共查询到20条相似文献,搜索用时 0 毫秒
1.
Quantitative trait loci for red blood cell traits in swine 总被引:3,自引:1,他引:3
Haematological traits are essential diagnostic parameters in veterinary practice but knowledge on the genetic architecture controlling variability of erythroid traits is sparse, especially in swine. To identify QTL for erythroid traits in the pig, haematocrit (HCT), haemoglobin (HB), erythrocyte counts (RBC) and mean corpuscular haemoglobin content (MCHC) were measured in 139 F2 pigs from a Meishan/Pietrain family, before and after challenge with the protozoan pathogen Sarcocystis miescheriana . The pigs passed through three stages representing acute disease, reconvalescence and chronic disease. Forty-three single QTL controlling erythroid traits were identified on 16 chromosomes. Twelve of the QTL were significant at the genome-wide level while 31 were significant at a chromosome-wide level. Because erythroid traits varied with health and disease status, QTL influencing the erythroid phenotypes showed specific health/disease patterns. Regions on SSC5, 7, 8, 12 and 13 contained QTL for baseline erythroid traits, while the other QTL regions affected distinct stages of the disease model. Single QTL explained 9–17% of the phenotypic variance in the F2 animals. Related traits were partly under common genetic influence. Our analysis confirms that erythroid trait variation differs between Meishan and Pietrain breeds and that this variation is associated with multiple chromosomal regions. 相似文献
2.
Maintaining pH and blood gases in a narrow range is essential to sustain normal biochemical reactions. Decreased oxygenation, poor tissue perfusion, disturbance to CO2 expiration, and shortage of HCO3 − can lead to metabolic acidosis. This is a common situation in swine, and originates from a broad range of medical conditions. pH and blood gases appear to be under genetic control, and populations with physiological traits closer to the pathological thresholds may be more susceptible to developing pathological conditions. However, little is known about the genetic basis of such traits. We have therefore estimated phenotypic and genetic variability and identified quantitative trait loci (QTL) for pH and blood gases in blood samples from 139 F2 pigs from the Meishan/Pietrain family. Samples were taken before and after challenge with Sarcocystis miescheriana , a protozoan parasite of muscle. Twenty-seven QTL influencing pH and blood gases were identified on nine chromosomes. Five of the QTL were significant on a genome-wide level; 22 QTL were significant on a chromosome-wide level. QTL for pH-associated traits have been mapped to SSC3, 18 and X. QTL associated with CO2 have been detected on SSC6, 7, 8 and 9, and QTL associated with O2 on SSC2 and SSC8. QTL showed specific health/disease patterns that were related to the physiological state of the pigs from day 0, to acute disease (day 14), convalescence (day 28) and chronic disease (day 42). The results demonstrate that pH and blood gases are influenced by multiple chromosomal areas, each with relatively small effects. 相似文献
3.
G. Reiner F. Köhler T. Berge R. Fischer K. Hübner-Weitz J. Scholl H. Willems 《Animal genetics》2009,40(4):366-376
Behavioural indices in vertebrates are under genetic control at least to some extent. In spite of significant behavioural problems in farm animals, information on the genetic background of behaviour is sparse. The aim of this study was to map QTL for behavioural indices in swine under healthy conditions and after infection with Sarcocystis miescheriana , as behaviour can be significantly influenced by disease . This well-described parasite model subsequently leads to acute (day 14 p.i.), subclinical (day 28 p.i.) and chronic disease (day 42 p.i.), allowing the study and comparison of the behaviour of pigs under four different states of health or disease. The study was based on a well-described Pietrain/Meishan F2 family that has recently allowed the detection of QTL for disease resistance. We have mapped six genome-wide significant and 24 chromosome-wide significant QTL for six behavioural indices in swine. Six of these QTL (i.e. 20% of total QTL) showed effects on behavioural traits of the healthy pigs (day 0). Some of them (QTL on SSC11 and 18) lost influence on behavioural activities during disease, while the effects of others (QTL on SSC5, SSC8) partly remained during the whole experiment, although with different effects on the distinct behavioural indices. The disease model has been of high relevance to detect effects of gene loci on behavioural indices. Considering the importance of segregating alleles and environmental conditions that allow the identification of the phenotype, we conclude that there are indeed QTL with interesting effects on behavioural indices in swine. 相似文献
4.
G. Reiner N. Clemens R. Fischer F. Köhler T. Berge S. Hepp H. Willems 《Animal genetics》2009,40(1):57-64
Clinical–chemical traits are diagnostic parameters essential for characterization of health and disease in veterinary practice. The traits show significant variability and are under genetic control, but little is known about the fundamental genetic architecture of this variability, especially in swine. We have identified QTL for alkaline phosphatase (ALP), lactate (LAC), bilirubin (BIL), creatinine (CRE) and ionized sodium (Na+ ), potassium (K+ ) and calcium (Ca++ ) from the serum of 139 F2 pigs from a Meishan/Pietrain family before and after challenge with Sarcocystis miescheriana , a protozoan parasite of muscle. After infection, the pigs passed through three stages representing acute disease, subclinical disease and chronic disease. Forty-two QTL influencing clinical–chemical traits during these different stages were identified on 15 chromosomes. Eleven of the QTL were significant on a genome-wide level; 31 QTL were chromosome-wide significant. QTL showed specific health/disease patterns with respect to the baseline values of the traits as well as the values obtained through the different stages of disease. QTL influencing different traits at different times were found primarily on chromosomes 1, 3, 7 and 14. The most prominent QTL for the investigated clinical–chemical traits mapped to SSC3 and 7. Baseline traits of ALP, LAC, BIL, Ca++ and K+ were influenced by QTL regions on SSC3, 6, 7, 8 and 13. Single QTL explained up to 21.7% of F2 phenotypic variance. Our analysis confirms that variation of clinical–chemical traits is associated with multiple chromosomal regions. 相似文献
5.
X. Lu Y. F. Gong J. F. Liu Z. P. Wang F. Hu X. T. Qiu Y. R. Luo Q. Zhang 《Animal genetics》2011,42(1):1-5
Increased disease resistance through improved general immune capacity would be beneficial for the welfare and productivity of farm animals. Cytokines are essential diagnostic parameters in veterinary practice. To identify quantitative trait loci (QTL) for cytokine levels in serum in the pig, Interferon‐gamma (IFN‐γ) and Interleukin 10 (IL‐10) levels and the ratio of IFN‐γ to IL‐10 were measured in a composite pig population, before and after challenge with modified live CSF (classical swine fever) vaccine. Through interval mapping using the variance component approach and the permutation test, 11 QTL (five for IFN‐γ, two for IL‐10 and four for the ratio of IFN‐γ to IL‐10) with significance levels of P < 0.10 were identified, of which five were significant at the P < 0.05 level. The most significant QTL (P < 0.01) was found on chromosome 16, with effect on the ratio of IFN‐γ to IL‐10. Within these QTL regions, a number of known genes were revealed and their potential relationships to the studied traits were discussed. Some of these genes may serve as candidate genes for these traits in swine. 相似文献
6.
From an extensive review of public domain information on dairy cattle quantitative trait loci (QTL), we have prepared a draft online QTL map for dairy production traits. Most publications (45 out of 55 reviewed) reported QTL for the major milk production traits (milk, fat and protein yield, and fat and protein concentration (%)) and somatic cell score. Relatively few QTL studies have been reported for more complex traits such as mastitis, fertility and health. The collated QTL map shows some chromosomal regions with a high density of QTL, as well as a substantial number of QTL at single chromosomal locations. To extract the most information from these published records, a meta-analysis was conducted to obtain consensus on QTL location and allelic substitution effect of these QTL. This required modification and development of statistical methodologies. The meta-analysis indicated a number of consensus regions, the most striking being two distinct regions affecting milk yield on chromosome 6 at 49 cM and 87 cM explaining 4.2 and 3.6 percent of the genetic variance of milk yield, respectively. The first of these regions (near marker BM143) affects five separate milk production traits (protein yield, protein percent, fat yield, fat percent, as well as milk yield). 相似文献
7.
Quantitative trait loci affecting fatness in the chicken 总被引:13,自引:0,他引:13
Ikeobi CO Woolliams JA Morrice DR Law A Windsor D Burt DW Hocking PM 《Animal genetics》2002,33(6):428-435
An F2 chicken population of 442 individuals from 30 families, obtained by crossing a broiler line with a layer line, was used for detecting and mapping Quantitative Trait Loci (QTL) affecting abdominal fat weight, skin fat weight and fat distribution. Within-family regression analyses using 102 microsatellite markers in 27 linkage groups were carried out with genome-wide significance thresholds. The QTL for abdominal fat weight were found on chromosomes 3, 7, 15 and 28; abdominal fat weight adjusted for carcass weight on chromosomes 1, 5, 7 and 28; skin and subcutaneous fat on chromosomes 3, 7 and 13; skin fat weight adjusted for carcass weight on chromosomes 3 and 28; and skin fat weight adjusted for abdominal fat weight on chromosomes 5, 7 and 15. Interactions of the QTL with sex or family were unimportant and, for each trait, there was no evidence for imprinting or of multiple QTL on any chromosome. Significant dominance effects were obtained for all but one of the significant locations for QTL affecting the weight of abdominal fat, none for skin fat and one of the three QTL affecting fat distribution. The magnitude of each QTL ranged from 3.0 to 5.2% of the residual phenotypic variation or 0.2-0.8 phenotypic standard deviations. The largest additive QTL (on chromosome 7) accounted for more than 20% of the mean weight of abdominal fat. Significant positive and negative QTL were identified from both lines. 相似文献
8.
White blood cell count and platelets are implicated as risk factors for common complex diseases. Genetic factors substantially affect these traits in humans and mice. However, little is known about the genetic architecture of these traits in pigs. To identify quantitative trait loci (QTL) for leucocyte- and platelet-related traits in pigs, the total leucocyte number and differential leucocyte counts including the fraction of basophils, eosinophils, lymphocytes, monocytes, neutrophils, and a series of platelet parameters including platelet count, mean platelet volume, platelet distribution width and plateletcrit were measured in 1033 F2 animals on 240 days from a White Duroc × Erhualian intercross resource population. A total of 183 informative microsatellites distributed across 19 pig chromosomes (SSC) were genotyped across the entire resource population. Thirty-three QTL were identified for the examined traits, including eight genome-wide significant QTL for white blood cells and differential leucocyte counts on SSC2, 7, 8, 12 and 15 and six significant QTL for platelet-related traits on SSC2, 8, 13 and X. Erhualian or White Duroc alleles were not systematically associated with increased phenotypic values. These results not only confirmed many QTL identified previously in the mouse and swine, but also revealed a number of novel QTL for the traits recorded. Moreover, it is the first time that QTL for platelet-related traits in pigs have been reported. 相似文献
9.
10.
M. Ambo A. S. A. M. T. Moura M. C. Ledur L. F. B. Pinto E. E. Baron D. C. Ruy K. Nones R. L. R. Campos C. Boschiero D. W. Burt L. L. Coutinho 《Animal genetics》2009,40(2):200-208
An F2 resource population, derived from a broiler × layer cross, was used to map quantitative trait loci (QTL) for body weights at days 1, 35 and 41, weight gain, feed intake, feed efficiency from 35 to 41 days and intestinal length. Up to 577 F2 chickens were genotyped with 103 genetic markers covering 21 linkage groups. A preliminary QTL mapping report using this same population focused exclusively on GGA1. Regression methods were applied to line-cross and half-sib models for QTL interval mapping. Under the line-cross model, eight QTL were detected for body weight at 35 days (GGA2, 3 and 4), body weight at 41 days (GGA2, 3, 4 and 10) and intestine length (GGA4). Under the half-sib model, using sire as common parent, five QTL were detected for body weight at day 1 (GGA3 and 18), body weight at 35 days (GGA2 and 3) and body weight at 41 days (GGA3). When dam was used as common parent, seven QTL were mapped for body weight at day 1 (GGA2), body weight at day 35 (GGA2, 3 and 4) and body weight at day 41 (GGA2, 3 and 4). Growth differences in chicken lines appear to be controlled by a chronological change in a limited number of chromosomal regions. 相似文献
11.
Lantier I Moreno CR Berthon P Sallé G Pitel F Schibler L Gautier-Bouchardon AV Boivin R Weisbecker JL François D Bouix J Cribiu EP Elsen JM Lantier F 《Animal genetics》2012,43(5):632-635
Quantitative trait loci (QTL) mapping for susceptibility to a Salmonella Abortusovis vaccinal strain was performed using an experimental design involving 30 Romane sheep sire families (1216 progenies). Nine QTL corresponding to bacterial load, weight variations and antibody response criteria were mapped on eight chromosomes, including the major histocompatibility complex area on chromosome 20. Surprisingly, none was found to be significant in the SLC11A1 region (formerly NRAMP1) that has been shown to influence Salmonella susceptibility in other species. 相似文献
12.
Lou P Zhao J He H Hanhart C Del Carpio DP Verkerk R Custers J Koornneef M Bonnema G 《The New phytologist》2008,179(4):1017-1032
Glucosinolates and their breakdown products have been recognized for their effects on plant defense, human health, flavor and taste of cruciferous vegetables. Despite this importance, little is known about the regulation of the biosynthesis and degradation in Brassica rapa. Here, the identification of quantitative trait loci (QTL) for glucosinolate accumulation in B. rapa leaves in two novel segregating double haploid (DH) populations is reported: DH38, derived from a cross between yellow sarson R500 and pak choi variety HK Naibaicai; and DH30, from a cross between yellow sarson R500 and Kairyou Hakata, a Japanese vegetable turnip variety. An integrated map of 1068 cM with 10 linkage groups, assigned to the international agreed nomenclature, is developed based on the two individual DH maps with the common parent using amplified fragment length polymorphism (AFLP) and single sequence repeat (SSR) markers. Eight different glucosinolate compounds were detected in parents and F(1)s of the DH populations and found to segregate quantitatively in the DH populations. QTL analysis identified 16 loci controlling aliphatic glucosinolate accumulation, three loci controlling total indolic glucosinolate concentration and three loci regulating aromatic glucosinolate concentrations. Both comparative genomic analyses based on Arabidopsis-Brassica rapa synteny and mapping of candidate orthologous genes in B. rapa allowed the selection of genes involved in the glucosinolate biosynthesis pathway that may account for the identified QTL. 相似文献
13.
Seventy-seven polymorphic microsatellites were analysed in offspring of three elite sires that were part of the foundation of an experimental population selected for twinning rate at the US Meat Animal Research Center, Clay Center, Nebraska. All females were assessed for ovulation rate by rectal palpation of corpora lutea over 8–10 consecutive oestrous cycles from approximately 12 to 18 months of age, and associations between ovulation rate and sire allele were examined in each of the three sire groups. A preliminary analysis was performed using selectively genotyped daughters of each sire. Markers found significant or approaching significance were also genotyped in all daughters, sons and granddaughters of these sires. A test of marker associations limited to the granddaughter data provided an independent confirmation of marker effect and significance relative to the initial test with daughter data. Putative ovulation rate quantitative trait loci were detected on chromosomes 7 and 23. Marker UWCA20 on chromosome 7 was associated with an effect in excess of one phenotypic standard deviation and accounted for approximately 10% of phenotypic variation ovulation rate. Marker CYP21 (steroid 21-hydroxylase) on chromosome 23 was associated with an effect of slightly less than half a phenotypic standard deviation and accounted for approximately 4% of phenotypic variation. 相似文献
14.
Alexandra C. Nica Emmanouil T. Dermitzakis 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1620)
The last few years have seen the development of large efforts for the analysis of genome function, especially in the context of genome variation. One of the most prominent directions has been the extensive set of studies on expression quantitative trait loci (eQTLs), namely, the discovery of genetic variants that explain variation in gene expression levels. Such studies have offered promise not just for the characterization of functional sequence variation but also for the understanding of basic processes of gene regulation and interpretation of genome-wide association studies. In this review, we discuss some of the key directions of eQTL research and its implications. 相似文献
15.
Jiang W Jin YM Lee J Lee KI Piao R Han L Shin JC Jin RD Cao T Pan HY Du X Koh HJ 《Molecules and cells》2011,32(6):579-587
Low temperature is one of the major environmental stresses in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of recombinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for cold-related traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and environments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in EQTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL × environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments. 相似文献
16.
A genome scan was performed to detect chromosomal regions that affect egg production traits in reciprocal crosses between two genetically and phenotypically extreme chicken lines: the partially inbred line New Hampshire (NHI) and the inbred line White Leghorn (WL77). The NHI line had been selected for high growth and WL77 for low egg weight before inbreeding. The result showed a highly significant region on chromosome 4 with multiple QTL for egg production traits between 19.2 and 82.1 Mb. This QTL region explained 4.3 and 16.1% of the phenotypic variance for number of eggs and egg weight in the F2 population, respectively. The egg weight QTL effects are dependent on the direction of the cross. In addition, genome‐wide suggestive QTL for egg weight were found on chromosomes 1, 5, and 9, and for number of eggs on chromosomes 5 and 7. A genome‐wide significant QTL affecting age at first egg was mapped on chromosome 1. The difference between the parental lines and the highly significant QTL effects on chromosome 4 will further support fine mapping and candidate gene identification for egg production traits in chicken. 相似文献
17.
The genetic dissection of complex traits is one of the most difficult and most important challenges facing science today. We discuss here an integrative approach to quantitative trait loci (QTL) mapping in mice. This approach makes use of the wealth of genetic tools available in mice, as well as the recent advances in genome sequence data already available for a number of inbred mouse strains. We have developed mapping strategies that allow a stepwise narrowing of a QTL mapping interval, prioritizing candidate genes for further analysis with the potential of identifying the most probable candidate gene for the given trait. This approach integrates traditional mapping tools, fine mapping tools, sequence-based analysis, bioinformatics and gene expression. 相似文献
18.
Gutiérrez-Gil B Wiener P Nute GR Burton D Gill JL Wood JD Williams JL 《Animal genetics》2008,39(1):51-61
A whole-genome scan was carried out to detect quantitative trait loci (QTL) affecting sensory, organoleptic, physical and chemical properties of meat. The study used phenotypic data from 235 second-generation cross-bred bull calves of a Charolais × Holstein experimental population. Loin muscle samples were evaluated for yield force, intramuscular fat and nitrogen contents, myofibrillar fragmentation index, haem pigment concentration, moisture content and pH at 24 h postmortem. A sensory assessment was performed on grilled loin and roasted silverside joints by trained panellists. A linear regression analysis based on 165 markers revealed 35 QTL at the 5% chromosome-wide significance level (20 for sensory traits and 15 for physical and chemical traits), five of which were highly significant ( F -value: ≥9). The most significant QTL was located on chromosome 6 (with the best likely position at 39 cM) and affected haem pigment concentration. The Holstein allele for this QTL was associated with an increase of 0.53 SD in the haem scores. A QTL for pH24h was identified on chromosome 14 (at 40 cM) and a QTL for moisture content was identified on chromosome 22 (at 21 cM). Two highly significant QTL were identified for sensory panel-assessed traits: beef odour intensity (grilled sample) on chromosome 10 (at 119 cM), and juiciness (roast sample) on chromosome 16 (at 70 cM). The proportion of phenotypic variance explained by the significant QTL ranged from 3.6% (for nitrogen content on chromosome 10) to 9.5% (for juiciness, roast sample on chromosome 16). 相似文献
19.
Mapping of quantitative trait loci on porcine chromosome 4 总被引:6,自引:0,他引:6
G. A. Walling A. L. Archibald J. A. Cattermole A. C. Downing H. A. Finlayson D. Nicholson C. A. Walker C. S. Haley & P. M. Visscher 《Animal genetics》1998,29(6):415-424
A F2 population derived from a cross between European Large White and Chinese Meishan pigs was established in order to study the genetic basis of breed differences for growth and fat traits. Chromosome 4 was chosen for initial study as previous work had revealed quantitative trait loci (QTLs) on this chromosome affected growth and fat traits in a Wild Boar × Large White cross. Individuals in the F2 population were typed for nine markers spanning a region of approximately 124 c m . We found evidence for QTLs affecting growth between weaning and the end of test (additive effect: 43·4 g/day) and fat depth measured in the mid-back position (additive effect: 1·82 mm). There was no evidence of interactions between the QTLs and sex, grandparents or F1 sires, suggesting that the detected QTLs were fixed for alternative alleles in the Meishan and Large White breeds. Comparison of locations suggests that these QTLs could be the same as those found in the Wild Boar × Large White cross. 相似文献
20.
T Mark Beasley Dongyan Yang Nengjun Yi Daniel C Bullard Elizabeth L Travis Christopher I Amos Shizhong Xu David B Allison 《遗传、选种与进化》2004,36(6):601-619
Selective genotyping is common because it can increase the expected correlation between QTL genotype and phenotype and thus increase the statistical power of linkage tests (i.e., regression-based tests). Linkage can also be tested by assessing whether the marginal genotypic distribution conforms to its expectation, a marginal-based test. We developed a class of joint tests that, by constraining intercepts in regression-based analyses, capitalize on the information available in both regression-based and marginal-based tests. We simulated data corresponding to the null hypothesis of no QTL effect and the alternative of some QTL effect at the locus for a backcross and an F2 intercross between inbred strains. Regression-based and marginal-based tests were compared to corresponding joint tests. We studied the effects of random sampling, selective sampling from a single tail of the phenotypic distribution, and selective sampling from both tails of the phenotypic distribution. Joint tests were nearly as powerful as all competing alternatives for random sampling and two-tailed selection under both backcross and F2 intercross situations. Joint tests were generally more powerful for one-tailed selection under both backcross and F2 intercross situations. However, joint tests cannot be recommended for one-tailed selective genotyping if segregation distortion is suspected. 相似文献