首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deuterium NMR spectroscopy was used to study internal motions of a deuterium-labeled single tryptophan (Trp) residue (per subunit) of Streptomyces subtilisin inhibitor (SSI) in solution. The free inhibitor with the five ring protons of the Trp replaced with deuterons showed a narrow resonance component (56 Hz) of about one-quarter of the total intensity, in addition to the broad resonance component (about 600 Hz) at 25 degrees C, showing that it exits in an equilibrium mixture of two conformers, in one of which the tryptophan side chain is highly mobile. In analogy to the two structures of SSI found in the crystal, these two conformers were attributed to the one in which the contact between the alpha-lobe and the beta-lobe of the subunit is tight and the other in which the same contact is loose. When SSI forms a complex with subtilisin BPN', the broad component becomes invisibly broad, but the narrow component increases with even further narrowing, suggesting that the binding to the enzyme favors the "loose" conformer over the "tight" conformer.  相似文献   

2.
A Tamura  K Kimura  K Akasaka 《Biochemistry》1991,30(47):11313-11320
Structural transitions of the protein Streptomyces subtilisin inhibitor (SSI) from the native state to the cold-denatured and heat-denatured states were studied by 1H NMR spectroscopy in the temperature range from -10 to 60 degrees C in the acidic pH range. Assignments of some of the 1H NMR signals of SSI in the cold-denatured and heat-denatured states were performed by a combined use of selective deuteration and site-directed mutagenesis. Throughout the pH range from 2.1 to 3.1, both transitions were cooperative and basically only three distinct spectra corresponding to structures in the cold-denatured, native, and heat-denatured states were detected. In the cold-denatured state, the side-chain signals of Met73, His106, at least one Val, and two Leu were observed at distinctly shifted positions from those for a random-coiled structure, suggesting the formation of a tertiary structure, while those of Met70, His43, and Ala2 were observed at positions for a random-coiled structure. This tertiary structure in the cold-denatured state is entirely different from that in the native state, as some amino acid residues exposed to the solvent in the native state (e.g., Met73, His106) are buried while those sequestered in the native state (e.g., His43) are exposed. In the heat-denatured state, however, most 1H NMR signals were observed at random-coiled positions, indicating that there is much less tertiary structure in the heat-denatured state than in the cold-denatured state. At pH values below 2.09, a structural transition was observed from the cold-denatured state to the heat-denatured state without passing through the native state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
L B Vitello  A M Scanu 《Biochemistry》1976,15(5):1161-1165
Some of the solution properties of pure preparations of human serum high-density apolipoprotein A-II were studied by sedimentation equilibrium ultracentrifugation, conducted at different apoprotein concentrations and at several speeds. The concentration dependence of the apparent weight average molecular weight indicated that apolipoprotein A-II, when dissolved in 0.02 MEDTA (pH 8.6), undergoes self-association. Over a protein concentration range between 0.8 and 1.5 mg/ml, the self-association could best be described by a monomer-dimer-trimer step association, although indefinite self-association could not be ruled out. The equilibrium constants obtained were sufficient to describe the system over the concentration range investigated.  相似文献   

4.
Nerve growth factor (NGF) is a protein composed of two identical chains of mass 13,259. An analysis of the sedimentation equilibrium, sedimentation velocity, and gel filtration behavior of dilute solutions of NGF indicates the existence of a rapidly reversible monomer in equilibrium dimer equilibrium and that the association constant K for the reaction at neutral pH is 9.4 X 10(6)M-1. Reaction mixtures consist of equal concentrations of monomer and dimer at a total protein concentration as high as 1.4 mug/ml, and at 1 ng/ml, monomer accounts for greater than 99% of the total. The latter concentration is 20 to 30 times that required for the biological activity of NGF. Several lines of evidence suggest that the dimerization reaction is highly stereospecific, although its biological significance is not known.  相似文献   

5.
The structure of human serum low density lipoprotein (LDL) was investigated by perturbing the LDL structure with sodium dodecyl sulfate (SDS). The change in LDL structure induced by the addition of SDS was monitored by sedimentation velocity measurements, ultraviolet difference spectroscopy, fluorescence spectroscopy and proteolytic digestion of apo-LDL with subtilisin BPN' [EC 3.4.21.14]. As the concentration of SDS was increased from 0.1 mg/ml to 3 mg/ml with LDL concentrations between 2.0 mg/ml and 4.4 mg/ml, the sedimentation coefficient of LDL changed in three distinct steps. It was found by chemical analyses that not more than 30% of the total lipid was lost from LDL in the second step, whereas the final step in the change of sedimentation coefficient corresponded to the complete removal of apo-LDL from the constituent lipids of LDL. The ultraviolet difference spectrum between the native and SDS-treated LDL and the quenching of LDL fluorescence underwent about 80% of the total change while the SDS concentration was only sufficient to cause the second of the three step changes in sedimentation coefficient. SDS-polyacrylamide gel electrophoresis of apo-LDL treated with subtilisin BPN' also showed that more than 70% of apo-LDL became susceptible to proteolysis under the same conditions. These results were interpreted as indicating that the solubilization of 20 to 30% of the lipids on the surface of LDL exposed nearly 80% or more of apo-LDL to the solvent. A small portion of apo-LDL was, however, still firmly anchored to the remaining lipid micelle as long as the concentration of SDS was less than that required to cause the final step of the change in sedimentation coefficient.  相似文献   

6.
The exchange reaction of the peptide NH protons of a microbial protease inhibitor (Streptomyces subtilisin inhibitor) with deuterium atoms in 2H2O (p2H 6.8) has been studied by proton magnetic resonance in the temperature range 56-71 degrees C. Both slowly and rapidly exchanging processes have been observed. The number of slowly exchanging protons is estimated to be 25 +/- 2 per subunit of the protein molecule. The decay of the slowly exchanging proton signals follows a single time-exponential function at each temperature. The observed first-order rate constants have been analyzed to give the denaturated fraction of the protein as a function of temperature with a consequent enthalpy (56 kcal/mol) and an entropy (137 cal/degree per mol) of denaturation. The results indicate the high conformational stability of this protein against heat denaturation.  相似文献   

7.
Sedimentation equilibrium experiments indicate that neither human chymotrypsin II nor bovine δ-chymotrypsin molecules undergo association in the pH range 3–5 where dimerization occurs with α-chymotrypsin. The weight-average molecular weights of human chymotrypsin II and δ-chymotrypsin in a pH 4.4 0.1 ionic strength buffer are 26,200 and 26,400, respectively, using the measured partial specific volumes of 0.722 and 0.727 ml/g at 25 °C. Number-average molecular weight calculations also support the presence of monomeric species at this pH. In the pH range 6–7.6 where sedimentation velocity studies have shown that δ-chymotrypsin associates at concentrations above 3 mg/ml, no association was observed for either the human chymotrypsin II or bovine δ-chymotrypsin in the sedimentation equilibrium experiments where protein concentrations were below 1.2 mg/ml. These studies provide additional evidence that human chymotrypsin II is similar to bovine δ-chymotrypsin.  相似文献   

8.
Streptomyces subtilisin inhibitor (SSI) has been shown to exist as a dimer of molecular weight of 23,000 in 25 mm phosphate buffer, at pH 7.0 (the ionic strength 0.1 m with NaCl), 25.0 °C in the concentration range of 0.01–10 mg/ml. In the present paper, the effects of an anionic detergent, sodium dodecyl sulfate (SDS), on the structure and function of SSI has been examined, [a]The molecular weight of SSI was measured in the SDS solution with the sedimentation equilibrium method of the multicomponent-polydisperse system under the conditions described above, and thereby it has been shown that SSI dissociates into monomers with SDS of 0.03–0.12% (wv) when the concentration of SSI is 1.00 mg/ml (87.0 μm as monomer), [b]As SSI dissociates into monomers, there were observed blue-shift troughs at 293 nm and 300 nm due to a tryptophyl residue and a red-shift of phenylalanyl residues in the absorption difference spectrum induced by the binding of SSI and SDS. [c] The inhibitory activity of SSI against subtilisin BPN′-catalyzed hydrolysis of p-nitrophenyl acetate was measured under the conditions that SSI is in monomer in the SDS solution. Unexpectedly half of the inhibitory activity of SSI against subtilisin BPN′ is lost in the SDS solution.  相似文献   

9.
1. The inhibitory activity of an alkaline protease inhibitor, (Streptomyces subtilisin inhibitor) towards subtilisin is found to decrease by photooxidation sensitized by methylene blue with a clear pH dependence, the midpoint of which is about 6.0. 2. Amino acid analyses of photooxidized Streptomyces subtilisin inhibitor indicate that one of the two histidyl residues and the three methionyl residues are destroyed, concomittant with the loss of inhibitory activity. 3. In accordance with this observation, one of the clearly resolved nuclear magnetic resonances from C2-protons of the two histidyl residues is selectively diminished. This histidyl residue, sensitive to photooxidation and giving a proton magnetic resonance peak at lower field, is assigned to His-106 from peptide analyses. 4. Independent modification of methionyl residues by a reaction with H2O2 or Cl2 also decreases the inhibitory activity of Streptomyces subtilisin inhibitor. 5. Modification of lysyl, tyrosyl and tryptophanyl residues by diazonium-1-H-tetrazole does not lead to the loss of the inhibitory activity. 6. The above results indicate that one or more methionyl residue(s) are essential to the inhibitory activity of Streptomyces subtilisin inhibitor, whereas lysyl, tyrosyl and tryptophanyl residues are not essential to the inhibitory activity. Modification of His-106 is also strongly related to the loss of activity, although its distinct participation in the inactivation mechanism has not been demonstrated.  相似文献   

10.
It was found that an increase in fluorescence intensity at 340 nm is observed on the binding of Streptomyces subtilisin inhibitor (SSI) with subtilisin BPN' in the pH range 6--10. The dissociation constant, Ki, of the enzyme-inhibitor complex was determined as a function of pH and temperature by direct fluorometric titration utilizing the single photon counting technique in the protein concentration range of 10(-9) M. Ki values as low as 10(-10) M could be obtained with reasonable accuracy by this high-sensitivity detection method. From the temperature dependence of Ki, it was found that the binding is endothermic, and is entirely "entropy-driven" in nature. The effect of pH on Ki suggested the participation of an ionizable group with pKapp = 8.5 in the binding.  相似文献   

11.
Sedimentation equilibrium results, obtained with bovine zinc-free insulin (with and without a component of proinsulin) at pH 7.0, I o.2, 25 degrees C, and up to a total concentration of 0.8 g/l., are shown to be consistent with three different polymerization patterns, all involving an isodesmic indefinite self-association of specified oligomeric species. The analysis procedure, based on closed solutions formed by summing infinite series, yields for each pattern a set of equilibrium constants, It is shown that a distinction between the possible patterns can be made by analyzing sedimentation equilibrium results obtained in a higher total concentration range (up to 4 g/1.) with insulin freed of zinc and proinsulin, account being taken of the composition dependence of activity coefficients. The favored pattern, which differs from that previously reported in the literature, involves the dimerization of monomeric insulin (mol wt 5734), governed by a dimerization constant of 11 X 10(4) M-1 and the isodesmic indefinite self-association of the dimer, described by an association constant of 1.7 X 10(4) M-1. This polymerization pattern is also shown to be consistent with the reaction boundary observed in sedimentation velocity experiments.  相似文献   

12.
The influence of phosphate, ionic strength, temperature and enzyme concentration on the oligomeric structure of calf spleen purine nucleoside phosphorylase (PNP) in solution was studied by analytical ultracentrifugation methods. Sedimentation equilibrium analysis used to directly determine the enzyme molecular mass revealed a trimeric molecule with Mr = (90.6 +/- 2.1) kDa, regardless the conditions investigated: protein concentration in the range 0.02-1.0 mg/ml, presence of up to 100 mM phosphate and up to 200 mM NaCl, temperature in the range 4-25 degrees C. The sedimentation coefficient (6.04 +/- 0.02) S, together with the diffusion coefficient (6.15 +/- 0.11) 10(-7) cm2/s, both values obtained from the classic sedimentation velocity method at 1.0 mg/ml PNP concentration in 20 mM Hepes, pH 7.0, yielded a molecular mass of (90.2 +/- 1.6) kDa as expected for the trimeric enzyme molecule. Moreover, as shown by active enzyme sedimentation, calf spleen PNP remained trimeric even at low protein concentrations (1 microg/ml). Hence in solution, similar like in the crystalline state, calf spleen PNP is a homotrimer and previous suggestions for dissociation of this enzyme into more active monomers, upon dilution of the enzyme or addition of phosphate, are incorrect.  相似文献   

13.
1. The process of denaturation of the chicken muscle dimeric enzyme triosephosphate isomerase on addition of guanidinium chloride has been studied at pH 7.6, the pH at which the recovery of activity is optimal (100%) on removal of denaturant. Determinations of the sedimentation coefficient, intrinsic viscosity, molecular weight (by sedimentation equilibrium studies) and the absorption coefficient at 280 nm in various concentrations of guanidinium chloride concurred in showing a single, sharp transition at about 0.7 M guanidinium chloride at a protein concentration 1-5 mg/ml from the native enzyme to the dissociated, unfolded chains of the monomer. Relative fluorescent intensity measurements revealed a single transition at about 0.4 M guanidinium chloride at enzyme concentrations of about 0.05 mg/ml. 2. The process of denaturation in different guanidinium chloride concentrations was first order with respect to enzyme and about sixth order with respect to denaturant. 3. The rate of attainment of equilibrium during the renaturation obeyed second-order/first-order reversible kinetics. It was concluded that the rate-determining step in renaturation at pH 7.6 must be the association of two subunits.  相似文献   

14.
Single amino acid mutations of Met103 in the hydrophobic core of a serine protease inhibitor, Streptomyces subtilisin inhibitor, caused little change in the inhibitory activity, as measured by the inhibitor constant, although some altered the thermodynamic stability of the protein considerably. (1)H NMR investigations showed that the conformational stress caused by the replacement of Met103 with Gly, Ala, Val, and Ile, namely, the effects of the cavities generated by replacements with smaller side-chains and of the steric distortions generated by beta-branched side-chains, caused considerable changes in the structural arrangement of the side-chains within the core. However, these structural changes were absorbed within the hydrophobic core, without distorting the structure of the reactive site essential for the protein function. These results provide an excellent example of the conformational flexibility of a protein core and the degree of its tolerance of an amino acid replacement. The results also reveal the crucially designed structural relationship between the core of the inhibitor and the enzyme-binding segment with the reactive site in a serine protease inhibitor.  相似文献   

15.
NAP-22, a myristoylated, anionic protein, is a major protein component of the detergent-insoluble fraction of neurons. After extraction from the membrane, it is readily soluble in water. NAP-22 will partition only into membranes with specific lipid compositions. The lipid specificity is not expected for a monomeric myristoylated protein. We have studied the self-association of NAP-22 in solution. Sedimentation velocity experiments indicated that the protein is largely associated. The low concentration limiting s value is approximately 1.3 S, indicating a highly asymmetric monomer. In contrast, a nonmyristoylated form of the protein shows no evidence of oligomerization by velocity sedimentation and has an s value corresponding to the smallest component of NAP-22, but without the presence of higher oligomers. Sedimentation equilibrium runs indicate that there is a rapidly reversible equilibrium between monomeric and oligomeric forms of the protein followed by a slower, more irreversible association into larger aggregates. In situ atomic force microscopy of the protein deposited on mica from freshly prepared dilute solution revealed dimers on the mica surface. The values of the association constants obtained from the sedimentation equilibrium data suggest that the weight concentration of the monomer exceeds that of the dimer below a total protein concentration of 0.04 mg/ml. Since the concentration of NAP-22 in the neurons of the developing brain is approximately 0.6 mg/ml, if the protein were in solution, it would be in oligomeric form and bind specifically to cholesterol-rich domains. We demonstrate, using fluorescence resonance energy transfer, that at low concentrations, NAP-22 labeled with Texas Red binds equally well to liposomes of phosphatidylcholine either with or without the addition of 40 mol% cholesterol. Thus, oligomerization of NAP-22 contributes to its lipid selectivity during membrane binding.  相似文献   

16.
Earlier studies using x-ray crystallography have shown that trimethylamine dehydrogenase (TMADH) from methylotropic bacteria exists as homodimers in the crystalline state. In this present hydrodynamic study we show that this is true also in dilute solution conditions and investigate the degree of swelling or relaxation of the protein in solution. Analytical ultracentrifugation was used to determine the molar mass and to investigate whether the homodimeric nature of this molecule in crystal form — as visualized by x-ray crystallography — is reproduced in dilute solution at temperatures between 4 and 40°C. The globular solution structure determined at 4 and 40°C is in good agreement with crystallographic data although trimethylamine dehydrogenase was found to be either more asymmetric in solution — or highly hydrated —, a phenomenon found to increase with temperature. In agreement with the crystallographic structure, the enzyme sediments as a homodimer with a molar mass of (163,000±5,000) g/mol. The concentration dependence of the sedimentation coefficient in the range of 0–1 mg/ml, indicates that no association or dissociation occurs. These findings are additionally supported by sedimentation equilibrium data in the concentration range of 0 to 1.8 mg/ml. Finally, from the sedimentation coefficient distribution at various temperatures, it was concluded that the enzyme is conformationally flexible and assumes an even more expanded structure at higher temperatures which is in good agreement with the hydrodynamic calculations performed. Correspondence to: S. E. Harding  相似文献   

17.
K Takahashi  H Fukada 《Biochemistry》1985,24(2):297-300
The binding of Streptomyces subtilisin inhibitor (SSI) to subtilisin of Bacillus subtilis strain N' (subtilisin BPN', EC 3.4.21.14) was studied by isothermal calorimetry at pH 7.0 and at various temperatures ranging from 5 to 30 degrees C. Thermodynamic quantities for the binding reaction were derived as a function of temperature by combining the data reported for the dissociation constant with the present calorimetric results. At 25 degrees C, the values are delta G degrees = -57.9 kJ mol-1, delta H = -19.8 kJ mol-1, delta S degree = 0.13 kJ K-1 mol-1, and delta Cp = -1.02 kJ K-1 mol-1. The entropy and the heat capacity changes are discussed in terms of the contributions from the changes in vibrational modes and in hydrophobic interactions.  相似文献   

18.
A method that allows the quantitative determination of reaction volumes from sedimentation velocity experiments in an analytical ultracentrifuge is presented. Combined with a second method for detecting pressure-induced depolymerization, general characteristics of polymer distributions may be probed. We show that it is possible to determine if a sample is in an equilibrium or metastable state of subunit association. Our approach to probe macromolecular aggregation systems by small pressure perturbations is not restricted to the use of centrifuges. This method has been applied to characterize certain aspects of the polymerization of tobacco mosaic virus coat protein (TMVP). There are at least two helical polymer conformations in RNA-free coat protein rods. The smaller, helix I, polymers are limited to sizes below about 70 subunits (four to five helical turns) and undergo some kind of cooperative conformational change before further subunits may be added indefinitely. In contrast to helix I, the larger helix II polymers occur as broader and skewed size distributions. Under moderately strong polymerization conditions, the equilibrium state can contain both types of helical rods. The reaction volume for the addition of trimers is -220 ml/mol for both types of helical polymers. These results are compared with the results of previous thermodynamic analyses of TMVP polymerization.  相似文献   

19.
Streptomyces griseus metalloendopeptidase II (SGMPII) was shown to form tight complexes with several Streptomyces protein inhibitors which had been believed to be specific to serine proteases, such as Streptomyces subtilisin inhibitor (SSI), plasminostreptin (PS), and alkaline protease inhibitor-2c' (API-2c'), as well as with Streptomyces metalloprotease inhibitor (SMPI). The dissociation constants of complexes between SGMPII and these inhibitors were successfully determined by using a novel fluorogenic bimane-peptide substrate. The values ranged from nM to pM. The results of studies by gel chromatographic and enzymatic analyses indicated that SGMPII is liberated from the complex with SSI by the addition of subtilisin BPN'. SGMPII and subtilisin BPN' proved, therefore, to interact with SSI in a competitive manner, despite the difference in the chemical nature of their active sites.  相似文献   

20.
The ribosomal proteins S4 and S9 were isolated from the 30S ribosomal subunit of Escherichia coli to greater than 95% purity and characterized in the reconstitution buffer. Neither of the proteins indicated any tendency to self associate at 3 degrees C in the concentration range studied. At higher temperatures (greater than 20 degrees C), protein S9 forms a significant amount of a soluble aggregate as seen from the sedimentation velocity and sedimentation equilibrium experiments. From an analysis of the solution mixture of S4 and S9 at 1:1.08 molar concentration ratio by sedimentation velocity experiment, an s20,w value of 1.77 +/- 0.02S was obtained. A fast moving component which accounts for approximately 20% of the mass was also observed. Increasing the concentration of S9 does not alter the observed s20w value significantly for that component which could be followed. A detailed analysis of the data obtained at 3 degrees C from sedimentation equilibrium experiments on mixtures of the proteins indicated that a species of molecular weight greater than either of the two proteins was present. The proteins were found to interact with a mean equilibrium constant of association of 3.66 +/- 2.39 x 10(4) M-1 and a Gibbs free energy of interaction, delta Go = -5.8 kcal/mole at 3 degrees C in TMKD buffer. This information helps in understanding the energetics of the 30S ribosomal subunits of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号