首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.  相似文献   

2.
Chaperonins are large oligomers consisting of two superimposed rings, each enclosing a cavity used for the folding of other proteins. They have been divided into two groups. Chaperonins of type I were identified in mitochondria and chloroplasts (Hsp60) or bacterial cytosol (GroEL) as well. Chaperonins type II were found in Archea and the eukaryotic cell cytosol (CCT). Protein folding occurs in the chaperonin after its conformational changes induced upon ATP binding. Mechanism of the protein folding, although still poorly defined, clearly differs from the one established for GroEL. Although CCT with prefoldin seems to be mainly involved in the folding of actin and tubulin, other substrates engaged in various cellular processes are beginning to be characterized, including proteins possessing WD40-repeats. Moreover, several lines of evidence suggest that beside prefoldin, CCT may work in concert with phosducin-like proteins (PhLPs).  相似文献   

3.
Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (ap) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and β-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues.  相似文献   

4.
Paramagnetic relaxation enhancement (PRE) is a powerful technique for studying transient tertiary organizations of unfolded and partially folded proteins. The heterogeneous and dynamic nature of disordered protein states, together with the r−6 dependence of PRE, presents significant challenges for reliable structural interpretation of PRE-derived distances. Without additional knowledge of accessible conformational substates, ensemble-simulation-based protocols have been used to calculate structure ensembles that appear to be consistent with the PRE distance restraints imposed on the ensemble level with the proper r−6 weighting. However, rigorous assessment of the reliability of such protocols has been difficult without intimate knowledge of the true nature of disordered protein states. Here we utilize sets of theoretical PRE distances derived from simulated structure ensembles that represent the folded, partially folded and unfolded states of a small protein to investigate the efficacy of ensemble-simulation-based structural interpretation of PRE distances. The results confirm a critical limitation that, due to r−6 weighting, only one or a few members need to satisfy the distance restraints and the rest of the ensemble are essentially unrestrained. Consequently, calculated structure ensembles will appear artificially heterogeneous no matter whether the PRE distances are derived from the folded, partially unfolded or unfolded state. Furthermore, the nature of the heterogeneous ensembles is largely determined by the protein model employed in structure calculation and reflects little on the true nature of the underlying disordered state. These findings suggest that PRE measurements on disordered protein states alone generally do not contain enough information for a reliable structural interpretation and that the latter will require additional knowledge of accessible conformational substates. Interestingly, when a very large number of PRE measurements is available, faithful structural interpretation might be possible with intermediate ensemble sizes under ideal conditions.  相似文献   

5.
The eukaryotic cytoplasmic chaperonin containing TCP-1 (CCT) is a hetero-oligomeric complex that assists the folding of actins, tubulins and other proteins in an ATP-dependent manner. To understand the allosteric transitions that occur during the functional cycle of CCT, we imaged the chaperonin complex in the presence of different ATP concentrations. Labeling by monoclonal antibodies that bind specifically to the CCTalpha and CCTdelta subunits enabled alignment of all the CCT subunits of a given type in different particles. The analysis shows that the apo state of CCT has considerable apparent conformational heterogeneity that decreases with increasing ATP concentration. In contrast with the concerted allosteric switch of GroEL, ATP-induced conformational changes in CCT are found to spread around the ring in a sequential fashion that may facilitate domain-by-domain substrate folding. The approach described here can be used to unravel the allosteric mechanisms of other ring-shaped molecular machines.  相似文献   

6.
The oxidative folding of proteins consists of conformational folding and disulfide-bond reactions. These two processes are coupled significantly in folding-coupled regeneration steps, in which a single chemical reaction (the "forward" reaction) converts a conformationally unstable precursor species into a conformationally stable, disulfide-protected successor species. Two limiting-case mechanisms for folding-coupled regeneration steps are described. In the folded-precursor mechanism, the precursor species is preferentially folded at the moment of the forward reaction. The (transient) native structure increases the effective concentrations of the reactive thiol and disulfide groups, thus favoring the forward reaction. By contrast, in the quasi-stochastic mechanism, the forward reaction occurs quasi-stochastically in an unfolded precursor; i.e., reactive groups encounter each other with a probability determined primarily by loop entropy, albeit modified by conformational biases in the unfolded state. The resulting successor species is initially unfolded, and its folding competes with backward chemical reactions to the unfolded precursors. The folded-precursor and quasi-stochastic mechanisms may be distinguished experimentally by the dependence of their kinetics on factors affecting the rates of thiol--disulfide exchange and conformational (un)folding. Experimental data and structural and biochemical arguments suggest that the quasi-stochastic mechanism is more plausible than the folded-precursor mechanism for most proteins.  相似文献   

7.
Recent reports give strong support to the idea that amyloid fibril formation and the subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. In this review, recent findings are surveyed to illustrate that protein fibrillogenesis requires a partially folded conformation. This amyloidogenic conformation is relatively unfolded, and shares many structural properties with the pre-molten globule state, a partially folded intermediate frequently observed in the early stages of protein folding and under some equilibrium conditions. The inherent flexibility of such an intermediate is essential in allowing the conformational rearrangements necessary to form the core cross-beta structure of the amyloid fibril.  相似文献   

8.
As the number of high-resolution structures of membrane proteins continues to rise, so has the necessity for techniques to link this structural information to protein function. In the case of transporters, function is achieved via coupling of conformational changes to substrate binding and release. Static structural data alone cannot convey information on these protein movements, but it can provide a high-resolution foundation on which to interpret lower resolution data obtained by complementary approaches. Here, we review selected biochemical and spectroscopic methods for assessing transporter conformational change. In addition to more traditional techniques, we present 1?F-NMR as an attractive method for characterizing conformational change in transporters of known structure. Using biosynthetic labeling, multiple, non-perturbing fluorine-labeled amino acids can be incorporated throughout a protein to serve as reporters of conformational change. Such flexibility in labeling allows characterization of movement in protein regions that may not be accessible via other methods.  相似文献   

9.
The recent revolution in computational protein structure prediction provides folding models for entire proteomes, which can now be integrated with large-scale experimental data. Mass spectrometry (MS)-based proteomics has identified and quantified tens of thousands of posttranslational modifications (PTMs), most of them of uncertain functional relevance. In this study, we determine the structural context of these PTMs and investigate how this information can be leveraged to pinpoint potential regulatory sites. Our analysis uncovers global patterns of PTM occurrence across folded and intrinsically disordered regions. We found that this information can help to distinguish regulatory PTMs from those marking improperly folded proteins. Interestingly, the human proteome contains thousands of proteins that have large folded domains linked by short, disordered regions that are strongly enriched in regulatory phosphosites. These include well-known kinase activation loops that induce protein conformational changes upon phosphorylation. This regulatory mechanism appears to be widespread in kinases but also occurs in other protein families such as solute carriers. It is not limited to phosphorylation but includes ubiquitination and acetylation sites as well. Furthermore, we performed three-dimensional proximity analysis, which revealed examples of spatial coregulation of different PTM types and potential PTM crosstalk. To enable the community to build upon these first analyses, we provide tools for 3D visualization of proteomics data and PTMs as well as python libraries for data accession and processing.

A combination of the comprehensive structural predictions of AlphaFold2 and large-scale proteomics data on post-translational modifications (PTMs) reveals novel insights into the functional importance of PTMs, based on their structural context.  相似文献   

10.
Fitter J 《Biophysical journal》2003,84(6):3924-3930
Thermal unfolding of proteins at high temperatures is caused by a strong increase of the entropy change which lowers Gibbs free energy change of the unfolding transition (DeltaG(unf) = DeltaH - TDeltaS). The main contributions to entropy are the conformational entropy of the polypeptide chain itself and ordering of water molecules around hydrophobic side chains of the protein. To elucidate the role of conformational entropy upon thermal unfolding in more detail, conformational dynamics in the time regime of picoseconds was investigated with neutron spectroscopy. Confined internal structural fluctuations were analyzed for alpha-amylase in the folded and the unfolded state as a function of temperature. A strong difference in structural fluctuations between the folded and the unfolded state was observed at 30 degrees C, which increased even more with rising temperatures. A simple analytical model was used to quantify the differences of the conformational space explored by the observed protein dynamics for the folded and unfolded state. Conformational entropy changes, calculated on the basis of the applied model, show a significant increase upon heating. In contrast to indirect estimates, which proposed a temperature independent conformational entropy change, the measurements presented here, demonstrated that the conformational entropy change increases with rising temperature and therefore contributes to thermal unfolding.  相似文献   

11.
"Host-guest" studies of the B1 domain from Streptococcal protein G have been used previously to establish a thermodynamic scale for the beta-sheet-forming propensities of the 20 common amino acids. To investigate the contribution of side chain conformational entropy to the relative stabilities of B1 domain mutants, we have determined the dynamics of side chain methyl groups in 10 of the 20 mutants used in a previous study. Deuterium relaxation rates were measured using two-dimensional NMR techniques for 13CH2D groups. Analysis of the relaxation data using the Lipari-Szabo model-free formalism showed that mutations introduced at the guest position caused small but statistically significant changes in the methyl group dynamics. In addition, there was a low level of covariation of the Lipari-Szabo order parameters among the 10 mutants. The variations in conformational free energy estimated from the order parameters were comparable in magnitude to the variations in global stability of the 10 mutants but did not correlate with the global stability of the domain or with the structural properties of the guest amino acids. The data support the view that conformational entropy in the folded state is one of many factors that can influence the folding thermodynamics of proteins.  相似文献   

12.
13.
SH Lee  EJ Cha  JE Lim  SH Kwon  DH Kim  H Cho  KH Han 《Molecules and cells》2012,34(2):165-169
The hepatitis B virus x protein (HBX) is expressed in HBVinfected liver cells and can interact with a wide range of cellular proteins. In order to understand such promiscuous behavior of HBX we expressed a truncated mini-HBX protein (named Tr-HBX) (residues 18-142) with 5 Cys → Ser mutations and characterized its structural features using circular dichroism (CD) spectropolarimetry, NMR spectroscopy as well as bioinformatics tools for predicting disorder in intrinsically unstructured proteins (IUPs). The secondary structural content of Tr-HBX from CD data suggests that Tr-HBX is only partially folded. The protein disorder prediction by IUPred reveals that the unstructured region encompasses its N-terminal ~30 residues of Tr-HBX. A two-dimensional (1)H-(15)N HSQC NMR spectrum exhibits fewer number of resonances than expected, suggesting that Tr-HBX is a hybrid type IUP where its folded C-terminal half coexists with a disordered N-terminal region. Many IUPs are known to be capable of having promiscuous interactions with a multitude of target proteins. Therefore the intrinsically disordered nature of Tr-HBX revealed in this study provides a partial structural basis for the promiscuous structure-function behavior of HBX.  相似文献   

14.
Ferreon AC  Deniz AA 《Biochemistry》2007,46(15):4499-4509
Alpha-synuclein aggregation has been tightly linked with the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Despite the protein's putative function in presynaptic vesicle regulation, the roles of lipid binding in modulating alpha-synuclein conformations and the aggregation process remain to be fully understood. This study focuses on a detailed thermodynamic characterization of monomeric alpha-synuclein folding in the presence of SDS, a well-studied lipid mimetic. Far-UV CD spectroscopy was employed for detection of conformational transitions induced by SDS, temperature, and pH. The data we present here clearly demonstrate the multistate nature of alpha-synuclein folding, which involves two predominantly alpha-helical partially folded thermodynamic intermediates that we designate as F (most folded) and I (intermediately folded) states. Likely structures of these alpha-synuclein conformational states are also discussed. These partially folded forms can exist in the presence of either monomeric or micellar forms of SDS, which suggests that alpha-synuclein has an intrinsic propensity for adopting multiple alpha-helical structures even in the absence of micelle or membrane binding, a feature that may have implications for its biological activity and toxicity. Additionally, we discuss the relation between alpha-synuclein three-state folding and its aggregation, within the context of isothermal titration calorimetry and transmission electron microscopy measurements of SDS-initiated oligomer formation.  相似文献   

15.
As the number of high-resolution structures of membrane proteins continues to rise, so has the necessity for techniques to link this structural information to protein function. In the case of transporters, function is achieved via coupling of conformational changes to substrate binding and release. Static structural data alone cannot convey information on these protein movements, but it can provide a high-resolution foundation on which to interpret lower resolution data obtained by complementary approaches. Here, we review selected biochemical and spectroscopic methods for assessing transporter conformational change. In addition to more traditional techniques, we present 19F-NMR as an attractive method for characterizing conformational change in transporters of known structure. Using biosynthetic labeling, multiple, non-perturbing fluorine-labeled amino acids can be incorporated throughout a protein to serve as reporters of conformational change. Such flexibility in labeling allows characterization of movement in protein regions that may not be accessible via other methods.  相似文献   

16.
The plenty of data about structural changes in the ribosome during its functioning has been accumulated. The most interesting information on such changes was obtained by cryo-EM of various ribosomal complexes with the ligands and by combination of rRNA site-directed mutagenesis with the analysis of structural changes in ribosome by chemical modification technique (chemical probing). The most studied structural transformations of the ribosome interacting with tRNAs and elongation factors are considered in this review. The structural rearrangements are discussed in the context of interactions between the functional centers of the ribosome. We also describe the system of tertiary contacts between the rRNA helices and proteins which forms the universal structure in the ribosome. We pay attention that by means of such system the allosteric conformational signal can be transmitted between the functional centers. Besides the discussion of different biochemical data in the scope of structural data we also consider the hypothesis that the position of GTPase associated center (GAC) in the ribosome regulates the binding of elongation factors.  相似文献   

17.
Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by beta-2-microglobulin (beta2m) in dialysis-related amyloidosis. Access of beta2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a beta2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamic and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type beta2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.  相似文献   

18.
Capturing conformational changes in proteins or protein-protein complexes is a challenge for both experimentalists and computational biologists. Solution nuclear magnetic resonance (NMR) is unique in that it permits structural studies of proteins under greatly varying conditions, and thus allows us to monitor induced structural changes. Paramagnetic effects are increasingly used to study protein structures as they give ready access to rich structural information of orientation and long-range distance restraints from the NMR signals of backbone amides, and reliable methods have become available to tag proteins with paramagnetic metal ions site-specifically and at multiple sites. In this study, we show how sparse pseudocontact shift (PCS) data can be used to computationally model conformational states in a protein system, by first identifying core structural elements that are not affected by the environmental change, and then computationally completing the remaining structure based on experimental restraints from PCS. The approach is demonstrated on a 27 kDa two-domain NS2B-NS3 protease system of the dengue virus serotype 2, for which distinct closed and open conformational states have been observed in crystal structures. By changing the input PCS data, the observed conformational states in the dengue virus protease are reproduced without modifying the computational procedure. This data driven Rosetta protocol enables identification of conformational states of a protein system, which are otherwise difficult to obtain either experimentally or computationally.  相似文献   

19.
20.
Recent data on structural and biochemical features of human 8-oxoguanine DNA glycosylase (hOGG1) has enabled detailed evaluation of the mechanism by which the damaged DNA bases are recognized and eliminated from the chain. Pre-steady-state kinetic studies with recording of conformational transitions of the enzyme and DNA substrate significantly contribute to understanding of this mechanism. In this review we particularly focus on the interrelationship between the conformational changes of interacting molecules and kinetics of their interaction and on the nature of each elementary step during the enzymatic process. Exhaustive analysis of these data and detailed mechanism of hOGG1-catalyzed reaction are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号