首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. BoNT serotype A and serotype E cleave SNAP25 at residues 197-198 and 180-181, respectively. Unlike other zinc proteases, the BoNTs recognize extended regions of SNAP25 for cleavage. The basis for this extended substrate recognition and specificity is unclear. Saturation mutagenesis and deletion mapping identified residues 156-202 of SNAP25 as the optimal cleavage domain for BoNT/A, whereas the optimal cleavage domain for BoNT/E was shorter, comprising residues 167-186 of SNAP25. Two sub-sites were resolved within each optimal cleavage domain, which included a recognition or active site (AS) domain that contained the site of cleavage and a binding (B) domain, which contributed to substrate affinity. Within the AS domains, the P1', P3, and P5 sites of SNAP25 contributed to scissile bond cleavage by LC/A, whereas the P1' and P2 sites of SNAP25 contributed to scissile bond cleavage by LC/E. These studies provide insight into the development of strategies for small molecule inhibitors of the BoNTs.  相似文献   

2.
The minimal nutritional growth requirements were determined for strains Okra B and Iwanai E, which are representatives of groups I and II, respectively, of Clostridium botulinum. These type B and E strains differed considerably in their nutrient requirements. The organic growth factors required in high concentrations by the Okra B strain (group I) were arginine and phenylalanine. Low concentrations (less than or equal to 0.1 g/liter) of eight amino acids (methionine, leucine, valine, isoleucine, glycine, histidine, tryptophan, and tyrosine) and of five vitamins (pyridoxamine, p-aminobenzoic acid, biotin, nicotinic acid, and thiamine) were also essential for biosynthesis. The 10 required amino acids could be replaced by intact protein of known composition by virtue of the bacterium's ability to synthesize proteases. Glucose or other carbohydrates were not essential for Okra B, although they did stimulate growth. Quantitatively, the most essential nutrients for Okra B were arginine and phenylalanine. In contrast, the nonproteolytic strain, Iwanai E (group II), did not require either arginine or phenylalanine. It required glucose or another carbohydrate energy source for growth and did not utilize arginine or intact protein as a substitute source of energy. Iwanai E utilized ammonia as a nitrogen source, although growth was stimulated significantly by organic nitrogenous nutrients, especially glutamate and asparagine. Iwanai E also required biosynthesis levels of seven amino acids (histidine, isoleucine, leucine, tryptophan, tyrosine, valine, and serine), adenine, and six vitamins (biotin, thiamine, pyridoxamine, folic acid, choline, and nicotinamide). Calcium pantothenate also stimulated growth. On the basis of the nutritional requirements, chemically defined minimal media have been constructed for C. botulinum serotypes A, B, E, and F (proteolytic).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The underlying mechanisms of polarization sensitivity (PS) have long remained elusive. For rhabdomeric photoreceptors, questions remain over the high levels of PS measured experimentally. In ciliary photoreceptors, and specifically cones, little direct evidence supports any type of mechanism. In order to promote a greater interest in these fundamental aspects of polarization vision, we examined a varied collection of studies linking membrane biochemistry, protein-protein interactions, molecular ordering and membrane phase behaviour. While initially these studies may seem unrelated to polarization vision, a common narrative emerges. A surprising amount of evidence exists demonstrating the importance of protein-protein interactions in both rhabdomeric and ciliary photoreceptors, indicating the possible long-range ordering of the opsin protein for increased PS. Moreover, we extend this direction by considering how such protein paracrystalline organization arises in all cell types from controlled membrane phase behaviour and propose a universal pathway for PS to occur in both rhabdomeric and cone photoreceptors.  相似文献   

4.
The minimal nutritional growth requirements were determined for strains Okra B and Iwanai E, which are representatives of groups I and II, respectively, of Clostridium botulinum. These type B and E strains differed considerably in their nutrient requirements. The organic growth factors required in high concentrations by the Okra B strain (group I) were arginine and phenylalanine. Low concentrations (less than or equal to 0.1 g/liter) of eight amino acids (methionine, leucine, valine, isoleucine, glycine, histidine, tryptophan, and tyrosine) and of five vitamins (pyridoxamine, p-aminobenzoic acid, biotin, nicotinic acid, and thiamine) were also essential for biosynthesis. The 10 required amino acids could be replaced by intact protein of known composition by virtue of the bacterium's ability to synthesize proteases. Glucose or other carbohydrates were not essential for Okra B, although they did stimulate growth. Quantitatively, the most essential nutrients for Okra B were arginine and phenylalanine. In contrast, the nonproteolytic strain, Iwanai E (group II), did not require either arginine or phenylalanine. It required glucose or another carbohydrate energy source for growth and did not utilize arginine or intact protein as a substitute source of energy. Iwanai E utilized ammonia as a nitrogen source, although growth was stimulated significantly by organic nitrogenous nutrients, especially glutamate and asparagine. Iwanai E also required biosynthesis levels of seven amino acids (histidine, isoleucine, leucine, tryptophan, tyrosine, valine, and serine), adenine, and six vitamins (biotin, thiamine, pyridoxamine, folic acid, choline, and nicotinamide). Calcium pantothenate also stimulated growth. On the basis of the nutritional requirements, chemically defined minimal media have been constructed for C. botulinum serotypes A, B, E, and F (proteolytic).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Li D  Mattoo P  Keller JE 《Biologicals》2012,40(4):240-246
Hyperimmune monovalent antitoxins to botulinum neurotoxin serotypes A and B have been produced by immunizing horses with newly developed formalin toxoids. After primary immunization, horses developed acceptable prophylactic antibody titers (1-5 IU/mL). Three horses received additional toxoid booster injections to induce hyperimmune antibody titers with antitoxin-A and antitoxin-B titers reaching peaks of approximately 2000 IU/mL and 150-625 IU/mL, respectively. Titers were quantified throughout the process by antigen-capture ELISA and by in-vivo neutralization. ELISA titers and neutralization titers correlated (R2 ~0.62-0.92), however, unique correlations between in-vitro and in-vivo titers were observed for each horse. Monovalent antitoxin pools were made by combining plasma that had been collected twice via plasmaphoresis several months after primary immunization. Neutralizing units were established for each pool relative to the current US and WHO reference standards. Titers were determined at the L(+)/10 and L(+)/40 toxin dose for Toxin types A and B, respectively, and U.S. and international units were assigned to each monovalent antitoxin. Avidity of the new Anti-A pool was equivalent to the WHO Anti-A reference at the L(+), L(+)/10 and L(+)/30 dose. Each monovalent plasma pool failed to cross-neutralize other botulinum neurotoxin serotypes indicating a high degree of specificity of each antitoxin for the toxin serotype used during immunization.  相似文献   

6.
Huntington''s disease (HD) is a devastating neurodegenerative disorder whose main hallmark is brain atrophy. However, several peripheral organs are considerably affected and their symptoms may, in fact, manifest before those resulting from brain pathology. HD is of genetic origin and caused by a mutation in the huntingtin gene. The mutated protein has detrimental effects on cell survival, but whether the mutation leads to a gain of toxic function or a loss of function of the altered protein is still highly controversial. Most currently used in vitro models have been designed, to a large extent, to investigate the effects of the aggregation process in neuronal-like cells. However, as the pathology involves several other organs, new in vitro models are critically needed to take into account the deleterious effects of mutant huntingtin in peripheral tissues, and thus to identify new targets that could lead to more effective clinical interventions in the early course of the disease. This review aims to present current in vitro models of HD pathology and to discuss the knowledge that has been gained from these studies as well as the new in vitro tools that have been developed, which should reflect the more global view that we now have of the disease.  相似文献   

7.
The role of host genetic factors in conferring predisposition or protection in infectious diseases has become evident. Infection with group A streptococci causes a wide spectrum of disease ranging from pharyngitis to streptococcal toxic shock syndrome. The release of inflammatory cytokines triggered by streptococcal superantigens has a pivotal role in invasive streptococcal disease. However, individuals infected with the same strain can develop very different manifestations. We report here that the immunogenetics of the host influence the outcome of invasive streptococcal infection, and demonstrate the underlying mechanism for these genetic associations. Specific human leukocyte antigen class II haplotypes conferred strong protection from severe systemic disease, whereas others increased the risk of severe disease. Patients with the DRB1*1501/DQB1*0602 haplotype mounted significantly reduced responses and were less likely to develop severe systemic disease (P < 0.0001). We propose that human leukocyte antigen class II allelic variation contributes to differences in severity of invasive streptococcal infections through their ability to regulate cytokine responses triggered by streptococcal superantigens.  相似文献   

8.
Individual differences in perception are ubiquitous within the chemical senses: taste, smell, and chemical somesthesis . A hypothesis of this fact states that polymorphisms in human sensory receptor genes could alter perception by coding for functionally distinct receptor types . We have previously reported evidence that sequence variants in a presumptive bitter receptor gene (hTAS2R38) correlate with differences in bitterness recognition of phenylthiocarbamide (PTC) . Here, we map individual psychogenomic pathways for bitter taste by testing people with a variety of psychophysical tasks and linking their individual perceptions of the compounds PTC and propylthiouracil (PROP) to the in vitro responses of their TAS2R38 receptor variants. Functional expression studies demonstrate that five different haplotypes from the hTAS2R38 gene code for operatively distinct receptors. The responses of the three haplotypes we also tested in vivo correlate strongly with individuals' psychophysical bitter sensitivities to a family of compounds. These data provide a direct molecular link between heritable variability in bitter taste perception to functional variations of a single G protein coupled receptor that responds to compounds such as PTC and PROP that contain the N-C=S moiety. The molecular mechanisms of perceived bitterness variability have therapeutic implications, such as helping patients to consume beneficial bitter-tasting compounds-for example, pharmaceuticals and selected phytochemicals.  相似文献   

9.
The catalytic domain, known as light chain (Lc), of the most poisonous botulinum neurotoxins (BoNTs), possesses endoprotease activity that triggers the ultimate poisonous effect to animals and humans. X-ray crystallographic structure of Lc of several BoNT serotypes has identified at least four small ligands at or near the respective active sites. They are sulfate ions in LcA, LcB, and LcE; an acetate ion in LcA; a calcium ion in LcB; and a potassium ion in LcD. Roles of these ligands on the structure and function of the proteins are not known. We have investigated the roles of sulfate, acetate, and calcium on the catalytic activities of LcA, LcB, and LcE using 17-35-residue synthetic peptide substrates. All three ligands inhibited all Lc activities. For LcA and LcB, the order of inhibition effectiveness was calcium>sulfate>acetate. The inhibition effectiveness expressed as IC50, did not correlate with the occurrence or proximity of the ions to the active site. Moreover, addition of acetate or sulfate to LcA did not affect the near-UV circular dichroism spectra, tryptophan, and tyrosine fluorescence spectra, and mid points of thermal denaturation of LcA. Our results suggest that acetate, sulfate, and calcium nonspecifically interact with BoNT Lc, and their occurrence in the crystal structures could have been due to opportunistic binding to complementary pockets.  相似文献   

10.
This paper reports that the D-loop sequence of cellular mammalian ribosomal 5S RNAs is a natural leadzyme that specifically binds and cleaves in trans other RNA molecules in the presence of lead. The D-loops of these 5S rRNAs are similar in sequence to the active site of the leadzyme derived from tRNA(Phe), which cleaves a single bond in cis. We have devised a 12 nt model substrate based on the leadzyme sequence cleaved in trans by a 12 nt RNA molecule containing of the D-loop sequence. The model reaction occurs only at the appropriate concentration of lead and enzyme/substrate stoichiometry. The native 5S rRNA carries the same cleavage activity, although with different optimal lead concentration and stoichiometry. On the other hand, the isolated D-loop does not serve as a substrate when incubated with an RNA molecule with the potential to base pair with it and form the same internal loop (the bubble) present in the leadzyme-substrate complex. We show that the leadzyme cuts C-G, but not G-G or U-G linkages. The 5S rRNA leadzyme appears to have the shortest asymmetric pentanucleotide purine-rich loop flanked by two short double stranded RNAs. The leadzyme activity of native 5S rRNA may be an important aspect of lead toxicity in living cells. Because the leadzyme motif has been found in natural RNA species, its activity can be expressed in vivo even at a very low lead concentrations, of lead leading to the inactivation of other cellular RNAs. This might be one of the ways in which lead poisoning manifests itself at the molecular level. Lead toxicity is based not only on its binding to calcium and zinc binding proteins (such as Zn-fingers) and random hydrolysis of nucleic acids, but also, and most importantly, on the induction of the hydrolytic properties of RNA (RNA catalysis).  相似文献   

11.
Human apolipoprotein (apo) E4 binds preferentially to very low-density lipoproteins (VLDLs), whereas apoE3 binds preferentially to high-density lipoproteins (HDLs), resulting in different plasma cholesterol levels for the two isoforms. To understand the molecular basis for this effect, we engineered the isolated apoE N-terminal domain (residues 1-191) and C-terminal domain (residues 192-299) together with a series of variants containing deletions in the C-terminal domain and assessed their lipid and lipoprotein binding properties. Both isoforms can bind to a phospholipid (PL)-stabilized triolein emulsion, and residues 261-299 are primarily responsible for this activity. ApoE4 exhibits better lipid binding ability than apoE3 as a consequence of a rearrangement involving the segment spanning residues 261-272 in the C-terminal domain. The strong lipid binding ability of apoE4 coupled with the VLDL particle surface being ~60% PL-covered is the basis for its preference for binding VLDL rather than HDL. ApoE4 binds much more strongly than apoE3 to VLDL but less strongly than apoE3 to HDL(3), consistent with apoE-lipid interactions being relatively unimportant for binding to HDL. The preference of apoE3 for binding to HDL(3) arises because binding is mediated primarily by interaction of the N-terminal helix bundle domain with the resident apolipoproteins that cover ~80% of the HDL(3) particle surface. Thus, the selectivity in the binding of apoE3 and apoE4 to HDL(3) and VLDL is dependent upon two factors: (1) the stronger lipid binding ability of apoE4 relative to that of apoE3 and (2) the differences in the nature of the surfaces of VLDL and HDL(3) particles, with the former being largely covered with PL and the latter with protein.  相似文献   

12.
Morozova-Roche LA 《FEBS letters》2007,581(14):2587-2592
Calcium-binding equine lysozyme (EL) combines the structural and folding properties of c-type lysozymes and alpha-lactalbumins, connecting these two most studied subfamilies. The structural insight into its native and partially folded states is particularly illuminating in revealing the general principles of protein folding, amyloid formation and its inhibition. Among lysozymes EL forms one of the most stable molten globules and shows the most uncooperative refolding kinetics. Its partially-folded states serve as precursors for calcium-dependent self-assembly into ring-shaped and linear amyloids. The innate amyloid cytotoxicity of the ubiquitous lysozyme highlights the universality of this phenomenon and necessitates stringent measures for its prevention.  相似文献   

13.
14.
15.
The seven botulinum neurotoxins (BoNTs) are zinc metalloproteases that cleave neuronal proteins involved in neurotransmitter release and are among the most toxic natural products known. High-throughput BoNT assays are needed for use in antibotulinum drug discovery and to characterize BoNT protease activities. Compared to other proteases, BoNTs exhibit unusually stringent substrate requirements with respect to amino acid sequences and polypeptide lengths. Nonetheless, we have devised a strategy for development of fluorigenic BoNT protease assays, based on earlier structure-function studies, that has proven successful for three of the seven serotypes: A, B, and F. In synthetic peptide substrates, the P(1) and P(3)' residues were substituted with 2,4-dinitrophenyl-lysine and S-(N-[4-methyl-7-dimethylamino-coumarin-3-yl]-carboxamidomethyl)-cysteine, respectively. By monitoring the BoNT-catalyzed increase in fluorescence over time, initial hydrolysis rates could be obtained in 1 to 2 min when BoNT concentrations were 60 ng/ml (about 1 nM) or higher. Each BoNT cleaved its fluorigenic substrate at the same location as in the neuronal target protein, and kinetic constants indicated that the substrates were selective and efficient. The fluorigenic assay for BoNT B was used to characterize a new competitive inhibitor of BoNT B protease activity with a K(i) value of 4 micro M. In addition to real-time activity measurements, toxin concentration determinations, and kinetic studies, the BoNT substrates described herein may be directly incorporated into automated high-throughput assay systems to screen large numbers of compounds for potential antibotulinum drugs.  相似文献   

16.
Methods that do not require animal sacrifice to detect botulinum neurotoxins (BoNTs) are critical for BoNT antagonist discovery and the advancement of quantitative assays for biodefense and pharmaceutical applications. Here we describe the development and optimization of fluorogenic reporters that detect the proteolytic activity of BoNT/A, B, D, E, F, and G serotypes in real time with femtomolar to picomolar sensitivity. Notably, the reporters can detect femtomolar concentrations of BoNT/A in 4 h and BoNT/E in 20 h, sensitivity that equals that of animal-based methods. The reporters can be used to determine the specific activity of BoNT preparations with intra- and inter-assay coefficients of variation of approximately 10%. Finally, we find that the greater sensitivity of our reporters compared with those used in other commercially available assays makes the former attractive candidates for high-throughput screening of BoNT antagonists.  相似文献   

17.
18.
19.
The in vitro activity of the channel-forming bacteriocins such as colicin E1 in model membranes requires the specific activation of the protein by an acidic environment in the presence of a membrane potential. Acid activation of the C-terminal domain results in the formation of an insertion-competent intermediate with an enhanced ability to penetrate and perforate cell membranes. We report novel findings of this activation process through the design and study of mutant proteins involving the replacement of conserved Asp residues Asp-408, Asp-410, and Asp-423 within helices 5a and 4 in the colicin E1 channel domain that resulted in enhanced membrane binding, bilayer insertion rates, and ion channel activities at near neutral pH values. This activation process involves the destabilization of a critical salt bridge (Asp-410 and Lys-406) and H-bonds (Asp-408 and Ser-405 main chain; Asp-423 and Lys-420 main chain). The helix-to-coil transition of this motif was identified previously by time-resolved Trp fluorescence measurements (Merrill, A. R., Steer, B. A., Prentice, G. A., Weller, M. J., and Szabo, A. G. (1997) Biochemistry 36, 6874-6884), and here we use this approach to demonstrate that disruption of the helical structure of helices 4 and 5a results in a shift in this equilibrium to favor the coil state. Finally, we show that the essential components of the pH trigger motif are conserved among the channel-forming colicins and that it likely exists within other bacterial proteins and may even have evolved into more sophisticated devices in a number of microbial species.  相似文献   

20.
A hormonal basis for sex differences in the self-grooming of rats   总被引:1,自引:0,他引:1  
The self-grooming behavior of prepubescent male and female rats is described. Sex differences were observed in components of grooming addressed to the genitals, but not in other aspects of grooming. A hormonal basis for the sex difference was examined in two experiments. When females were injected with testosterone propionate (TP) on the day of birth, their subsequent grooming was found to be no different from that of control-treated females. However, males and females gonadectomized at weaning and treated daily with TP each performed significantly more genital self-grooming than oil-treated controls. There were no sex differences in gonadectomized, oil-treated rats, and sex differences in response to TP were limited to greater responsiveness of females to a 50-micrograms, but not 200-micrograms, TP dose. These results lead to the conclusion that sex differences in self-grooming can be accounted for primarily by differences in testosterone availability during the peripubertal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号