首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several mycobacterial strains, such as Mycobacterium flavescens, Mycobacterium gastri, Mycobacterium neoaurum, Mycobacterium parafortuitum, Mycobacterium peregrinum, Mycobacterium phlei, Mycobacterium smegmatis, Mycobacterium tuberculosis, and Mycobacterium vaccae, were found to grow on carbon monoxide (CO) as the sole source of carbon and energy. These bacteria, except for M. tuberculosis, also utilized methanol as the sole carbon and energy source. A CO dehydrogenase (CO-DH) assay, staining by activity of CO-DH, and Western blot analysis using an antibody raised against CO-DH of Mycobacterium sp. strain JC1 (formerly Acinetobacter sp. strain JC1 [J. W. Cho, H. S. Yim, and Y. M. Kim, Kor. J. Microbiol. 23:1-8, 1985]) revealed that CO-DH is present in extracts of the bacteria prepared from cells grown on CO. Ribulose bisphosphate carboxylase/oxygenase (RubisCO) activity was also detected in extracts prepared from all cells, except M. tuberculosis, grown on CO. The mycobacteria grown on methanol, except for M. gastri, which showed hexulose phosphate synthase activity, did not exhibit activities of classic methanol dehydrogenase, hydroxypyruvate reductase, or hexulose phosphate synthase but exhibited N,N-dimethyl-4-nitrosoaniline-dependent methanol dehydrogenase and RuBisCO activities. Cells grown on methanol were also found to have dihydroxyacetone synthase. Double immunodiffusion revealed that the antigenic sites of CO-DHs, RuBisCOs, and dihydroxyacetone synthases in all mycobacteria tested are identical with those of the Mycobacterium sp. strain JC1 enzymes.  相似文献   

2.
K S Kim  Y T Ro    Y M Kim 《Journal of bacteriology》1989,171(2):958-964
A brown carbon monoxide dehydrogenase from CO-autotrophically grown cells of Acinetobacter sp. strain JC1, which is unstable outside the cells, was purified 80-fold in seven steps to better than 95% homogeneity, with a yield of 44% in the presence of the stabilizing agents iodoacetamide (1 mM) and ammonium sulfate (100 mM). The final specific activity was 474 mumol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, NAD(P), flavin mononucleotide, flavin adenine dinucleotide, and ferricyanide were not reduced by the enzyme, but methylene blue, thionin, and dichlorophenolindophenol were reduced. The molecular weight of the native enzyme was determined to be 380,000. Sodium dodecyl sulfate-gel electrophoresis revealed at least three nonidentical subunits of molecular weights 16,000 (alpha), 34,000 (beta), and 85,000 (gamma). The purified enzyme contained particulate hydrogenase-like activity. Selenium did not stimulate carbon monoxide dehydrogenase activity. The isoelectic point of the native enzyme was found to be 5.8; the Km of CO was 150 microM. The enzyme was rapidly inactivated by methanol. One mole of native enzyme was found to contain 2 mol of each of flavin adenine dinucleotide and molybdenum and 8 mol each of nonheme iron and labile sulfide, which indicated that the enzyme was a molybdenum-containing iron-sulfur flavoprotein. The ratio of densities of each subunit after electrophoresis (alpha:beta:gamma = 1:2:6) and the number of each cofactor in the native enzyme suggest a alpha 2 beta 2 gamma 2 structure of the enzyme. The carbon monoxide dehydrogenase of Acinetobacter sp. strain JC1 was found to have no immunological relationship with enzymes of Pseudomonas carboxydohydrogena and Pseudomonas carboxydovorans.  相似文献   

3.
Abstract Isolation of plasmid DNA followed by plasmid curing was carried out to examine the relationship of plasmid to carbon monoxide dehydrogenase (CO-DH) production in carboxydobacteria. A small plasmid of almost identical size (1.52−1.76 × 106) was present in Pseudomonas carboxydovorans, Azotobacter sp.1, and Azomonas sp.2. Azomonas sp.1 contained two kinds of plasmids (1.5 × 106 and 2.47 × 106). No plasmids were found in Pseudomonas carboxydohydrogena , JC1, and HY1. A plasmid-cured clone of P. carboxydovorans was obtained by growing the cells at 37°C. The cured cell was able to grow CO autotrophically on solid, but not in liquid, medium. CO-DH of the cured cell was active and consisted of three subunits similar to those found in the wild-type enzyme, with the exception that the β subunit of the enzyme was larger than that of the wild-type enzyme. These results suggest that the small plasmids do not carry genes encoding CO-DH but may have gene(s) for processing the β subunit of the enzyme.  相似文献   

4.
Y S Do  E Kim    Y M Kim 《Journal of bacteriology》1990,172(3):1267-1270
Extracts of heterotrophically grown cells of Pseudomonas carboxydovorans were found to contain an inhibitor of carbon monoxide dehydrogenase (CO-DH). The inhibitor activity was not detected in CO-autotrophically grown cells. The inhibitor was extremely stable to heat treatment based on the extent of inhibition of CO-DH activity. The extent of inhibition was proportional to the amount of cell extract added to the reaction mixture. The inhibition was independent of a prior incubation period of the extracts with CO-DH. The inhibitor was precipitable with ammonium sulfate, phenol, and trichloroacetic acid. It was passed through benzoylated dialysis tubing and Amicon ultrafiltration membrane YM2. Denaturing and nondenturing polyacrylamide gel electrophoresis of CO-DH inactivated by inhibitor revealed that the mobilities of native enzyme and subunits were identical to those of active CO-DH. The inhibitor-treated CO-DH retained its original antigenic sites and exhibited enzyme activity upon activity staining. The CO-DH inhibitor of P. carboxydovorans was also active on CO-DHs from Pseudomonas carboxydohydrogena, Acinetobacter sp. strain JC1, and Pseudomonas carboxydoflava.  相似文献   

5.
CO dehydrogenase (CO-DH) catalyzes the oxidation of CO to CO(2) in carboxydobacteria. Cell-free extracts prepared from several mycobacteria, including Mycobacterium tuberculosis H37Ra, showed NO dehydrogenase (NO-DH) activity in a reaction mixture containing sodium nitroprusside (SNP) as the source of NO. The association of the NO-DH activity with CO-DH was revealed by activity staining and confirmed by enzyme assay with purified CO-DH from Mycobacterium sp. strain JC1, a carboxydotrophic mycobacterium. SNP stimulated the production of CO-DH with a coincidental increase in NO-DH activity in the bacterium, further supporting this association and implying the existence of a possible SNP-induced CO-DH gene expression. The addition of purified CO-DH to cultures of Escherichia coli revealed that the enzyme protected E. coli from SNP-induced killing in a dose-dependant way. The present results indicate that mycobacterial CO-DH also acts as a NO-DH, which may function in the protection of mycobacterial pathogens from nitrosative stress during infection.  相似文献   

6.
Inhibition of trichloroethylene (TCE) oxidation by the transformation intermediate carbon monoxide (CO) was evaluated with the aquifer methanotroph Methylomonas sp. strain MM2. CO was a TCE transformation intermediate. During TCE oxidation, approximately 9 mol% of the TCE was transformed to CO. CO was oxidized by Methylomonas sp. strain MM2, and when formate was provided as an electron donor, the CO oxidation rate doubled. The rate of CO oxidation without formate was 4.6 liter mg (dry weight)-1 day-1, and the rate with formate was 10.2 liter mg (dry weight)-1 day-1. CO inhibited TCE oxidation, both by exerting a demand for reductant and through competitive inhibition. The Ki for CO inhibition of TCE oxidation, 4.2 microM, was much less than the Ki for methane inhibition of TCE oxidation, 116 microM. CO also inhibited methane oxidation, and the degree of inhibition increased with increasing CO concentration. When CO was present, formate amendment was necessary for methane oxidation to occur and both substrates were simultaneously oxidized. CO at a concentration greater than that used in the inhibition studies was not toxic to Methylomonas sp. strain MM2.  相似文献   

7.
Inhibition of trichloroethylene (TCE) oxidation by the transformation intermediate carbon monoxide (CO) was evaluated with the aquifer methanotroph Methylomonas sp. strain MM2. CO was a TCE transformation intermediate. During TCE oxidation, approximately 9 mol% of the TCE was transformed to CO. CO was oxidized by Methylomonas sp. strain MM2, and when formate was provided as an electron donor, the CO oxidation rate doubled. The rate of CO oxidation without formate was 4.6 liter mg (dry weight)-1 day-1, and the rate with formate was 10.2 liter mg (dry weight)-1 day-1. CO inhibited TCE oxidation, both by exerting a demand for reductant and through competitive inhibition. The Ki for CO inhibition of TCE oxidation, 4.2 microM, was much less than the Ki for methane inhibition of TCE oxidation, 116 microM. CO also inhibited methane oxidation, and the degree of inhibition increased with increasing CO concentration. When CO was present, formate amendment was necessary for methane oxidation to occur and both substrates were simultaneously oxidized. CO at a concentration greater than that used in the inhibition studies was not toxic to Methylomonas sp. strain MM2.  相似文献   

8.
9.
Isolates belonging to six genera not previously known to oxidize CO were obtained from enrichments with aquatic and terrestrial plants. DNA from these and other isolates was used in PCR assays of the gene for the large subunit of carbon monoxide dehydrogenase (coxL). CoxL and putative coxL fragments were amplified from known CO oxidizers (e.g., Oligotropha carboxidovorans and Bradyrhizobium japonicum), from novel CO-oxidizing isolates (e.g., Aminobacter sp. strain COX, Burkholderia sp. strain LUP, Mesorhizobium sp. strain NMB1, Stappia strains M4 and M8, Stenotrophomonas sp. strain LUP, and Xanthobacter sp. strain COX), and from several well-known isolates for which the capacity to oxidize CO is reported here for the first time (e.g., Burkholderia fungorum LB400, Mesorhizobium loti, Stappia stellulata, and Stappia aggregata). PCR products from several taxa, e.g., O. carboxidovorans, B. japonicum, and B. fungorum, yielded sequences with a high degree (>99.6%) of identity to those in GenBank or genome databases. Aligned sequences formed two phylogenetically distinct groups. Group OMP contained sequences from previously known CO oxidizers, including O. carboxidovorans and Pseudomonas thermocarboxydovorans, plus a number of closely related sequences. Group BMS was dominated by putative coxL sequences from genera in the Rhizobiaceae and other alpha-PROTEOBACTERIA: PCR analyses revealed that many CO oxidizers contained two coxL sequences, one from each group. CO oxidation by M. loti, for which whole-genome sequencing has revealed a single BMS-group putative coxL gene, strongly supports the notion that BMS sequences represent functional CO dehydrogenase proteins that are related to but distinct from previously characterized aerobic CO dehydrogenases.  相似文献   

10.
Life with carbon monoxide   总被引:5,自引:0,他引:5  
  相似文献   

11.
Two dissimilatory nitrate-reducing (Burkholderia xenovorans LB400 and Xanthobacter sp. str. COX) and two denitrifying isolates (Stappia aggregata IAM 12614 and Bradyrhizobium sp. str. CPP), previously characterized as aerobic CO oxidizers, consumed CO at ecologically relevant levels (<100 ppm) under anaerobic conditions in the presence, but not absence, of nitrate. None of the isolates were able to grow anaerobically with CO as a carbon or energy source, however, and nitrate-dependent anaerobic CO oxidation was inhibited by headspace concentrations >100-1000 ppm. Surface soils collected from temperate, subtropical and tropical forests also oxidized CO under anaerobic conditions with no lag. The observed activity was 25-60% less than aerobic CO oxidation rates, and did not appear to depend on nitrate. Chloroform inhibited anaerobic but not aerobic activity, which suggested that acetogenic bacteria may have played a significant role in forest soil anaerobic CO uptake.  相似文献   

12.
Carbon monoxide (CO) is physiologically produced via heme degradation by heme oxygenase enzymes. Whereas CO has been identified as an important physiological signaling molecule, the roles it plays in neuronal development and regeneration are poorly understood. During these events, growth cones guide axons through a rich cellular environment to locate target cells and establish synaptic connections. Previously, we have shown that another gaseous signaling molecule, nitric oxide (NO), has potent effects on growth cone motility. With NO and CO sharing similar cellular targets, we wanted to determine whether CO affected growth cone motility as well. We assessed how CO affected growth cone filopodial length and determined the signaling pathway by which this effect was mediated. Using two well‐characterized neurons from the freshwater snail, Helisoma trivolvis , it was found that the CO donor, carbon monoxide releasing molecule‐2 (CORM‐2), increased filopodial length. CO utilized a signaling pathway that involved the activation of soluble guanylyl cyclase, protein kinase G, and ryanodine receptors. While increases in filopodial length often occur from robust increases in intracellular calcium levels, the timing in which CO increased filopodial length corresponded with low basal calcium levels in growth cones. Taken together with findings of a heme oxygenase‐like protein in the Helisoma nervous system, these results provide evidence for CO as a modulator of growth cone motility and implicate CO as a neuromodulatory signal during neuronal development and/or regeneration. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 677–690, 2017  相似文献   

13.
Rhodocyclus gelatinosus strain 1 (str. 1), a photoheterotrophic bacterium, used CO as an energy substrate under anaerobic CO/light conditions, and exhibited a diauxic growth response when CO was removed from the culture. Changes in the level of cyclic AMP which occurred in cells during diauxie suggested that the cyclic nucleotide operated as an intracellular control molecule. During CO/light-phase growth, intracellular cyclic AMP was 30 pmol/mg protein, and, as str. 1 adapted for photosynthetic growth after removal of CO, intracellular cyclic AMP levels decreased to 9 pmol/mg protein. Reexposure of a light culture to CO induced synthesis of CO oxidation activity (measured as CO:MV oxidoreductase). If 10 mM cyclic AMP was added with CO, the rate of synthesis of CO:MV oxidoreductase activity increased 25-fold, and str. 1 produced 1,230 units of activity (nmol CO oxidized min-1 mg-1 protein) after only 1 h. With cyclic AMP and no CO, no incerease in CO oxidation activity was seen. Appearance of CO oxidation activity in str. 1 represented de novo protein synthesis and was blocked with chloramphenicol. In addition to stimulating formation of CO oxidative activity, a high level of cyclic AMP in str. 1 during growth with CO appeared to influence photometabolism negatively by repressing bacteriochlorophyll formation.Abbreviations Bchl a bacteriochlorophyll a - MV methyl viologen - CO MV oxidoreductase, carbon monoxide: methyl viologen oxidoreductase  相似文献   

14.
Rhodocyclus gelatinosus grows anaerobically at the expense of carbon monoxide (CO). The CO-oxidation system was substrate-induced and in CO/light, cells grew at an exponential rate with ever increasing amounts of CO:MV oxidoreductase activity (the measure of CO oxidation). Once strain 1 reached a high cell density, the concentration of CO became limiting and gas oxidation activity suddenly decreased. Cell growth continued unaffected. To help explain this, it appeared that strain 1 variably used both CO oxidation and photometabolism to support growth in CO/light. Light intensity determined the upper limit of amounts of CO:MV oxidoreductase in a culture, while intermediate amounts were regulated by CO concentration. Thus, in darkness, cells produced the maximum CO oxidation activity, whereas in growth-saturating light, the minimum limit occurred. The lower the levels of CO:MV oxidoreductase in cells, the greater the content of bacteriochlorophyll. In this manner, strain 1 grew with a generation time of 6.7 independent of light intensity.  相似文献   

15.
Rhodopseudomonas gelatinosa 1 grew as an anaerobic facultative methylotroph with carbon monoxide as the sole carbon and energy source. Carbon from CO was assimilated into cell material via the ribulose 1,5-bisphosphate carboxylase cycle. The CO oxidation system in R. gelatinosa was induced during growth with the gas substrate. Light-grown cells did not oxidize CO. Surprisingly, when strain 1 cells grown in the dark with CO were transferred to growth with both CO and light, they continued to use CO and then photometabolized after the CO gas flow was stopped. This change in the energy-yielding substrate resulted in a diauxic growth response. The use of CO in preference to light energy forms the basis of a system in the cells that controls photosynthetic differentiation. CO oxidation was assayed as CO-methyl viologen oxidoreductase. Methyl viologen reduction only occurred with CO; the dye was not reduced with other C1 compounds. In vitro methyl viologen was reduced best at 24 degrees C and at pH values above 8.5. Whole cells exhibited a Km of 12.5 microM for CO and a Vmax of 3,800 nmol of CO oxidized per mg of protein per min. This was a low-potential oxidation reaction that readily reduced the viologen dye triquat (1,1'-trimethylene-2,2'-dipyridilium dibromide) (E degrees' = -548 mV).  相似文献   

16.
J Singh  L H Scott 《Teratology》1984,30(2):253-257
Carbon monoxide (CO) is said to be the most widely encountered occupational and environmental contaminant. Threshold for CO-induced fetotoxicity was studied using mouse as an experimental animal. Pregnant animals of CD-1 strain were exposed to 0, 65, 125, 250, or 500 ppm CO from gestation day 7 to 18. The animals were sacrificed on gestation day 18, and their uterine horns were examined for live or resorbed fetuses. The data suggest that maternal CO exposure to as low as 125 ppm affects fetal growth and higher levels affect viability. The data also suggest that the developing organism is sensitive to chronic CO exposure, and this sensitivity is dose dependent. The fetal mouse is influenced at levels of exposure below those found transiently for human cigarette smokers and ambient CO concentrations associated with various occupations.  相似文献   

17.
The rate of CO conversion by a pure culture of a thermophilic CO-oxidizing, H2-producing bacterium Carboxydocella sp. strain 1503 was determined by the radioisotopic method. The overall daily uptake of 14CO by the bacterium was estimated at 38-56 micromol CO per 1 ml of the culture. A radioisotopic method was developed to separate and quantitatively determine the products of anaerobic CO conversion by microbial communities in hot springs. The new method was first tested on the microbial community from a sample obtained from a hot spring in Kamchatka. The potential rate of CO conversion by the anaerobic microbial community was found to be 40.75 nmol CO/cm3 sediment per day. 85% of the utilized 14CO was oxidized to carbon dioxide; 14.5% was incorporated into dissolved organic matter, including 0.2% that went into volatile fatty acids; 0.5% was used for cell bio mass production; and only just over 0.001% was converted to methane.  相似文献   

18.
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a bifunctional enzyme that catalyzes the reversible reduction of carbon dioxide into carbon monoxide and the coupled synthesis of acetyl-CoA from the carbon monoxide produced. Exposure of CODH/ACS from Moorella thermoacetica to carbon monoxide gives rise to several infrared bands in the 2100-1900 cm(-1) spectral region that are attributed to the formation of metal-coordinated carbon monoxide species. Infrared bands attributable to M-CO are not detected in the as-isolated enzyme, suggesting that the enzyme does not contain intrinsic metal-coordinated CO ligands. A band detected at 1996 cm(-1) in the CO-flushed enzyme is assigned as arising from CO binding to a metal center in cluster A of the ACS subunit. The frequency of this band is most consistent with it arising from a terminally coordinated Ni(I) carbonyl. Multiple infrared bands at 2078, 2044, 1970, 1959, and 1901 cm(-1) are attributed to CO binding at cluster C of the CODH subunit. All infrared bands attributed to metal carbonyls decay in a time-dependent fashion as CO(2) appears in the solution. These observations are consistent with the enzyme-catalyzed oxidation of carbon monoxide until it is completely depleted from solution during the course of the experiments.  相似文献   

19.
The rate of CO conversion by a pure culture of a thermophilic CO-oxidizing, H2-producing bacterium Carboxydocella sp. strain 1503 was determined by the radioisotopic method. The overall daily uptake of 14CO by the bacterium was estimated at 38–56 μmol CO per 1 ml of the culture. A radioisotopic method was developed to separate and quantitatively determine the products of anaerobic CO conversion by microbial communities in hot springs. The new method was first tested on the microbial community from a sample obtained from a hot spring in Kamchatka. The potential rate of CO conversion by the anaerobic microbial community was found to be 40.75 nmol CO/cm3 sediment per day. 85% of the utilized 14CO was oxidized to carbon dioxide; 14.5% was incorporated into dissolved organic matter, including 0.2% that went into volatile fatty acids; 0.5% was used for cell biomass production; and only just over 0.001% was converted to methane.  相似文献   

20.
Carbon monoxide is the most abundant atmospheric pollutant released by our technological society. The gas is also a natural by-product of different mammalian, plant and bacterial cell systems. This review describes a few of these cellular CO-evolving activities as part of a natural biological cycle, which ultimately depends upon certain bacteria to oxidize CO to carbon dioxide. Most microbes oxidize CO adventitiously, or accidentally, but one cell can use the gas as its sole energy substrate for growth. The ability of this microorganism to form efficiently both H2 and CO2 from CO released by industrial coal gasification procedures is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号