首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solution structural studies of the Ag(I)-DNA complex.   总被引:5,自引:3,他引:2       下载免费PDF全文
We report equilibrium dialysis and electric dichroism studies of the two strong complexes (I and II) of silver ion with DNA. Cooperative conversion of DNA to the stronger type I complex results in a 9% length decrease, and a structure in which intercalated ethidium is perpendicular to the helix axis. Upon addition of more Ag+ to form the type II complex, the DNA length reverts to its original value and bound ethidium once again becomes tilted from the plane perpendicular to the helix axis. In both type I and type II Ag (I) - DNA complexes, ethidium binding is mildly cooperative. We interpret the results in terms of a sequence of silver-induced cooperative switches of DNA from its B-form structure with propeller twisted base pairs to a structure with flat base pairs in the type I complex, and back again to propellered base pairs in the type II complex.  相似文献   

2.
I show that the recognition sequences of Type II restriction systems are correlated with the G + C content of the host bacterial DNA. Almost all restriction systems with G + C rich tetranucleotide recognition sequences are found in species with A + T rich genomes, whereas G + C rich hexanucleotide and octanucleotide recognition sequences are found almost exclusively in species with G + C rich genomes. Most hexanucleotide recognition sequences found in species with A + T rich genomes are A + T rich. This distribution eliminates a substantial proportion of the potential variance in the frequency of restriction recognition sequences in the host genomes. As a consequence, almost all restriction recognition sequences, including those eight base pairs in length (Not I and Sfi I), are predicted to occur with a frequency ranging from once every 300 to once every 5,000 base pairs in the host genome. Since the G + C content of bacteriophage DNA and of the host genome are also correlated, the data presented is evidence that most Type II "restriction systems" are indeed involved in phage restriction.  相似文献   

3.
Nuclear magnetic resonance (NMR) has been used to monitor the conformation and dynamics of the d(C1-G2-A3-T4-T5-A6-T6-A5-A4-T3-C2-G1) self-complementary dodecanucleotide duplex (henceforth called Pribnow 12-mer), which contains a TATAAT Pribnow box and a central core of eight dA X dT base pairs. The exchangeable imino and nonexchangeable base protons have been assigned from one-dimensional intra and inter base pair nuclear Overhauser effect (NOE) measurements. Premelting conformational changes are observed at all the dA X dT base pairs in the central octanucleotide core in the Pribnow 12-mer duplex with the duplex to strand transition occurring at 55 degrees C in 0.1 M phosphate solution. The magnitude of the NOE measurements between minor groove H-2 protons of adjacent adenosines demonstrates that the base pairs are propeller twisted with the same handedness as observed in the crystalline state. The thymidine imino proton hydrogen exchange at the dA X dT base pairs has been measured from saturation recovery measurements as a function of temperature. The exchange rates and activation barriers show small variations among the four different dA X dT base pairs in the Pribnow 12-mer duplex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
V Brabec  J Reedijk  M Leng 《Biochemistry》1992,31(49):12397-12402
The effects on thermal stability and conformation of DNA produced by the monofunctional adducts of chlorodiethylenetriamineplatinum(II) chloride ([Pt(dien)Cl]Cl) have been investigated. Oligodeoxyribonucleotide duplexes of varying lengths (9-20 base pairs) and of varying central trinucleotide sequences were prepared and characterized that contained site-specific and unique N(7)-guanine adducts. Included are adducts at the sequences of d(AGC), d(AGT), d(CGA), d(TGA), d(TGC), and d(TGT). All these monofunctional adducts decrease the melting temperature (Tm) of the duplexes. This destabilization effect exhibits a sequence-dependent variability. The highest lowering of Tm is observed for the modified duplexes containing the central sequence of pyrimidine-guanine-pyrimidine. The destabilization effect is reduced with decreasing concentrations of Na+. Polarography, circular dichroism, phenanthroline-copper, and chemical probes reveal conformational distortions spreading over several base pairs around the adduct. The effects of monofunctional platinum(II) adducts on conformational distortions in DNA exhibit a sequence-dependent variability similar to those on thermal stability of DNA. The influence of the monofunctional adduct formed by cis-diamminemonoaquamonochloroplatinum(II) on the stability of the oligonucleotide duplex has been also studied. This lesion decreases thermal stability of DNA in the same way as does the adduct of [Pt(dien)Cl]Cl.  相似文献   

5.
Sequence dependence of the B-A conformational transition of DNA   总被引:2,自引:0,他引:2  
J Mazur  A Sarai  R L Jernigan 《Biopolymers》1989,28(7):1223-1233
We have studied, by conformational analysis, the sequence dependence of DNA conformational transition between B- and A-forms. We have considered intramolecular interactions between base pairs, without backbone, to examine their role in the conformational transition between B- and A-forms, and found that base pairs themselves usually have intrinsic conformational preferences for the B- or A-form. Calculation of all ten possible base steps shows that the base combinations, CC (or GG), GC, AT, and TA, have tendencies to assume the A-conformation. Results show that it is particularly easy to slide along the long axis of the base pair for these steps, with AT and CC showing especially flat energies. These calculations show that a preference for the B- or A-conformation depends on the electrostatic energy parameters, in particular, on dielectric and shielding constants; the A-conformation is preferred for low dielectric constant or low shielding. Both the A- and B-conformations are mainly stabilized by electrostatic interactions between favorably juxtaposed atomic charges on base pairs; however, the B-conformation generally has more favorable van der Waals interactions than the A-form. These sequence-dependent conformational preference and environmental effects agree roughly with experimental observations, suggesting that the origin of the conformational polymorphism is attributable to the intrinsic conformational preference of base pairs.  相似文献   

6.
A series of acenaphtho[1,2-b]pyrrole derivatives were synthesized and their intercalation geometries with DNA and antitumor activities were investigated in detail. From combination of SYBR Green-DNA melt curve, fluorescence titration, absorption titration, and circular dichroism (CD) studies, it was identified that to different extent, all the compounds behaved as DNA intercalators and transformed B form DNA to A-like conformation. The different intercalation modes for the compounds were revealed. The compounds containing a methylpiperazine substitution (series I) intercalated in a fashion that the long axis of the molecule paralleled to the base-pair long axis, while the alkylamine- substituted compounds (series II and III) located vertically to the long axis of DNA base pairs. Consequently, the DNA binding affinity of these compounds was obtained with the order of II>III>I, which attributed to the role of the substitution in binding geometry. Further, cell-based studies showed all the compounds exhibited outstanding antitumor activities against two human tumor cell lines with IC(50) ranging from 10(-7) to 10(-6)M. Interestingly, compound (1)a (a compound in series I), whose binding affinity was one of the lowest but altered DNA conformation most significantly, showed much lower IC(50) value than other compounds. Moreover, it could induce tumor cells apoptosis, while the compounds (2)a and (3)a (in series II and III, respectively) could only necrotize tumor cells. Their different mechanism of killing tumor cells might lie in their different DNA binding geometry. It could be concluded that the geometry of intercalator-DNA complex contributed much more to the antitumor property than binding affinity.  相似文献   

7.
Small-angle X-ray scattering has been used to study the structure of the multimeric complexes that form between double-stranded DNA and the archaeal chromatin protein Sac7d from Sulfolobus acidocaldarius. Scattering data from complexes of Sac7d with a defined 32-mer oligonucleotide, with poly[d(GC)], and with E. coli DNA indicate that the protein binds along the surface of an extended DNA structure. Molecular models of fully saturated Sac7d/DNA complexes were constructed using constraints from crystal structure and solution binding data. Conformational space was searched systematically by varying the parameters of the models within the constrained set to find the best fits between the X-ray scattering data and simulated scattering curves. The best fits were obtained for models composed of repeating segments of B-DNA with sharp kinks at contiguous protein binding sites. The results are consistent with extrapolation of the X-ray crystal structure of a 1:1 Sac7d/octanucleotide complex [Robinson, H., et al. (1998) Nature 392, 202-205] to polymeric DNA. The DNA conformation in our multimeric Sac7d/DNA model has the base pairs tilted by about 35 degrees and displaced 3 A from the helix axis. There is a large roll between two base pairs at the protein-induced kink site, resulting in an overall bending angle of about 70 degrees for Sac7d binding. Regularly repeating bends in the fully saturated complex result in a zigzag structure with negligible compaction of DNA. The Sac7d molecules in the model form a unique structure with two left-handed helical ribbons winding around the outside of the right-handed duplex DNA.  相似文献   

8.
We have performed a conformational analysis of DNA double helices with parallel directed backbone strands connected with the second order symmetry axis being at the same time the helix axis. The calculations were made for homopolymers poly(dA).poly(dA), poly(dC).poly(dC), poly(dG) poly(dG), and poly(dT).poly(dT). All possible variants of hydrogen bonding of base pairs of the same name were studied for each polymer. The maps of backbone chain geometrical existence were constructed. Conformational and helical parameters corresponding to local minima of conformational energy of "parallel" DNA helices, calculated at atom-atom approximation, were determined. The dependence of conformational energy on the base pair and on the hydrogen bond type was analysed. Two major conformational advantageous for "parallel" DNA's do not depend much on the hydrogen-bonded base pair type were indicated. One of them coincided with the conformational region typical for "antiparallel" DNA, in particular for the B-form DNA. Conformational energy of "parallel" DNA depends on the base pair type and for the most part is similar to the conformational energy of "antiparallel" B-DNA.  相似文献   

9.
The Z-DNA structure has been shown to form in two crystals made from self-complementary DNA hexamers d(CGTDCG) and d(CDCGTG) which contain thymine/2-aminoadenine (TD) base pairs. The latter structure has been solved and refined to 1.3 A resolution and it shows only small conformational changes due to the introduction of the TD base pairs in comparison with the structure of d(CG)3. Spectroscopic studies with these compounds demonstrate that DNA molecules containing 2-aminoadenine residues form Z-DNA slightly more easily than do those containing adenine nucleotides, but not as readily as the parent sequence containing only guanine-cytosine base pairs.  相似文献   

10.
Abstract

We have performed a conformational analysis of DNA double helices with parallel directed backbone strands connected with the second order symmetry axis being at the same time the helix axis. The calculations were made for homopolymers poly(dA) · poly(dA), poly(dC) · poly(dC), poly(dG) poly(dG), and poly(dT) · poly(dT). All possible variants of hydrogen bonding of base pairs of the same name were studied for each polymer. The maps of backbone chain geometrical existence were constructed. Conformational and helical parameters corresponding to local minima of conformational energy of “parallel” DNA helices, calculated at atom-atom approximation, were determined. The dependence of conformational energy on the base pair and on the hydrogen bond type was analysed. Two major conformational advantageous for “parallel” DNA's do not depend much on the hydrogen-bonded base pair type were indicated. One of them coincided with the conformational region typical for “antiparallel” DNA in particular for the B-form DNA Conformational energy of “parallel” DNA depends on the base pair type and for the most part is similar to the conformational energy of “antiparallel” B-DNA.  相似文献   

11.
Abstract

The Z-DNA structure has been shown to form in two crystals made from self-complementary DNA hexamers d(CGTDCG) and d(CDCGTG) which contain thymine/2-ammoadenine (TD) base pairs. The latter structure has been solved and refined to 1.3 Å resolution and it shows only small conformational changes due to the introduction of the TD base pairs in comparison with the structure of d(CG)3. Spectroscopic studies with these compounds demonstrate that DNA molecules containing 2-aminoadenine residues form Z-DNA slightly more easily than do those containing adenine nucleotides, but not as readily as the parent sequence containing only guanine-cytosine base pairs.  相似文献   

12.
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   

13.
Mazur  J.  Jernigan  R. L.  Sarai  A. 《Molecular Biology》2003,37(2):240-249
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   

14.
Interdependence of conformational variables in double-helical DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
A Sarai  R L Jernigan    J Mazur 《Biophysical journal》1996,71(3):1507-1518
DNA exhibits conformational polymorphism, with the details depending on the sequence and its environment. To understand the mechanisms of conformational polymorphism and these transitions, we examine the interrelationships among the various conformational variables of DNA. In particular, we examine the stress-strain relation among conformational variables, describing base-pair morphology and their effects on the backbone conformation. For the calculation of base pairs, we use the method previously developed to calculate averages over conformational variables of DNA. Here we apply this method to calculate the Boltzmann averages of conformational variables for fixed values of one particular conformational variable, which reflects the strain in the structure responding to a particular driving stress. This averaging over all but one driving variable smooths the usual rough energy surface to permit observation of the effects of one conformational variable at a time. The stress-strain analyses of conformational variables of base pair slide, twist, and roll, which exhibit characteristic changes during the conformational transition of DNA, have shown that the conformational changes of base pairs are strongly correlated with one another. Furthermore, the stress-strain relations are not symmetrical with respect to these variables, i.e., the response of one coordinate to another is different from the reverse direction. We also examine the effect of conformational changes in base-pair variables on the sugar-backbone conformation by using the minimization method we developed. The conformational changes of base pairs affect the sugar pucker and other dihedral angles of the backbone of DNA, but each variable affects the sugar-backbone differently. In particular, twist is found to have the most influence in affecting the sugar pucker and backbone conformation. These calculated conformational changes in base pairs and backbone segments are consistent with experimental observations and serve to validate the calculation method.  相似文献   

15.
We have investigated intermolecular interactions and conformational features of the netropsin X d(G-G-A-A-T-T-C-C) complex by one- and two-dimensional NMR studies in aqueous solution. Netropsin removes the 2-fold symmetry of the d(G-G-A-A-T-T-C-C) duplex at the AATT binding site and to a lesser extent at adjacent dG X dC base pairs resulting in doubling of resonances for specific positions in the spectrum of the complex at 25 degrees C. We have assigned the amide, pyrrole, and CH2 protons of netropsin, and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. We observe intermolecular nuclear Overhauser effects (NOE) between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4 X T5 base pairs of the d(G1-G2-A3-A4-T5-T6-C7-C8) duplex. Weaker intermolecular NOEs are also observed between the pyrrole concave face protons and the sugar H1' protons of residues T5 and T6 in the AATT minor groove of the duplex. We also detect intermolecular NOEs between the guanidino CH2 protons at one end of netropsin and adenosine H2 proton of the two flanking A3 X T6 base pairs of the octanucleotide duplex. These studies establish a set of intermolecular contacts between the concave face of the antibiotic and the minor groove AATT segment of the d(G-G-A-A-T-T-C-C) duplex in solution. The magnitude of the NOEs require that there be no intervening water molecules sandwiched between the antibiotic and the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation.  相似文献   

16.
17.
Gal repressor dimer binds to two gal operator sites, OE and OI, which are 16 bp long similar sequences with hyphenated dyad symmetries (11,12). Repressor occupation hinders the reactivity of the N7 atoms in the major groups of guanines, located at positions 1, 3 and 8, and the rotational 1', 3' and 8' of the symmetries. We have shown that Gal repressor binding to OE or OI DNA fragments increases the circular dichroism (CD) spectral peak in the 270 to 300 nm range. The CD change is similar to that observed for Lac repressor binding to its operator site (14). It is consistent with a DNA conformational change during complex formation between Gal repressor and OE and OI DNA. The CD spectral change was not observed when the central 8,8' G-C base pairs in the DNA-protein complex were replaced by A-T base pairs, whereas substitution of the 1,1' G-C base pairs do show the accompanying increase in the spectra during repressor binding. The absence of CD change of the Gal repressor complex with DNA mutated at the 8,8' base pairs suggest that the central G-C base pairs are required for the repressor induced conformational change.  相似文献   

18.
The octadeoxyribonucleotide d(CGCICICG) has been crystallized in space group P(6)5(22) with unit cell dimensions of a = b = 31.0 A and c = 43.7 A, and X-ray diffraction data have been collected to 1.5-A resolution. Precession photographs and the self-Patterson function indicate that 12 base pairs of Z-conformation DNA stack along the c-axis, and the double helices pack in a hexagonal array similar to that seen in other crystals of Z-DNA. The structure has been solved by both Patterson deconvolution and molecular replacement methods and refined in space group P(6)5 to an R factor of 0.225 using 2503 unique reflections greater than 3.0 sigma (F). Comparison of the molecules within the hexagonal lattice with highly refined crystal structures of other Z-DNA reveals only minor conformational differences, most notably in the pucker of the deoxyribose of the purine residues. The DNA has multiple occupancy of C:I and C:G base pairs, and C:I base pairs adopt a conformation similar to that of C:G base pairs.  相似文献   

19.
20.
The structure of the complex formed between ditercalinium, 2,2'-[4,4'-bipiperidine-1,1'-bis-(ethane-1,2-diyl)]bis(10-me thoxy-7H- pyrido[4,3-c]carbazolium) tetramethane sulfonate (NSC 366241), and the self-complementary tetranucleotide duplex d(CpGpCpG)2 has been investigated by means of a novel theoretical approach for modelling the conformational flexibility of nucleic acids. The methodology used is the JUMNA procedure, a molecular mechanics systematics capable of evaluating the internal energy and the interaction energy of a complex formed from a large number of fragments. In the best energy-minimized structures, the piperidinium chains of ditercalinium are located in the major groove of the right-handed oligonucleotide. Calculations show a distortion of the base-paired d(CpGpCpG)2 minihelix consisting of lateral dislocation of one base pair with respect to another along an axis parallel to the long axis; strong propeller twist and tilt of the end base pairs; a collective motion of all base pairs with respect to the helical axis towards the drug; and an overwinding at the exclusion site. The proposed structure of the complex is in good agreement with reported proton NMR data, supporting the feasibility of such model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号