首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mechanism of action of Micrococcus luteus gamma-endonuclease   总被引:5,自引:0,他引:5  
Micrococcus luteus extracts contain gamma-endonuclease, a Mg2+-independent endonuclease that cleaves gamma-irradiated DNA. This enzyme has been purified approximately 1000-fold, and the purified enzyme was used to study its substrate specificity and mechanism of action. gamma-Endonuclease cleaves DNA containing either thymine glycols, urea residues, or apurinic sites but not undamaged DNA or DNA containing reduced apurinic sites. The enzyme has both N-glycosylase activity that releases thymine glycol residues from OsO4-treated DNA and an associated apurinic endonuclease activity. The location and nature of the cleavage site produced has been determined with DNA sequencing techniques. gamma-Endonuclease cleaves DNA containing thymine glycols or apurinic sites immediately 3' to the damaged or missing base. Cleavage results in a 5'-phosphate terminus and a 3' baseless sugar residue. Cleavage sites can be converted to primers for DNA polymerase I by subsequent treatment with Escherichia coli exonuclease III. The mechanism of action of gamma-endonuclease and its substrate specificity are very similar to those identified for E. coli endonuclease III.  相似文献   

2.
Several protein fractions containing endonuclease activity against gemma-irradiated DNA (gamma-endonuclease) were isolated from M. luteus. The crude extract was eluted on a phosphocellulose column and chromatographed on TEAE cellulose and subsequently on hydroxyapatite. Five peaks of gamma-endonuclease were obtained from each preparation. Repeated experiments showed comparable chromatographic behavior of the fractions. There was no detectable activity of U.V.-endonuclease in the fractions with gamma-endonuclease but a small contamination of endonuclease against unirradiated DNA and against DNA with apurinic sites. The gamma-endonuclease is stimulated by, but is not dependent on, magnesium. Several tests for endonuclease activity have been used: the analysis of strand breaks in calf-thymus DNA or in PM2 DNA, and the determination of end-groups formed by endonuclease, either 3'OH end-groups or phosphomonoester end groups. From the results obtained it can be assumed that the strand breaks induced by the gamma-endonuclease carry 3'OH and 5' phosphate end groups.  相似文献   

3.
DNA intercalating agents have been found to produce protein-associated DNA strand breaks in mammalian cells. As a first step towards a subcellular system for the study of this reaction, we demonstrate that the reaction can take place in isolated cell nuclei. Ellipticine induces in these nuclei DNA strand breaks and stable DNA-protein complexes. Complexes and breaks are present in equivalent amounts. DNA breaks are revealed only if protein-mediated DNA adsorption to filters is abolished. These findings make it unlikely that similar effects observed in cells in culture after treatment with intercalating agents are caused by metabolically activated drugs.  相似文献   

4.
R D Snyder 《Mutation research》1984,131(3-4):163-172
The effects of hydroxyurea (HU) on the DNA-excision repair process in human cells has been systematically examined. It is demonstrated that HU induces DNA single-strand break accumulation in a dose-dependent fashion in ultraviolet-irradiated and MMS-treated confluent but not log-phase fibroblasts and that these breaks are clearly the consequence of the inhibition by HU of the enzyme, ribonucleotide reductase. The breaks form rapidly, are stable for at least 10 h and largely disappear by 20 h. The production of these DNA-strand breaks is antagonized by a combined treatment of 10 microM deoxyadenosine, deoxycytidine and deoxyguanosine whereas thymidine potentiates strand-break formation at low HU concentrations. It is also confirmed that HU, while inhibiting replicative synthesis has no apparent inhibitory effect on unscheduled DNA synthesis (UDS) although the increased uptake of labeled DNA precursors into HU-treated cells makes it difficult to assess the actual effects on the repair-synthetic process. Analysis of the effects of HU on deoxynucleoside triphosphate pool levels and the demonstration of the failure of the HU block to replicative synthesis to be reversed by high (1 mM) concentrations of added deoxynucleosides lend support to the notion of compartmentalized dNTP pools for repair and replication.  相似文献   

5.
Summary Treatment of growing cultures of Mycobacterium smegmatis with alkylating agents (methyl methaneusulphonate, ethyl methanesulphonate, nitrogen mustard, or mitomycin C) or with ultraviolet light resulted in enhanced specific activities of a DNA polymerase and of an ATP-dependent deoxyribonuclease. Similar results had previously been obtained with hydroxyurea and with iron limitation. The three of these treatments which were tested (methyl methane-sulphonate, mitomycin C and hydroxyurea) produced strand breaks or alkali-labile regions in the DNA of this organism. The increased enzyme activities could be prevented by simultaneous treatment with inhibitors of protein synthesis.In contrast, treatment of the cultures with intercalating agents (ethidium bromide, acridine orange, or proflavine), 5-fluorouracil, caffeine, or nalidixic acid, inhibited DNA synthesis without increasing the enzyme activities. These treatments did not produce strand breaks in the DNA of this organism.The results support the hypothesis that, in M. smegmatis, damage to DNA induces increased synthesis of enzymes associated with DNA repair.  相似文献   

6.
An endonuclease activity has been purified approximately 800-fold from nuclei of 3T3 cells infected with polyoma virus. The purfied enzyme catalyzes an endonucleoytic cleavage of single- and double-stranded DNA and single-stranded RNA. Evidence that the activity towards these substrates resides in the same protein molecule is provided by the finding that they co-sediment in sucrose gradients and have identical rates of heat inactivation. Studies on the DNase activity shows that the rate of hydrolysis of single-stranded T7 DNA is 100-fold greater than that for double-stranded T7 DNA. Single-stranded DNA is extensively hydrolyzed to low molecular weight acid-insoluble products. With duplex DNA as substrate, only a limited number of single strand breaks are introduced. A limit digest with polyoma DNA (component I) as substrate results in the introduction of four breaks per strand. The phosphdiester bond interruptions can be repaired by polynucleotide ligase. Approximately 80% of the 5' termini present at the point of phosphodiester bond cleavage are purine nucleotides. Additional studies have demonstrated that a similar endonuclease is present in nuclei of uninfected cells and that this enzyme purified 400-fold has catalytic properties identical with those of the endonuclease from infected cells.  相似文献   

7.
The role of poly(ADP-ribosyl)ation in the adaptive response   总被引:2,自引:0,他引:2  
An involvement of the poly(ADP-ribosyl)ation system in the expression of the adaptive response has been demonstrated with inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase. This enzyme is a key component of a reaction cycle in chromatin, involving dynamic synthesis and degradation of variably sized ADP-ribose polymers in response to DNA strand breaks. The present report reviews recent work focussing on the response of the poly(ADP-ribosyl)ation system in low dose adaptation. The results suggest that adaptation of human cells to minute concentrations of an alkylating agent involves a different activation mechanism for poly(ADP-ribose) polymerase than DNA break-mediated stimulation after high dose treatment. Moreover, adaptation induces the formation of branched polymers with a very high binding affinity for histone tails and selected other proteins. High dose challenge treatment of adapted cells further enhances formation of branched polymers. We propose that apart from sensing DNA nicks, poly(ADP-ribose) polymerase may be part of pathway protecting cells from downstream events of DNA damage.  相似文献   

8.
The bis-dioxopiperazine ICRF-193 has long time been considered as a pure topoisomerase II catalytic inhibitor able to exert its inhibitory effect on the enzyme without stabilization of the so-called cleavable complex formed by DNA covalently bound to topoisomerase II. In recent years, however, this concept has been challenged, as a number of reports have shown that ICRF-193 really "poisons" the enzyme, most likely through a different mechanism from that shown by the classical topoisomerase II poisons used in cancer chemotherapy. In the present investigation, we have carried out a study of the capacity of ICRF-193 to induce DNA strand breaks, as classical poisons do, in cultured V79 and irs-2 Chinese hamster lung fibroblasts using the comet assay and pulsed-field gel electrophoresis (PFGE). Our results clearly show that ICRF-193 readily induces breakage in DNA through a mechanism as yet poorly understood.  相似文献   

9.
Gamma endonuclease of Micrococcus luteus: action on irradiated DNA   总被引:1,自引:0,他引:1  
Gamma endonuclease is a Mg2+-independent enzyme of Micrococcus luteus that recognizes and cleaves DNA at a variety of altered pyrimidines produced by ionizing radiation. The production of enzyme-recognizable sites (ERS) by ionizing radiation under different irradiation conditions was measured. Ionizing radiation produced the greatest number of ERS when irradiations were performed under anoxic conditions in the presence of the free radical scavenger KI. Since dihydrothymine is a major pyrimidine lesion produced in DNA during anoxic irradiation, the ability of gamma endonuclease to excise this lesion was assessed. Dihydrothymine was released from DNA irradiated under anoxic conditions in a radiation dose-dependent manner, consistent with gamma endonuclease's known DNA glycosylase activity. Gamma endonuclease was also shown to cleave heavily uv-irradiated DNA. When the sequence specificity of gamma-endonuclease cleavage was studied using uv-irradiated DNA, cleavage was seen specifically at cytosines. The identity of this enzyme-recognizable cytosine photoproduct is not known.  相似文献   

10.
A variety of chemical agents that are known to induce erythrodifferentiation in the Friend virus-induced murine erythroleukemia (MEL) cell have been suggested to mediate DNA cleavage in cultured cells prior to differentiation. The activation of the nuclear enzyme, ADP-ribosyltransferase, depends upon the presence of single strand breaks in DNA. If dimethyl sulfoxide (Me2SO) causes DNA breakage, it would be expected that the activity of ADP-ribosyltransferase would increase. A study of ADP-ribosyltransferase activity during cell growth indicates that both Me2SO-treated and untreated MEL cells exhibit a similar increase in the enzyme activity but the increase in Me2SO-treated cells is delayed by a few hours. When examined at comparable stages of growth, both treated and untreated cells show almost identical levels of enzyme activity. The present data thus do not support the contention that Me2SO induces DNA breakage in the MEL cells.  相似文献   

11.
In contrast to the well-documented negative effects of high-dose oxidant exposure, accumulating evidence supports a positive, perhaps essential physiologic role for very low-level oxidant stress. For example, low-level oxidant exposure, within or below the physiologic range, has been reported to stimulate membrane signal transduction, proliferation, antioxidant defense and DNA repair. In the present study, we have examined whether whole-body exposure to low-dose radiation (LDR) results in an alteration in constitutive (steady state) levels of DNA-strand breaks and whether an adaptive increase in DNA-repair response is induced. C57B1/6J mice were exposed to 0.04 Gy (4 cGy) of gamma-radiation as a model of low level oxidant stress. End points measured after chronic in vivo LDR included: (1) constitutive expression of DNA-strand breaks in quiescent spleen cells; (2) sensitivity to DNA damage after high-dose radiation exposure in vitro; (3) repair of constitutive and radiation-induced DNA strand breaks after mitogen stimulation: (4) activity of the DNA-repair associated enzyme, poly(ADP-ribose)transferase (ADPRT) and its substrate, NAD. The results indicated that the constitutive expression of DNA-strand breaks is significantly decreased after chronic LDR; however, DNA-repair capacity after high-dose radiation exposure is not increased above that observed in sham-irradiated mice. Associated with the reduction in constitutive DNA-strand break accumulation was a decrease in resting levels of the DNA-repair-associated enzyme poly(ADP-ribose) transferase (ADPRT). These results are consistent with the interpretation that cumulative DNA damage and associated DNA-repair activity in unstimulated cells are both reduced after chronic LDR exposure.  相似文献   

12.
The resistance of human cell DNA to damaging doses of CdCl2 or gamma radiation has been investigated after pretreatment with garlic extract (GE) or with adaptive doses of the same mutagens. The adaptive response (AR) and pretreatment with GE stabilize the DNA structure in a similar way. In experiments with 4-nitroquinoline-1-oxide (4-NQO), GE does not stabilize DNA structure but increases the rate and volume of repair of induced breaks. 3-Aminobenzamide (3-AB) increases the number of DNA breaks induced in experiments with CdCl2, gamma radiation, and 4-NQO. This suggests that poly(ADP-ribose)polymerase participates defense of cells from mutagens. Thus, it has been demonstrated that cell defense from CdCl2 or gamma radiation in experiments with GE and AO is mediated by stabilization of DNA structure and in experiments with 4-NQO, by activation of repair of DNA breaks induced.  相似文献   

13.
The ATP-dependent exonuclease V from Micrococcus lysodekticus shows a Michaelian relation between steady-state velocity and the concentration of T7 DNA substrate. The Km (expressed as a mass concentration) does not change when the T7 DNA is broken into smaller fragments by a restriction enzyme. This is interpreted to mean that the predominant process by which the exonuclease-V--DNA complex breaks down is digestion of the entire DNA molecule rather than physical dissociation, in accord with the already known processive nature of degradation by this enzyme. The way that the V and Km towards DNA vary with ATP and ADP concentration suggests that enzyme-DNA complex is predominantly formed by reaction of DNA with an enzyme-ATP complex rather than with bare enzyme.  相似文献   

14.
The interaction between highly purified poly(ADP-ribose) polymerase from calf thymus and different topological forms of pBR322 DNA has been studied by gel retardation electrophoresis and electron microscopy. We show that: (i) in the absence of nicks on DNA the enzyme has a marked affinity for supercoiled (form I) DNA, (ii) in the presence of single stranded breaks poly(ADP-ribose) polymerase preferentially binds to form II, (iii) in all cases enzyme molecules are frequently located at DNA intersections, (iv) a cooperative binding of the enzyme on DNA occurs.  相似文献   

15.
The action of T4 endonuclease V on DNA containing various photoproducts was investigated. (1) The enzyme introduced strand breaks in DNA from ultraviolet-irradiated vegetative cells of Bacillus subtilis but not in DNA from irradiated spores of the same organism. DNA irradiated with long wavelength (360 nm peak) ultraviolet light in the presence of 4,5',8-trimethylpsoralen was not attacked by the enzyme. These results indicate that 5-thyminyl 5,6-dihydrothymine (spore photoproduct) and psoralen mediated cross-links in DNA are not recognized by T4 endonuclease V. (2) DNA of phage PBS1, containing uracil in place of thymine, and DNA of phage SPO1, containing hydroxymethyluracil in place of thymine, were fragmented by the enzyme when the DNA's had been irradiated with ultraviolet light. T4 endonuclease V seems to act on DNA with pyrimidine dimers whether the dimers contain thymine residues or not.  相似文献   

16.
Camptothecin is a specific topoisomerase I poison and is highly cytotoxic to eukaryotic cells. In the present study, we show, using a pulse field gel electrophoresis assay, that camptothecin induces DNA double strand breaks (DSBs) specifically in newly replicated DNA. Camptothecin induces these replication associated DNA DSBs in a dose-dependent manner. At levels of the drug which are toxic to the cell, these breaks are long-lived, and still measurable 24 hr after treatment. Both camptothecin induced DSBs and cytotoxicity are prevented by co-exposure with aphidicolin--a result which indicates that ongoing DNA synthesis is required for the production of DNA DSBs and cell killing. It has been proposed that camptothecin toxicity involves an interaction between the replication machinery and a drug-mediated topoisomerase I-DNA cleavable complex. The present work indicates, for the first time in mammalian cellular DNA, that one possible outcome of this interaction is a replication-associated DSB, a lesion which is likely to be highly cytotoxic.  相似文献   

17.
Certain chemicals that are either weak or non-carcinogens had been previously shown to induce DNA single-strand breaks in rat hepatocytes, but only at cytotoxic doses. In contrast, stronger carcinogens induced DNA single-strand breaks at non-toxic doses. This report shows that the strong carcinogens and mutagens cadmium sulfate, sodium dichromate, dimethyl sulfate, and N-methyl-N'-nitro-N-nitrosoguanidine all induce DNA single-strand breaks at non-toxic concentrations, but that they also induce DNA double-strand breaks at concentrations that are closely correlated with cytotoxicity. Some weak carcinogens produced DNA single- and double-strand breaks, but only at acutely cytotoxic concentrations. We suggest that the DNA double-strand breaks result from a cell-mediated process such as release of DNAase from lysosomes or other cellular compartments, that might occur during cellular response to acutely toxic damage. Experiments with N-dodecyl imidazole (NDI), a lysosomal detergent, show that lysosomal breakdown alone is only a weak inducer of DSBs, but that lysosomal breakdown in combination with prior chemical damage produced by MNNG synergistically induces DNA DSBs in BHK cells. N-Dodecyl imidazole also induces chromosomal aberrations in CHO cells at concentrations which cause cytotoxicity, cell cycle delay, and lysosomal breakdown. These results all suggest that chemical toxicity leads to limited lysosomal breakdown that induces DNA DSBs and chromosomal aberrations. Cells that have been sublethally damaged and that can repair these damages and survive could become transformed by the DNA-damaging mechanisms associated with carcinogenesis.  相似文献   

18.
DNA ligase IV is the most recently identified member of a family of enzymes joining DNA strand breaks in mammalian cell nuclei [1] and [2]. The enzyme occurs in a complex with the XRCC4 gene product [3], an interaction mediated via its unique carboxyl terminus [4] and [5]. Cells lacking XRCC4 are hypersensitive to ionising radiation and defective in V(D)J recombination [3] and [6], implicating DNA ligase IV in the pathway of nonhomologous end-joining (NHEJ) of DNA double-strand breaks mediated by XRCC4, the Ku70/80 heterodimer and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in mammalian cells (reviewed in [7]). The phenotype of a null mutant of the Saccharomyces cerevisiae DNA ligase IV homologue indicates that the enzyme is non-essential and functions in yeast NHEJ [8], [9] and [10]. Unlike other mammalian DNA ligases for which cDNAs have been characterised, DNA ligase IV is encoded by an intronless gene (LIG4). Here, we show that targeted disruption of LIG4 in the mouse leads to lethality associated with extensive apoptotic cell death in the embryonic central nervous system. Thus, unlike Ku70/80 and DNA-PKcs [11], [12], [13] and [14], DNA ligase IV has an essential function in early mammalian development.  相似文献   

19.
Clerocidin (CL), a diterpenoid natural product, alkylates DNA through its epoxide moiety and exhibits both anticancer and antibacterial activities. We have examined CL action in the presence of topoisomerase IV from Streptococcus pneumoniae. CL promoted irreversible enzyme-mediated DNA cleavage leading to single- and double-stranded DNA breaks at specific sites. Reaction required the diterpenoid function: no cleavage was seen using a naphthalene-substituted analogue. Moreover, drug-induced DNA breakage was not observed using a mutant topoisomerase IV (ParC Y118F) unable to form a cleavage complex with DNA. Sequence analysis of 102 single-stranded DNA breaks and 79 double-stranded breaks revealed an overwhelming preference for G at the −1 position, i.e. immediately 5′ of the enzyme DNA scission site. This specificity contrasts with that of topoisomerase IV cleavage with antibacterial quinolones. Indeed, CL stimulated DNA breakage by a quinolone-resistant topoisomerase IV (ParC S79F). Overall, the results indicate that topoisomerase IV facilitates selective irreversible CL attack at guanine and that its cleavage complex differs markedly from that of mammalian topoisomerase II which promotes both irreversible and reversible CL attack at guanine and cytosine, respectively. The unique ability to form exclusively irreversible DNA breaks suggests topoisomerase IV may be a key intracellular target of CL in bacteria.  相似文献   

20.
The cytotoxic and mutagenic effects of topoisomerase II inhibitors were measured in closely related strains of mouse lymphoma L5178Y cells differing in their sensitivity to ionizing radiation. Strain LY-S is sensitive to ionizing radiation relative to strain LY-R and is deficient in the rejoining of DNA double-strand breaks induced by this agent, whereas 2 radiation-resistant variants of strain LY-S have regained the ability to rejoin these double-strand breaks. We have found that the sensitivity of these cells to m-AMSA, VP-16, and ellipticine is correlated to their sensitivity to ionizing radiation. However, this correlation did not extend to their sensitivities to novobiocin, camptothecin, hydrogen peroxide, methyl nitrosourea and UV radiation. Thus, there appears to be a unique correlation between sensitivity to ionizing radiation and to topoisomerase II inhibitors which stabilize the cleavable complex between the enzyme and DNA. It is possible either that (1) topoisomerase II is altered in strain LY-S and that this enzyme is involved in the repair of DNA double-strand breaks or (2) strain LY-S is deficient in a reaction which is necessary for the repair of DNA double-strand breaks induced by ionizing radiation as well as the repair of DNA damage induced by these topoisomerase II inhibitors. m-AMSA, VP-16, and ellipticine were found to be highly mutagenic at the tk locus in L5178Y strains which are heterozygous for the tk gene but not in a tk hemizygous strain, indicating that these inhibitors induce multilocus lesions in DNA, as does ionizing radiation. The differences in the sensitivity of strains LY-R and LY-S to the topoisomerase II inhibitors were paralleled by differences in the induction of protein-associated DNA double-strand breaks in the 2 strains. This correlation did not extend to the radiation-resistant variants of strain LY-S, however. The variants showed resistance to the cytotoxic effects of the inhibitors relative to strain LY-S, but exhibited DNA double-strand break induction similar to that observed in strain LY-S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号