首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hair roots ofLysinema ciliatum R. Br. and some other Epacridaceaehave thick-walled cells in the epidermis. These are preferentiallycolonized with mycorrhizal fungi. Individual epidermal cellscontaining hyphal coils separate at the middle lamella and arereleased into the soil. Other colonized cells remain attachedto the roots, usually in groups, surrounded by bare exodermis,where epidermal cells have either collapsed or been sloughedoff. It is suggested that these colonized thick walled cellscan serve to prolong the mycorrhizal association and to infectnew hair roots as these emerge. The thick wall has a very specializedstructure and composition and could have a number of roles,either acting as a substrate or protective coat or in controllingwater status and uptake. Young hair-roots are surrounded bya mucilage sheath that is similar in appearance to that in Ericaceaeand apparently produced by root cap cells, not the epidermis. Lysinema ciliatum R. Br.; ericoid mycorrhiza; hair root; root cap; cortex; epidermis; exodermis  相似文献   

2.
Light, fluorescence and electron microscopy were employed to follow the development of the endodermis in cluster roots and lateral roots of Grevillea robusta A. Cunn. ex R. Br. Endodermal cells had three different origins: rootlet endodermis arose from the rootlet meristem; endodermis covering the primordium shortly after initiation came from division of parental endodermis; cells at the junction between parent and rootlet endodermis developed from re-differentiated rootlet cortical cells. In the cluster root, the Casparian band formed in three ways, and was not initially present opposite the two sets of single xylem elements in the rootlet stele. A new clearing technique was developed that allowed visualization of xylem, suberized endodermis, Casparian band formation and phenolic compounds. In lateral roots, endodermal differentiation was asynchronous, but was related to position relative to protoxylem poles. However, the observed delay began before these poles had differentiated. At the tip of mature rootlets, which are determinate, the endodermis terminates in a 'dome' of cells, with the initial cell differentiating as an endodermal cell. Results are discussed in terms of determinate development in roots and the spatial and temporal contexts within which this development takes place.  相似文献   

3.
The kiwifruit vine is a species which has been newly introducedinto cultivation and little is known of its comparative physiologyand anatomy. In this study we found that fibrous, 'magnolioid'roots, which have undergone secondary vascular development butwhich retain the cortex and develop a suberized epidermis, comprisethe greater part of the root system (95% of total length). Newlyinitiated roots with primary development conform to norms establishedin other woody plant species. However, the structural roots,like the fibrous roots, also retain a cortex and phellodermwhich is initiated by hypodermal cells within the cortex andnot by the pericycle which is the common progenitor tissue inother species. This phellogen produces new cells centrifugallyonly. The cortex is a relatively small component of the structuralroot and the bulk of the tissue is vascular in origin, as inthe roots of other plant species. The endodermis is retainedand continues to divide periclinally to accommodate the increasein circumference with growth.Copyright 1993, 1999 Academic Press Actinidia deliciosa, root anatomy, ontogony, histochemistry, exodermis, endodermis  相似文献   

4.
黄连(Coptis chinensis)是毛茛科著名药材,该文研究了黄连体内黄连素在组织器官中的分布规律和根尖屏障结构特征。在白光和荧光显微镜下,组织器官中黄连素在蓝色激发光下自发黄色荧光,黄连素-苯胺兰对染研究细胞壁凯氏带和木质化,苏丹7B染色栓质层,间苯三酚-盐酸染色木质化。结果表明:黄连不定根初生结构为维管柱、内皮层、皮层、外皮层和表皮组成;次生结构以次生木质部为主、次生韧皮部和木栓层组成。黄连根茎初生结构由角质层,皮层和维管柱组成;次生结构由木栓层、皮层和维管柱组成,以皮层和维管柱为主。叶柄结构为髓、含维管束的厚壁组织层、皮层和角质层。黄连不定根的屏障结构初生结构时期由栓质化和木质化的内皮层、外皮层;次生结构时期为木栓层组成;根状茎的为角质层和木栓层。黄连素主要沉积分布在不定根和茎的木质部,叶柄的厚壁组织层,木质部和厚壁组织是鉴别黄连品质的重要部位。黄连根尖外皮层及早发育,同时初生木质部有黄连素沉积结合,可能造成水和矿质吸收和运输的阻碍,也是黄连适应阴生环境的重要原因。  相似文献   

5.
Structural features of the mature root cortex and its apoplasticpermeability to dyes have been determined for two dicotyledonouswetland plants of differing habitats: Nymphaea odorata, growingrooted in water and mud, and Caltha palustris, growing in temporalwetlands among cattails. In mature roots, movement of the apoplasticdyes, berberine and safranin, into the roots was blocked atthe hypodermis, indicating the presence of an exodermis. A hypodermiswith an exodermis, i.e. Casparian bands in the outermost uniseriatelayer plus suberin lamellae, is present in both species. InN. odorata, hypodermal walls are further modified with cellulosicsecondary walls. Roots of N. odorata and C. palustris have anendodermis with Casparian bands only. A honeycomb aerenchymais produced by differential expansion in N. odorata and includesastrosclereids and diaphragms, while roots of C. palustris haveno aerenchyma, but some irregular lacunae are found in old roots.These aspects of cortex structure are related to an open meristemorganization, with unusual patterns of cell divisions in certainground meristem cells (called semi-regular hexagon cells) ofN. odorata. The correlation between aerenchyma pattern and hypodermalstructure appears to be related to habitat differences.Copyright2000 Annals of Botany Company Caltha palustris, Nymphaea odorata, root development, cortex, endodermis, aerenchyma, exodermis, hypodermis, permeability, wetland plants  相似文献   

6.
Melchior W  Steudle E 《Plant physiology》1993,101(4):1305-1315
The hydraulic architecture of developing onion (Allium cepa L. cv Calypso) roots grown hydroponically was determined by measuring axial and radial hydraulic conductivities (equal to inverse of specific hydraulic resistances). In the roots, Casparian bands and suberin lamellae develop in the endodermis and exodermis (equal to hypodermis). Using the root pressure probe, changes of hydraulic conductivities along the developing roots were analyzed with high resolution. Axial hydraulic conductivity (Lx) was also calculated from stained cross-sections according to Poiseuille's law. Near the base and the tip of the roots, measured and calculated Lx values were similar. However, at distances between 200 and 300 mm from the apex, measured values of Lx were smaller by more than 1 order of magnitude than those calculated, probably because of remaining cross walls between xylem vessel members. During development of root xylem, Lx increased by 3 orders of magnitude. In the apical 30 mm (tip region), axial resistance limited water transport, whereas in basal parts radial resistances (low radial hydraulic conductivity, Lpr) controlled the uptake. Because of the high axial hydraulic resistance in the tip region, this zone appeared to be "hydraulically isolated" from the rest of the root. Changes of the Lpr of the roots were determined by measuring the hydraulic conductance of roots of different length and referring these data to unit surface area. At distances between 30 and 150 mm from the root tip, Lpr was fairly constant (1.4 x 10-7 m s-1 MPa-1). In more basal root zones, Lpr was considerably smaller and varied between roots. The low contribution of basal zones to the overall water uptake indicated an influence of the exodermal Casparian bands and/or suberin lamellae in the endodermis or exodermis, which develop at distances larger than 50 to 60 mm from the root tip.  相似文献   

7.
菰(Zizania latifolia)是一种多年生挺水植物,为了探讨该植物根、茎和叶的解剖结构、组织化学及其质外体屏障的通透性生理。该文利用光学显微镜和荧光显微镜,对菰的根、茎、叶进行了解剖学和组织化学研究。结果表明:(1)菰不定根解剖结构由外而内分别为表皮、外皮层、单层细胞的厚壁机械组织层、皮层、内皮层和维管柱;茎结构由外而内分别为角质层、表皮、周缘厚壁机械组织层、皮层、具维管束的厚壁组织层和髓腔。叶鞘具有表皮和具维管束皮层,叶片具有表皮,叶肉和维管束。(2)不定根具有位于内侧的内皮层及其邻近栓质化细胞和外侧的外皮层组成的屏障结构;茎具内侧厚壁机械组织层,外侧的角质层和周缘厚壁机械组织层组成的屏障结构,屏障结构的细胞壁具凯氏带、木栓质和木质素沉积的组织化学特点,叶表面具有角质层。(3)菰通气组织包括根中通气组织,茎、叶皮层的通气组织和髓腔。(4)菰的屏障结构和解剖结构是其适应湿地环境的重要特征,但其茎周缘厚壁层和厚壁组织层较薄。由此推测,菰适应湿地环境,但在旱生环境中分布有一定的局限性。  相似文献   

8.
Roots of virtually all vascular plants have an endodermis with a Casparian band, and the majority of angiosperm roots tested also have an exodermis with a Casparian band. Both the endodermis and exodermis may develop suberin lamellae and thick, tertiary walls. Each of these wall modifications has its own function(s). The endodermal Casparian band prevents the unimpeded movement of apoplastic substances into the stele and also prevents the backflow of ions that have moved into the stele symplastically and then were released into its apoplast. In roots with a mature exodermis, the barrier to apoplastic inflow of ions occurs near the root surface, but prevention of backflow of ions from the stele remains a function of the endodermis. The suberin lamellae protect against pathogen invasion and possibly root drying during times of stress. Tertiary walls of the endodermis and exodermis are believed to function in mechanical support of the root, but this idea remains to be tested. During stress, root growth rates decline, and the endodermis and exodermis develop closer to the root tip. In two cases, stress is known to induce the formation of an exodermis, and in several other cases to accelerate the development of both the exodermis and endodermis. The responses of the endodermis and exodermis to drought, exposure to moist air, flooding, salinity, ion deficiency, acidity, and mechanical impedance are discussed.  相似文献   

9.
First-order branch roots of field-grown Zea mays L. were examined by optical and electron microscopy. They were small-scale versions of nodal roots except for the usual retention of a live epidermis throughout their length. The Casparian strips and suberized lamellae of hypodermis and endodermis developed closer to the root tip than reported for main roots (in the zone 0.5 to 5.5 cm from the tip for the hypodermis, and 0.5 to 4 cm for the endodermis), in branches retaining an apical meristem. The hydrophobic deposits were in place to the distal ends of determinate branches. All hydrophobic deposits were fully formed before the late metaxylem elements were mature. Gaps in the suberized lamellae of both hypodermis and endodermis may permit apoplastic diffusion of solutes through these layers. Pit frequency in the outer tangential walls of the hypodermis and endodermis was 0.3 per 100 μm2, and 0.6 to 0.7 per 100 μm2, respectively, in both branch and main roots. Numbers of plasmodesmata per pit in the branches were 60 and 30 in the hypodermis and endodermis, respectively. Water fluxes from published data were used to calculated the possible flux through plasmodesmata on a symplastic path. Values up to 0.2 pl h?1 for the hypodermis and twice this for the endodermis were obtained.  相似文献   

10.
Roots of virtually all vascular plants have an endodermis with a Casparian band, and the majority of angiosperm roots tested also have an exodermis with a Casparian band. Both the endodermis and exodermis may develop suberin lamellae and thick, tertiary walls. Each of these wall modifications has its own function(s). The endodermal Casparian band prevents the unimpeded movement of apoplastic substances into the stele and also prevents the backflow of ions that have moved into the stele symplastically and then were released into its apoplast. In roots with a mature exodermis, the barrier to apoplastic inflow of ions occurs near the root surface, but prevention of backflow of ions from the stele remains a function of the endodermis. The suberin lamellae protect against pathogen invasion and possibly root drying during times of stress. Tertiary walls of the endodermis and exodermis are believed to function in mechanical support of the root, but this idea remains to be tested. During stress, root growth rates decline, and the endodermis and exodermis develop closer to the root tip. In two cases, stress is known to induce the formation of an exodermis, and in several other cases to accelerate the development of both the exodermis and endodermis. The responses of the endodermis and exodermis to drought, exposure to moist air, flooding, salinity, ion deficiency, acidity, and mechanical impedance are discussed.  相似文献   

11.
Water uptake by roots: effects of water deficit   总被引:35,自引:0,他引:35  
The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.  相似文献   

12.
Freundl E  Steudle E  Hartung W 《Planta》2000,210(2):222-231
The exodermal layers that are formed in maize roots during aeroponic culture were investigated with respect to the radial transport of cis-abscisic acid (ABA). The decrease in root hydraulic conductivity (Lpr) of aeroponically grown roots was stimulated 1.5-fold by ABA (500 nM), reaching Lpr values of roots lacking an exodermis. Similar to water, the radial flow of ABA through roots (JABA) and ABA uptake into root tissue were reduced by a factor of about three as a result of the existence of an exodermis. Thus, due to the cooperation between water and solute transport the development of the ABA signal in the xylem was not affected. This resulted in unchanged reflection coeffcients for roots grown hydroponically and aeroponically. Despite the well-accepted barrier properties of exodermal layers, it is concluded that the endodermis was the more effective filter for ABA. Owing to concentration polarisation effects, ABA may accumulate in front of the endodermal layer, a process which, for both roots possessing and lacking an exodermis, would tend to increase solvent drag and hence ABA movement into the xylem sap at increased water flow (JVr). This may account for the higher ABA concentrations found in the xylem at greater pressure difference. Received: 26 January 1999 / Accepted: 26 May 1999  相似文献   

13.
Gulnaz  A.  Iqbal  J.  Farooq  S.  Azam  F. 《Plant and Soil》1999,210(2):209-218
The paper investigates how the apoplastic route of ion transfer is affected by the outermost cortex cell layers of a primary root. Staining of hand-made cross sections with aniline blue in combination with berberine sulfate demonstrated the presence of casparian bands in the endo- and exodermis, potentially being responsible for hindering apoplastic ion movement. The use of the apoplastic dye Evan's Blue allowed viewing under a light microscope of potential sites of uncontrolled solute entry into the apoplast of the root cortex which mainly consisted of injured rhizodermis and/or exodermis cells. The distribution of the dye after staining was highly comparable to EDX analyses on freeze-dried cryosectioned roots. Here, we used Rb+ as a tracer for K+ in a short-time application on selected regions of intact roots from intact plants. After subsequent quench-freezing with liquid propane the distribution of K+ and Rb+ in cell walls was detected on freeze-dried cryosections by their specific X-rays resulting from the incident electrons in a SEM. All such attempts led to a single conclusion, namely, that the walls of the two outermost living cell sheaths of the cortex largely restrict passive solute movements into the apoplast. The ring of turgescent living rhizodermis cells in the root tip region forms the first barrier. With increasing distance to the root tip, in the course of their maturation resp. degradation, this particular function of the rhizodermis cells is replaced by the hypodermis resp. exodermis. Furthermore, the restriction of apoplastic ion flow by the outermost cortex cell layers is rather effective but not complete. Thus, the solute transfer into the stele is mainly restricted by the casparian bands of the endodermis. The overall conclusion is that the resistances of the rhizodermis and exodermis are additive to the endodermis in their role of regulating the apoplastic solute movement across roots. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Huanglian (Coptis chinensis Franch.) is a slow-growing perennial medicinal herb with considerable economic value. This study aimed to determine the structural characteristics and the levels of berberine deposits in the organs and tissues of Huanglian using light and epifluorescence microscopy. The adventitious roots are composed of primary and secondary structures with endodermis, exodermis, and phellem. The rhizome structures are composed of primary and secondary structures with cuticle and phellem. The leaves are composed of sclerenchymatous rings, isolateral mesophyll, and thin cuticles. We detected berberine in the xylem walls of the roots and rhizomes as well as in the sclerenchymatous rings of the petioles. We postulate that as the exodermis is developed, the deposition of berberine in the xylem closest to the root tips may affect water and nutrient absorption and transfer. Leaf blades had a thin cuticle and isolateral mesophyll, suggesting shade tolerance. These structural and histochemical features suggest that Huanglian is adapted to the slow growing nature of a shady environment.  相似文献   

15.
Cholewa E  Peterson CA 《Plant physiology》2004,134(4):1793-1802
The pathway of Ca(2+) movement from the soil solution into the stele of the root is not known with certainty despite a considerable body of literature on the subject. Does this ion cross an intact, mature exodermis and endodermis? If so, is its movement through these layers primarily apoplastic or symplastic? These questions were addressed using onion (Allium cepa) adventitious roots lacking laterals. Radioactive Ca(2+) applied to the root tip was not transported to the remainder of the plant, indicating that this ion cannot be supplied to the shoot through this region where the exodermis and endodermis are immature. A more mature zone, in which the endodermal Casparian band was present, delivered 2.67 nmol of Ca(2+) mm(-1) treated root length d(-1) to the transpiration stream, demonstrating that the ion had moved through an intact endodermis. Farther from the root tip, a third zone in which Casparian bands were present in the exodermis as well as the endodermis delivered 0.87 nmol Ca(2+) mm(-1) root length d(-1) to the transpiration stream, proving that the ion had moved through an unbroken exodermis. Compartmental elution analyses indicated that Ca(2+) had not diffused through the Casparian bands of the exodermis, and inhibitor studies using La(3+) and vanadate (VO(4)(3-)) pointed to a major involvement of the symplast in the radial transport of Ca(2+) through the endodermis. It was concluded that in onion roots, the radial movement of Ca(2+) through the exodermis and endodermis is primarily symplastic.  相似文献   

16.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

17.
On the basis of recent results with young primary maize roots, a model is proposed for the movement of water across roots. It is shown how the complex, 'composite anatomical structure' of roots results in a 'composite transport' of both water and solutes. Parallel apoplastic, symplastic and transcellular pathways play an important role during the passage of water across the different tissues. These are arranged in series within the root cylinder (epidermis, exodermis, central cortex, endodermis, pericycle stelar parenchyma, and tracheary elements). The contribution of these structures to the root's overall radial hydraulic resistance is examined. It is shown that as soon as early metaxylem vessels mature, the axial (longitudinal) hydraulic resistance within the xylem is usually not rate-limiting. According to the model, there is a rapid exchange of water between parallel radial pathways because, in contrast to solutes such as nutrient ions, water permeates cell membranes readily. The roles of apoplastic barriers (Casparian bands and suberin lamellae) in the root's endo- and exodermis are discussed. The model allows for special characteristics of roots such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients indicate some apoplastic by-passes for water within the root cylinder. For a given root, the model explains the large variability in the hydraulic resistance in terms of a dependence of hydraulic conductivity on the nature and intensity of the driving forces involved to move water. By switching the apoplastic path on or off, the model allows for a regulation of water uptake according to the demands from the shoot. At high rates of transpiration, the apoplastic path will be partially used and the hydraulic resistance of the root will be low, allowing for a rapid uptake of water. On the contrary, at low rates of transpiration such as during the night or during stress conditions (drought, high salinity, nutrient deprivation), the apoplastic path will be less used and the hydraulic resistance will be high. The role of water channels (aquaporins) in the transcellular path is in the fine adjustment of water flow or in the regulation of uptake in older, suberized parts of plant roots lacking a substantial apoplastic component. The composite transport model explains how plants are designed to optimize water uptake according to demands from the shoot and how external factors may influence water passage across roots.  相似文献   

18.
Mycorrhizal root systems ofLeucopogon parviflorus (Andr.) Lindl.were collected from wild populations at three sites on the coastof New South Wales, Australia and examined by light and electronmicroscopy. The structure of the hair roots is typical of thefamily, there being an epidermal layer in which ericoid mycorrhizasare formed, two cortical layers (an exodermis and endodermis)and a very small stele. The colour, size and coil structureof the fungal symbionts indicate that there were at least twodifferent fungi that consistently formed ericoid mycorrhizalstructures at these sites. Transmission electron microscopyof the endophytes showed only ascomycete fungi. Plants fromtwo of the populations were used for fungal isolations. Fungiwere isolated by incubating surface sterilized hair-root piecesin a solution of bovine serum albumin with penicillin and streptomycin.Twenty-one different culture types were obtained, four of whichwere common to both sites. Two of the common culture types weredark, sterile, slow-growing cultures similar to the ericoidendophyteHymenoscyphus ericae(Read) Korf & Kernan. Leucopogon parviflorus ; bearded heath; Epacridaceae; Ericaceae; mycorrhiza; ultrastructure; endophytes; callose  相似文献   

19.
The length of cells of the pericycle, endodermis and middlecortex not actively involved in lateral root primordia (LRP)development was measured in primary roots of Allium cepa, Pisumsativum and Daucus carota. The presence of two cell populationsin the pericycle was demonstrated in all three species. In Alliumcepa and Pisum sativum, pericyclic cells located opposite xylempoles were significantly shorter than cells lying opposite phloempoles. In both species, LRP originated opposite xylem poles.Our results, furthermore, strongly suggest that in regions ofthe root far from the apical meristem, numerous pericyclic cellsundergo transverse division both previous to and during LRPinitiation, decreasing in mean length throughout this period.In Daucus carota, LRP begin to form in pericyclic cells locatednext to the phloem poles, such cells were significantly shorterthan those opposite xylem poles, even in areas of the primaryroot located close to the root tip. Cells also appear to dividetransversely in regions far from the root tip in this species,leading to a conspicuous drop in the mean length of those cellslocated in portions of the pericycle destined to give rise toLRP. Two different cell populations can also be distinguishedin the endodermis of Allium cepa and Pisum sativum, althoughobservations were less conclusive in Daucus carota. In all threespecies, length of cortical cells was unaffected by their positionopposite xylem or phloem poles Allium cepa, carrot, cell division, cell length, Daucus carota, endodermis, lateral root development, onion, pea, pericycle, Pisum sativum  相似文献   

20.
Plants of the desert succulent Agave deserti were grown in partitionedcontainers to determine whether heterogeneity in soil moistureleads to differences in cellular development and hydraulic conductivityalong individual roots. Roots from containers with a dry distalcompartment (furthest from the shoot), a wet middle compartment,and a dry proximal compartment had distal regions (includingthe root tips) that were more suberized and lignified in theendodermis and adjacent cell layers than were root regions fromthe wet middle compartment. Proximal root regions about 40 mmfrom the succulent shoot base were also relatively unsuberized,suggesting that both external and internal supplies of waterdelayed tissue maturation. Root segments from wet middle compartmentsand from dry proximal compartments had higher hydraulic conductivitythan did the more suberized root segments from dry distal compartments.Unlike distal root segments from wet compartments, segmentsfrom dry compartments suffered no decrease in hydraulic conductivityafter immersion in mercuric chloride, suggesting that aquaporinactivity diminished for roots during drought. The possible closureof water channels could help limit root water loss to a dryingsoil. The delayed development of suberized cell layers may allowroot regions to maximize water uptake from wet soil patches(such as under rocks), and the relatively immature, absorptiveroot region near the base of the shoot may help A. deserti capturewater from a briefly wetted surface soil. Copyright 2000 Annalsof Botany Company Agave deserti, root plasticity, water uptake, aquaporins, suberization, endodermis, divided pots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号