首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and aims

Fine root and aboveground litterfall, two large fluxes of nutrients and carbon in the forest ecosystems, are key processes to be considered in efforts of measuring, modeling and predicting soil carbon sequestration.

Methods

We used sequential coring and litter trap to measure seasonal dynamics of fine root and litterfall in three Korean pine dominated forests along an altitudinal gradient in the Changbai Mountain during the 2012 growing season.

Results

Fine root biomass decreased significantly while necromass increased remarkably with altitude. Patterns and amounts of fine root production and mortality varied among forest types. Litterfall decreased significantly with altitude, whereas forest floor mass increased. Carbon inputs through fine root mortality and litterfall decreased significantly with altitude while carbon storage of fine root mass did not differ among forest types and carbon storage of forest floor mass was significantly larger in higher altitudinal forests due to lower turnover rates.

Conclusions

This study provided an insight into the variations of fine root and litterfall dynamics among three Korean pine forests which were associated with different vegetation traits and environmental conditions, and also the quantification of carbon fluxes through fine root mortality and litterfall for estimating carbon budget of temperate forest.  相似文献   

2.
Linking temporal trends of soil nitrogen (N) transformation with shifting patterns of plants and consequently changes of litter quality during succession is important for understanding developmental patterns of ecosystem function. However, the successional direction of soil N mineralization and nitrification in relation to species shifts in the subtropical regions remains little studied. In this study, successional patterns of net soil N mineralization and nitrification rates, litter-fall, forest floor litter, fine root and soil properties were quantified through a successional sequence in the subtropical forests of eastern China. Net N mineralization rate was ‘U-shaped’ through succession: highest in climax evergreen broad-leaved forest (CE: 1.6?±?0.2 mg-N kg?1 yr?1) and secondary shrubs (SS: 1.4?±?0.2 mg-N kg?1 yr?1), lowest in conifer and evergreen broad-leaved mixed forest (MF: 1.1?±?0.1 mg-N kg?1 yr?1) and intermediate in conifer forest (CF: 1.2?±?0.1 mg-N kg?1 yr?1) and sub-climax forest (SE: 1.2?±?0.2 mg-N kg?1 yr?1). Soil nitrification increased with time (0.02?±?0.1, 0.2?±?0.1, 0.5?±?0.1, 0.2?±?0.1, and 0.6?±?0.1 mg-N kg?1 yr?1 in SS, CF, MF, SE and CE, respectively). Annual production of litter?fall increased through succession. Fine root stocks and total N concentration, soil total N, total carbon (C) and microbial biomass C also followed ‘U?shaped’ temporal trends in succession. Soil bulk density was highest in MF, lowest in CE, and intermediate in SS, CF and SE. Soil pH was significantly lowest in CE. Temporal patterns of soil N mineralization and nitrification were significant related to the growth of conifers (i.e. Pinus massoniana) and associated successional changes of litter-fall, forest floor, fine roots and soil properties. We concluded that, due to lower litter quality, the position of Pinus massoniana along the succession pathway played an important role in controlling temporal trends of soil N transformation.  相似文献   

3.
Fine roots <2 mm in diameter play a key role in regulating the biogeochemical cycles of ecosystems and are important to our understanding of ecosystem responses to global climate changes. Given the sensitivity of fine roots, especially in boreal region, to climate changes, it is important to assess whether and to what extent fine roots in this region change with climates. Here, in this synthesis, a data set of 218 root studies were complied to examine fine root patterns in the boreal forest in relation to site and climatic factors. The mean fine root biomass in the boreal forest was 5.28 Mg ha?1, and the production of fine roots was 2.82 Mg ha?1 yr?1, accounting for 32% of annual net primary production of the boreal forest. Fine roots in the boreal forest on average turned over 1.07 times per year. Fine roots contained 50.9 kg ha?1 of nitrogen (N) and 3.63 kg ha?1 of phosphorous (P). In total, fine roots in the boreal forest ecosystems contain 6.1 × 107 Mg N and 4.4×106Mg P pools, respectively, about 10% of the global nutrients of fine roots. Fine root biomass, production, and turnover rate generally increased with increasing mean annual temperature and precipitation. Fine root biomass in the boreal forest decreased significantly with soil N and P availability. With increasing stand age, fine root biomass increased until about 100 years old for forest stands and then leveled off or decreased thereafter. These results of meta analysis suggest that environmental factors strongly influence fine root biomass, production, and turnover in boreal forest, and future studies should place a particular emphasis on the root-environment relationships.  相似文献   

4.
Dissolved organic matter (DOM) plays several important roles in forest ecosystem development, undergoing chemical, physical and/or biological reactions that affect ecosystem nutrient retention. Very few studies have focused on gross rates of DOM production, and we know of no study that has directly measured DOM production from root litter. Our objectives were to quantify major sources of total potentially water-soluble organic matter (DOMtps) production, with an emphasis on production from root litter, to quantify and compare total potentially soluble organic C, N, and P (DOCtps, DONtps, and DOPtps) production, and to quantify changes in their production during forest primary succession and ecosystem development at the Mt. Shasta Mudflows ecosystem chronosequence. To do so, we exhaustively extracted freshly senesced root and leaf and other aboveground litter for DOCtps, DONtps, and DOPtps by vegetation category, and we calculated DOMtps production (g m−2 y−1) at the ecosystem level using data for annual production of fine root and aboveground litter. DOM production from throughfall was calculated by measuring throughfall volume and concentration over 2 years. Results showed that DOMtps production from root litter was a very important source of DOMtps in the Mount Shasta mudflow ecosystems, in some cases comparable to production from leaf litter for DONtps and larger than production from leaf litter for DOPtps. Total DOCtps and DONtps production from all sources increased early in succession from the 77- to the 255-year-old ecosystem. However, total DOPtps production across the ecosystem chronosequence showed a unique pattern. Generally, the relative importance of root litter for total fine detrital DOCtps and DONtps production increased significantly during ecosystem development. Furthermore, DOCtps and DONtps production were predominantly driven by changes in biomass production during ecosystem development, whereas changes in litter solubility due to changes in species composition had a smaller effect. We suggest that DOMtps production from root litter may be an important source of organic matter for the accumulation of SOM during forest ecosystem development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Shauna M. Uselman, Robert G. Qualls, and Juliane Lilienfein conceived of or designed the study and performed research. SMU analyzed data and wrote the article. SMU and RGQ contributed new methods or models.  相似文献   

5.
Secondary forests are becoming increasingly widespread in the tropics, but our understanding of how secondary succession affects carbon (C) cycling and C sequestration in these ecosystems is limited. We used a well-replicated 80-year pasture to forest successional chronosequence and primary forest in Puerto Rico to explore the relationships among litterfall, litter quality, decomposition, and soil C pools. Litterfall rates recovered rapidly during early secondary succession and averaged 10.5 (± 0.1 SE) Mg/ha/y among all sites over a 2-year period. Although forest plant community composition and plant life form dominance changed during succession, litter chemistry as evaluated by sequential C fractions and by 13C-nuclear magnetic resonance spectroscopy did not change significantly with forest age, nor did leaf decomposition rates. Root decomposition was slower than leaves and was fastest in the 60-year-old sites and slowest in the 10- and 30-year-old sites. Common litter and common site experiments suggested that site conditions were more important controls than litter quality in this chronosequence. Bulk soil C content was positively correlated with hydrophobic leaf compounds, suggesting that there is greater soil C accumulation if leaf litter contains more tannins and waxy compounds relative to more labile compounds. Our results suggest that most key C fluxes associated with litter production and decomposition re-establish rapidly—within a decade or two—during tropical secondary succession. Therefore, recovery of leaf litter C cycling processes after pasture use are faster than aboveground woody biomass and species accumulation, indicating that these young secondary forests have the potential to recover litter cycling functions and provide some of the same ecosystem services of primary forests.  相似文献   

6.
Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha−1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y−1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha−1 y−1 for hardwood stands and from 0.9 to 2.3 Mg ha−1 y−1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems.  相似文献   

7.
Nitrogen (N) uptake and nitrogen use efficiency (NUE) are closely related through feedback mechanisms to soil N availability and N cycling in forested ecosystems. We investigated N uptake and NUE not only at the leaf, litterfall, and aboveground levels but also belowground and whole stand levels along a topographic gradient of soil N availability in a cool temperate deciduous forest in Japan. In this study, we addressed how whole stand level N uptake and NUE affect C and N cycling in forested ecosystems. At the leaf, litterfall, and aboveground levels, N uptake decreased and NUE increased with decreasing soil N availability. This pattern resulted from decreasing leaf N concentrations and increasing N resorption efficiencies as soil N availability declined. Low N concentrations in litterfall may have resulted in little soil N being available to plants, due to microbial immobilization. In contrast, when belowground components were included, N uptake and NUE were not correlated with soil N availability. This was mainly due to higher levels of fine root production when soil N availability was low. Higher fine root allocation can result in a high input of detritus to decomposer systems and, thus, contribute to accumulation of soil organic matter and immobilization by microbes, which may result in further soil N availability decline. Our results suggest that allocation to the fine root rather than whole stand level NUE is important for C and N cycling in forested ecosystems, as is the feedback mechanism in which litterfall level NUE shifts with changes in the N concentration of litterfall.  相似文献   

8.
Improving current understanding of the factors that control soil carbon (C) dynamics in forest ecosystems remains an important topic of research as it plays an integral role in the fertility of forest soils and the global C cycle. Invasive earthworms have the potential to alter soil C dynamics, though mechanisms and effects remain poorly understood. To investigate potential effects of invasive earthworms on forest C, the forest floor, mineral soil, fine root biomass, litterfall and microbial litter decay rates, and total soil respiration (TSR) over a full year were measured at an invaded and uninvaded deciduous forest site in southern Ontario. The uninvaded site was approximately 300 m from the invaded site and a distinct invasion front between sites was present. Along the invasion front, the biomass of the forest floor was negatively correlated with earthworm abundance and biomass. There was no significant difference between litterfall, microbial litter decay, and TSR between the invaded and uninvaded sites, but fine root biomass was approximately 30% lower at the invaded site. There was no significant difference in total soil C pools (0–30 cm) between the invaded and uninvaded sites. Despite profound impacts on forest floor soil C pools, earthworm invasion does not significantly increase TSR, most likely because increased heterotrophic respiration associated with earthworms is largely offset by a decrease in autotrophic respiration caused by lower fine root biomass.  相似文献   

9.
Litterfall and fine root production were measured for three years as part of a carbon balance study of three forest stands in the Pacific Northwest of the United States. A young second-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] stand, a second-growth Douglas-fir with red alder (Alnus rubra Bong.) stand, and an old-growth (∼550 years) Douglas-fir stand were monitored for inputs of carbon and nitrogen into the soil from litterfall and fine root production, as well as changes in soil C and N. Fine root production and soil nutrient changes were measured through the use of soil ingrowth bags containing homogenized soil from the respective stands. Litterfall biomass was greatest in the Douglas-fir-alder stand (527 g m−2 yr−1) that annually returned nearly three times the amount of N as the other stands. Mean residence time for forest floor material was also shortest at this site averaging 4.6 years and 5.5 years for C an N, respectively. Fine root production in the upper 20 cm ranged from 584 g m−2 in the N rich Douglas-fir-alder stand to 836 g m−2 in the old-growth stand. Fine root production (down to one meter) was always greater than litterfall with a below:above ratio ranging from 3.73 for the young Douglas-fir stand to 1.62 for the Douglas-fir-alder stand. The below:above N ratios for all three stands closely approximate those for biomass. Soil changes in both C and N differed by site, but the soil C changes in the old-growth stand mirrored those obtained in an ongoing CO2 flux study. Results from the soil ingrowth bags strongly suggest that this method provides a simple, but sufficient device for measuring potential fine root biomass production as well as soil chemical changes.  相似文献   

10.
Biometric based carbon flux measurements were conducted over 5 years (1999–2003) in a temperate deciduous broad-leaved forest of the AsiaFlux network to estimate net ecosystem production (NEP). Biometric based NEP, as measured by the balance between net primary production (including NPP of canopy trees and of forest floor dwarf bamboo) and heterotrophic respiration (RH), clarified the contribution of various biological processes to the ecosystem carbon budget, and also showed where and how the forest is storing C. The mean NPP of the trees was 5.4 ± 1.07 t C ha−1 y−1, including biomass increment (0.3 ± 0.82 t C ha−1 y−1), tree mortality (1.0 ± 0.61 t C ha−1 y−1), aboveground detritus production (2.3 ± 0.39 t C ha−1 y−1) and belowground fine root production (1.8 ± 0.31 t C ha−1 y−1). Annual biomass increment was rather small because of high tree mortality during the 5 years. Total NPP at the site was 6.5 ± 1.07 t C ha−1 y−1, including the NPP of the forest floor community (1.1 ± 0.06 t C ha−1 y−1). The soil surface CO2 efflux (RS) was averaged across the 5 years of record using open-flow chambers. The mean estimated annual RS amounted to 7.1 ± 0.44 t C ha−1, and the decomposition of soil organic matter (SOM) was estimated at 3.9 ± 0.24 t C ha−1. RH was estimated at 4.4 ± 0.32 t C ha−1 y−1, which included decomposition of coarse woody debris. Biometric NEP in the forest was estimated at 2.1 ± 1.15 t C ha−1 y−1, which agreed well with the eddy-covariance based net ecosystem exchange (NEE). The contribution of woody increment (Δbiomass + mortality) of the canopy trees to NEP was rather small, and thus the SOM pool played an important role in carbon storage in the temperate forest. These results suggested that the dense forest floor of dwarf bamboo might have a critical role in soil carbon sequestration in temperate East Asian deciduous forests.  相似文献   

11.
Keith  H.  Raison  R.J.  Jacobsen  K.L. 《Plant and Soil》1997,196(1):81-99
Pools and annual fluxes of carbon (C) were estimated for a mature Eucalyptus pauciflora (snowgum) forest with and without phosphorus (P) fertilizer addition to determine the effect of soil P availability on allocation of C in the stand. Aboveground biomass was estimated from allometric equations relating stem and branch diameters of individual trees to their biomass. Biomass production was calculated from annual increments in tree diameters and measurements of litterfall. Maintenance and construction respiration were calculated for each component using equations given by Ryan (1991a). Total belowground C flux was estimated from measurements of annual soil CO2 efflux less the C content of annual litterfall (assuming forest floor and soil C were at approximate steady state for the year that soil CO2 efflux was measured). The total C content of the standing biomass of the unfertilized stand was 138 t ha-1, with approximately 80% aboveground and 20% belowground. Forest floor C was 8.5 t ha-1. Soil C content (0–1 m) was 369 t ha-1 representing 70% of the total C pool in the ecosystem. Total gross annual C flux aboveground (biomass increment plus litterfall plus respiration) was 11.9 t ha-1 and gross flux belowground (coarse root increment plus fine root production plus root respiration) was 5.1 t ha-1. Total annual soil efflux was 7.1 t ha-1, of which 2.5 t ha-1 (35%) was contributed by litter decomposition.The short-term effect of changing the availability of P compared with C on allocation to aboveground versus belowground processes was estimated by comparing fertilized and unfertilized stands during the year after treatment. In the P-fertilized stand annual wood biomass increment increased by 30%, there was no evidence of change in canopy biomass, and belowground C allocation decreased by 19% relative to the unfertilized stand. Total annual C flux was 16.97 and 16.75 t ha-1 yr-1 and the ratio of below- to aboveground C allocation was 0.43 and 0.35 in the unfertilized and P-fertilized stands, respectively. Therefore, the major response of the forest stand to increased soil P availability appeared to be a shift in C allocation; with little change in total productivity. These results emphasise that both growth rate and allocation need to be estimated to predict changes in fluxes and storage of C in forests that may occur in response to disturbance or climate change.  相似文献   

12.
杉木林年龄序列地下碳分配变化   总被引:5,自引:0,他引:5       下载免费PDF全文
  森林地下碳分配在森林碳平衡和碳吸存中具有重要作用, 而揭示人工林生长过程中地下碳分配变化对于人工林碳汇估算和碳汇管理等有重要意义。通过采用年龄序列方法研究了杉木(Cunninghamia lanceolata)林生长过程中地下碳分配变化特点。年龄序列为福建省南平7 a生(幼龄林)、16 a生(中龄林)、21 a生(近熟林)、41 a生(成熟林)和88 a生(老龄林)的杉木林。细根净生产力测定采用连续土芯法, 根系呼吸测定采用壕沟法, 生物量增量测定采用异速生长方程, 地上年凋落物量采用凋落物收集框测定。结果表明: 杉木林细根净生产力在中龄林前没有显著差异, 维持在较高水平; 但此后则显著下降。细根净生产力/地上凋落物量比值随林龄增加而显著下降。老龄林的根系呼吸显著低于其它林龄林分, 根系呼吸与细根生物量间呈显著线性相关。中龄林和近成熟林的地下碳分配(Total belouground carbon allocation, TBCA)显著高于幼龄林和成熟林, 而老龄林的则最低。中龄林、近成熟林和成熟林的地上部分净生产力/TBCA比值显著高于幼龄林和老龄林, 而杉木林的根系碳利用效率(RCUE)则呈现出随林龄增加而降低的趋势。  相似文献   

13.
Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg(-1). With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO(2) emissions.  相似文献   

14.
Tree growth (as diameter increment), litterfall production, and litter biomass were studied in two secondary tropical dry forests of the Yucatán Peninsula under four treatments of nutrient addition. The studys objective was to assess how variations in the nutrient supply affect aboveground net primary production and carbon (C) accumulation on the floor of two forests in different stages of regeneration. The study included an area of young forest (10 years old) with phosphorus (P)-poor soils and an area of old forest (around 60 years old) where soil P was comparatively less limiting. Four replicate plots (12 × 12 m) at each forest were either left intact (controls) or fertilized with nitrogen (N), P, or N plus P during 3 consecutive years. After 3 years of fertilization, relaxation of the constraints on nutrient limitation resulted in increased trunk growth rates at both the young and old forests. This effect was more pronounced with the addition of P or N plus P (trunk growth doubled with respect to controls), whereas N addition increased tree growth by 60% in comparison to trees in plots without nutrient supplements. In both forests, there were no significant differences in litterfall production among treatments during the first 2 years after fertilization. In the 3rd year of nutrient addition, litterfall production was significantly higher in plots fertilized with N plus P compared to control plots at both forest sites; however, changes in litterfall were not accompanied by litter accumulation in the floor of the two forests. The results of this study support the hypothesis that there is nutrient limitation during tropical dry forest regeneration. They further show that it may be maintained in the long term during secondary succession.  相似文献   

15.
Litterfall and fine root production is a major pathway for carbon and nutrient cycling in forest ecosystems. We investigated leaf litterfall, fine-root mass, production and turnover rate in the upper soil (0–30 cm) under four major tree species (Leucaena leucocephala, Acacia nilotica, Azadirachta indica, Prosopis juliflora) of the semi-arid region of India. All the four tree species showed an unimodal peak of leaf litterfall with distinct seasonality. Leucaena leucocephala and Acacia nilotica had maximum leaf litterfall between September and December while Azadirachta indica and Prosopis juliflora shed most of their leaves between February and May. Annual leaf litterfall of the four species ranged from 3.3 Mg ha?1 (Leucaena leucocephala) to 8.1 Mg ha?1 (Prosopis juliflora). Marked seasonal variations in amount of fine root biomass were observed in all the four tree species. Fine root production was maximum in Prosopis juliflora (171 g m?2 y?1) followed by Azadirachta indica (169 g m?2 y?1), Acacia nilotica (106 g m?2 y?1) and Leucaena leucocephala (79 g m?2 y?1). Fine root biomass showed a seasonal peak after the rainy season but fell to its lowest value during the winter and dry summer season. Fine root turnover rate ranged from 0.56 to 0.97 y?1 and followed the order Azadirachta indica > Leucaena leucocephala > Prosopis juliflora > Acacia nilotica. The results of this study demonstrated that Prosopis juliflora and Azadirachta indica had greater capability for maintaining site productivity as evidenced from greater leaf litterfall and fine root production.  相似文献   

16.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

17.
Fine root dynamics have the potential to contribute significantly to ecosystem‐scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m?2 yr?1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=?0.96 year?1) than in the sandy loam soil (k=?0.61 year?1), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13±1 ng N cm?2 h?1) than in the sandy loam (1.4±0.2 ng N cm?2 h?1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1‐year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m?2 yr?1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m2 yr?1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land‐use change can contribute significantly to increased rates of nitrogen trace gas emissions.  相似文献   

18.
Fine root length production, biomass production, and turnover in forest floor and mineral soil (0–30 cm) layers were studied in relation to irrigated (I) and irrigated-fertilized (IL) treatments in a Norway spruce stand in northern Sweden over a 2-year period. Fine roots (<1 mm) of both spruce and understory vegetation were studied. Minirhizotrons were used to estimate fine root length production and turnover, and soil cores were used to estimate standing biomass. Turnover was estimated as both the inverse of root longevity (RTL) and the ratio of annual root length production to observed root length (RTR). RTR values of spruce roots in the forest floor in I and IL plots were 0.6 and 0.5 y−1, respectively, whereas the corresponding values for RTL were 0.8 and 0.9 y−1. In mineral soil, corresponding values for I, IL, and control (C) plots were 1.2, 1.2, and 0.9 y−1 (RTR) and 0.9, 1.1, and 1 y−1 (RTL). RTR and RTL values of understory vegetation roots were 1 and 1.1 y−1, respectively. Spruce root length production in both the forest floor and the mineral soil in I plots was higher than in IL plots. The IL-treated plots gave the highest estimates of spruce fine root biomass production in the forest floor, but, for the mineral soil, the estimates obtained for the I plots were the highest. The understory vegetation fine root production in the I and IL plots was similar for both the forest floor and the mineral soil and higher (for both layers) than in C plots. Nitrogen (N) turnover in the forest floor and mineral soil layers (summed) via spruce roots in IL, I, and C plots amounted to 2.4, 2.1, and 1.3 g N m−2 y−1, and the corresponding values for field vegetation roots were 0.6, 0.5, and 0.3 g N m−2 y−1. It was concluded that fertilization increases standing root biomass, root production, and N turnover of spruce roots in both the forest floor and mineral soil. Data on understory vegetation roots are required for estimating carbon budgets in model studies.  相似文献   

19.

Aims

It has been increasingly recognized that only distal lower order roots turn over actively within the <2 mm fine root system of trees. This study aimed to estimate fine root production and turnover rate based on lower order fine roots and their relations to soil variables in mangroves.

Methods

We conducted sequential coring in five natural mangrove forests at Dongzhai Bay, China. Annual fine root production and turnover rate were calculated based on the seasonal variations of the biomass and necromass of lower order roots or the whole fine root system.

Results

Annual fine root production and turnover rate ranged between 571 and 2838 g m?2 and 1.46–5.96 yr?1, respectively, estimated with lower order roots, and they were increased by 0–30 % and reduced by 13–48 %, respectively, estimated with the whole fine root system. Annual fine root production was 1–3.5 times higher than aboveground litter production and was positively related to soil carbon, nitrogen and phosphorus concentrations. Fine root turnover rate was negatively related to soil salinity.

Conclusions

Mangrove fine root turnover plays a more important role than aboveground litter production in soil C accumulation. Sites with higher soil nutrients and lower salinity favor fine root production and turnover, and thus favor soil C accumulation.
  相似文献   

20.
We studied the effect of long-term water table drawdown on the vascular plant community in an ombrotrophic bog in central Finland by measuring aboveground biomass and belowground production (by in-growth cores) across plant functional groups including herbs, shrubs, and trees. We compared drained and undrained portions 45 years after the installation of a drainage ditch network, which has lowered water levels of 15–20 cm on average in the drained part of the site. Although shrub fine root production did not differ significantly between sites, water table drawdown increased belowground tree fine root production by 740% (3.8 ± 5.4 SD and 28.1 ± 24.1 g m?2 y?1 in undrained and drained sites, respectively) at the expense of herb root production, which declined 38% (27.62 ± 16.40 and 10.58 ± 15.7 g m?2 y?1 in undrained and drained sites, respectively) yielding no significant overall change in total fine root production. Drainage effects on aboveground biomass showed a similar pattern among plant types, as aboveground tree biomass increased dramatically with drainage (79 ± 135 and 2546 ± 1551 g m?2 in drained and undrained sites, respectively). Although total shrub biomass was not significantly different between sites, shrubs allocated more biomass to stems than leaves in the drained site. Drainage also caused a significant shift in shrub species composition. Although trees dominated the aboveground biomass following water table drawdown, understorey vegetation, mainly shrubs, continued to dominate belowground fine root production, comprising 64% of total root production at the drained site. Aboveground biomass proved to be a good predictor of belowground production, suggesting that allometric relationships can be developed to estimate belowground production in these systems. Increase in tree root production can counteract decrease in herb fine root production following water table drawdown, emphasizing the importance of plant functional type responses to water table drawdown. Whether these changes will offset ecosystem C loss via increased plant C storage or stimulate soil organic matter decomposition via increased above- and belowground litter inputs requires further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号