae DNA polymerase gamma is atypical in that it includes a 240 residue C-terminal extension that is not found in the other members of the DNA polymerase gamma family, or in other family A DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号