首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mixed bacterial cultures isolated by soil enrichment were capable of utilizing methyl parathion (O,O-dimethyl O-p-nitrophenylphosphorothioate) and parathion (O,O-diethyl O-p-nitrophenylphosphorothioate) as a sole source of carbon. Four isolates from these mixed cultures lost their ability to utilize the pesticides independently in transfers subsequent to the initial isolation. One member of the mixed cultures, a Pseudomonas sp., however, hydrolyzed the pesticides to p-nitrophenol but required glucose or another carbon source for growth. The crude cell extracts prepared from this bacterium showed an optimum pH range from 7.5 to 9.5 for the enzymatic hydrolysis. Maximum enzymatic activity occurred between 35 and 40 degrees C. The enzyme activity was not inhibited by heavy metals, EDTA, or NaN3. Another isolate from the mixed cultures, a Flavobacterium sp., used p-nitrophenol for growth and degraded it to nitrite. Nitrite was assimilated into the cells under conditions during which the nitrogen source was excluded from the minimal growth medium. The hybridization data showed that the DNAs from a Pseudomonas sp. and from the mixed culture had homology with the opd (organophosphate degradation) gene from a previously reported parathion-hydrolyzing bacterium, Flavobacterium sp. The use of the opd gene as a probe may accelerate progress toward understanding the complex interactions of soil microorganisms with parathions.  相似文献   

2.
Two mixed bacterial cultures isolated by soil enrichment were capable of utilizing methyl parathion (O,O-dimethyl O-p-nitrophenylphosphorothioate) and parathion (O,O-diethyl O-p-nitrophenylphosphorothioate) as a sole source of carbon. Four isolates from these mixed cultures lost their ability to utilize the pesticides independently in transfers subsequent to the initial isolation. One member of the mixed cultures, a Pseudomonas sp., however, hydrolyzed the pesticides to p-nitrophenol but required glucose or another carbon source for growth. The crude cell extracts prepared from this bacterium showed an optimum pH range from 7.5 to 9.5 for the enzymatic hydrolysis. Maximum enzymatic activity occurred between 35 and 40 degrees C. The enzyme activity was not inhibited by heavy metals, EDTA, or NaN3. Another isolate from the mixed cultures, a Flavobacterium sp., used p-nitrophenol for growth and degraded it to nitrite. Nitrite was assimilated into the cells under conditions during which the nitrogen source was excluded from the minimal growth medium. The hybridization data showed that the DNAs from a Pseudomonas sp. and from the mixed culture had homology with the opd (organophosphate degradation) gene from a previously reported parathion-hydrolyzing bacterium, Flavobacterium sp. The use of the opd gene as a probe may accelerate progress toward understanding the complex interactions of soil microorganisms with parathions.  相似文献   

3.
Recent interest in the use of microalgae for the production of biofuels and bioproducts has stimulated an interest in methods to enhance the growth rate of microalgae. This review examines past work involving the stimulation of Chlorella sp. growth and metabolite production by plant growth substances as well as by mixed cultures of Chlorella sp. with bacteria. Plant growth substances known to regulate Chlorella sp. growth and metabolite production include auxins, cytokinins, abscisic acid, polyamines, brassinosteroids, jasmonic acid, salicylic acid, and combinations of two or three of the aforementioned substances. Mixed cultures of bacteria are examined, including both natural bacteria–algae consortia and artificially induced symbioses. For natural consortia, commonly occurring bacterial species, including the genera Brevundimonas and Sphingomonas, are discussed. For artificially induced symbioses, the use of the nitrogen-fixing bacterium Azospirillum is examined in detail. In particular, a variety of studies have involved the coimmobilization of Chlorella sp. with Azospirillum sp. in alginate beads, with the goal of using the mixed culture to treat wastewater. In summary, the use of plant growth substances and mixed cultures provides two methods to increase the growth of Chlorella sp., whether for the production of lipids for biofuels, the production of bioproducts, the treatment of wastewater, or a variety of other reasons.  相似文献   

4.
The effect of kinship on growth and growth variability was studied by rearing young-of-the-year Arctic charr in full-sibling, mixed-sibling or non-kin groups for 11 weeks. Both weight and length were found to be significantly greater among full-sibling v. mixed or non-kin groups. Also, variance in weight and length of the individuals within groups was found to be significantly lower in full-sibling v. mixed or non-kin groups. These data suggest that relatedness of group members has a significant effect on both the growth rate and variation in growth of juvenile Arctic charr.  相似文献   

5.
Addition of manganese, at levels of 50 ppm, to a liquid growth medium simulating adverse silage conditions had no effect on the growth or on the fermentation pattern of Enterobacter cloacae and Proteus vulgaris. Yet, the manganese strongly enhanced the growth of Lactobacillus plantarum. Co-cultures of L. plantarum and E. cloacae or P. vulgaris were, by addition of manganese ions, significantly altered in the favour of the former. This finding can be of use in mixed cultures where Enterobacteriaceae act as spoiler microorganisms.  相似文献   

6.
The heterolactic bacterium Oenococcus oeni ferments fructose by a mixed heterolactic/mannitol fermentation. For heterolactic fermentation of fructose, the phosphoketolase pathway is used. The excess NAD(P)H from the phosphoketolase pathway is reoxidized by fructose (yielding mannitol). It is shown here that, under conditions of C-limitation or decreased growth rates, fructose can be fermented by heterolactic fermentation yielding nearly stoichiometric amounts of lactate, ethanol and CO(2). Quantitative evaluation of NAD(P)H-producing (phosphoketolase pathway) and -reoxidizing (ethanol, mannitol and erythritol pathways) reactions demonstrated that at high growth rates or in batch cultures the ethanol pathway does not have sufficient capacity for NAD(P)H reoxidation, requiring additional use of the mannitol pathway to maintain the growth rate. In addition, insufficient capacities to reoxidize NAD(P)H causes inhibition of growth, whereas increased NAD(P)H reoxidation by electron acceptors such as pyruvate increases the growth rate.  相似文献   

7.
8.
Interactions among thermophilic lactobacilli during growth in cheese whey   总被引:1,自引:1,他引:0  
The starters used in the Parmesan cheese technology are whey-cultured, mixed strain cultures of thermophilic rod lactic acid bacteria. In mixed strain cultures, interactions among different strains can result in both stimulatory or inhibitory effects on microbial growth rate and metabolic activity. These effects, studied by the use of conductance, were observed for individual strains of thermophilic lactobacilli, which were grown in whey and in the presence of cell-free supernatant fluids from whey cultures of other strains. The importance of whey as a growth medium on the microbial composition of the whey cultures is discussed.  相似文献   

9.
Of 15 strains of coliform bacteria, all isolated from human feces, 14 inhibited the growth of Shigella flexneri in mixed culture. In every case, when inhibition occurred, exponential growth of Shigella was interrupted in the mixed culture and the organisms entered into either a stationary or a death phase. None of the test coliform strains produced colicines active against Shigella. An analysis of mixed-culture environments at the time Shigella inhibition occurred revealed that the inhibition was not due to nutrient depletion nor to the development of adverse pH or oxidation-reduction potentials in themselves. In mixed cultures, the coliform strains produced formic and acetic acids in concentrations that inhibited Shigella growth. With one exception, the coliform strains also greatly reduced the culture medium. In average concentrations produced, the formic and acetic acids exerted a bactericidal effect on Shigella under the reduced conditions found in mixed cultures. The acids were only moderately toxic for the coliform strains under the same conditions. Results indicate that volatile acid production and concomitant reduction of the medium are the mechanisms by which coliform bacteria inhibit Shigella growth in mixed cultures.  相似文献   

10.
Methanol-oxidizing bacteria may play an important role in the development and use of biological treatment systems for the removal of methanol from industrial effluents. Optimization of methanol degradation potential in such systems is contingent on availability of nutrients, such as nitrogen, in the most favorable form and concentration. To that end, this study examined the variation in growth, methanol degradation, and bacterial diversity of two mixed methylotrophic cultures that were provided nitrogen either as ammonium or nitrate and in three different concentrations. Methanol-degrading cultures were enriched from biofilms sampled at a pulp and paper mill and grown in liquid batch culture with methanol as the only carbon source and either ammonium or nitrate as the only added nitrogen source. Results indicate that growth and methanol removal of the mixed cultures increase directly with increased nitrogen, added in either form. However, methanol removal and bacterial diversity, as observed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR–DGGE) methods, were higher when using nitrate as the nitrogen source for enrichment and growth, rather than ammonium. Based on results described here, nitrate may potentially be a better nitrogen source when enriching or working with mixed methylotrophic cultures, and possibly more effective when used as a nutrient addition to biofilters.  相似文献   

11.
Mixed infections have been broadly applied to the study of bacterial pathogens in animals. However, the application of mixed infection-based methods in plant pathogens has been very limited. An important factor for this limitation is the different dynamics that mixed infections have been reported to show in the different types of models. Reports in systemic animal infections have shown that any bacterium has the same probability of multiplying within a mixed infection than in a single infection. However, in plant pathogens, bacterial growth in a mixed infection does not seem to reflect growth in a single infection, as growth interference takes place between the co-inoculated strains. Here we show that growth interference in mixed infection between different Pseudomonas syringae strains is not intrinsic to growth within a plant host, but dependent on the dose of inoculation. We also show that the minimal inoculation dose required to avoid interference depends on the aggressiveness of the pathogen as well as the type of virulence factor that differentiates the co-inoculated strains. This study establishes the basis for the use of mixed infection-based applications to the study of phytopathogenic bacteria. Analysis of the virulence of a type III effector mutant and an hrp regulatory mutant illustrate the increased accuracy and sensitivity of competitive index assays vs. regular growth assays. Several applications of this assay are addressed, and potential implications for this and other mixed infection-based methods are discussed.  相似文献   

12.
Cellulose degradation to methane under continuous fermentation conditions was compared using fully mixed, fully mixed with solids return, sludge-blanket, and fixed-film fermenters. In fully mixed fermenters, a decrease in hydraulic retention time (HRT) of two weeks or less caused the wash out of anaerobes capable of converting volatile fatty acids to methane, while at increased feeding rates over 1 g/L day the rapid growth of cellulolytic anaerobes upset the balance between acid formation and its conversion to CH(4). Circulation of cellulose and difficulty in settling of cellulose with attached bacteria imposed problems in the use of other types of fermenters. On the basis of information obtained from this study, a fermenter which combined a fully mixed phase for cellulose degradation and a fixed-film phase with pre-immobilized bacteria for converting fatty acids to CH(4) in one vessel, was devised. Using this fermenter, a mixed culture converted cellulose to CH(4) at 4.8 g/L day at a HRT of six days as compared to 0.7 g/L day at a HRT of 28 days in the fully mixed fermenter.  相似文献   

13.
Interspecies interactions and changes in the rate and extent of biodegradation in mixed culture-mixed substrate studies were investigated. A binary mixed culture of Pseudomonas putida F1 and Burkholderia sp. JS150 degraded toluene, phenol, and their mixture. Both toluene and phenol can serve as sole sources of carbon and energy for both P. putida F1 and strain JS150. To investigate the population dynamics of this system, a fluorescent in-situ hybridization method was chosen because of its ability to produce quantitative data, its low standard error, and the ease of use of this method. When the binary mixed culture was grown on toluene or phenol alone, significant interactions between the species were observed. These interactions could not be explained by a pure-and-simple competition model and were substrate dependent. Strain JS150 growth was slightly inhibited when grown with P. putida F1 on phenol, and P. putida F1 grew more rapidly than expected. Conversely, when the two species were grown together on toluene alone, P. putida F1 was inhibited while strain JS150 was unaffected. During growth of the mixed culture on a combination of toluene and phenol, the interactions were similar to that observed during growth on phenol alone; P. putida F1 growth was enhanced while strain JS150 was unaffected. Because of the observed interspecies interactions, monoculture kinetic parameters were not sufficient to describe the mixed culture kinetics in any experiment. This is one of the first reports of microbial population dynamics in which molecular microbial ecology and mathematical modeling have been combined. The use of the 16S-rRNA-based method allowed for observation and understanding of interspecies interactions that were not observable with standard culture-based methods. These results suggest the need for more investigations that account for both substrate and microbial interactions when predicting the fate of organic pollutants in real systems.  相似文献   

14.
The application of dynamic optimization to mathematical models of ontogenic biological growth has been the subject of much research [see e.g. . J. Theor. Biol. 33, 299-307]. Koz?owsky and Zió?ko [1988. Thor. Popul. Biol. 34, 118-129] and Zió?ko and Koz?owski [1995. IEEE Trans. Automat. Contr. 40(10), 1779-1783] presented a model with gradual transition from vegetative to reproductive growth. The central point of their model is a mixed state-control constraint on the rate of reproductive growth, which leads to a mixed vegetative-reproductive growth period. Their model is modified here in order to take into account the difference of photosynthesis use efficiency when energy is accumulated in the vegetative and in the reproductive organs of a plant, respectively. The simple assumption on correlation between photosynthesis and temperature permits us to modify the model in a form that is useful for changing climate. Unfortunately, the mathematical solution of the optimal control problem in Koz?owsky and Zió?ko (1988) and Zió?ko and Koz?owski (1995) is incorrect. The strict mathematical solution is presented here, the numerical example from is solved, and the results are compared. The influence of the length of the season and the relative photosynthesis use efficiency, as well as of the potential sink demand of the reproductive organs, on the location and duration of the mixed vegetative-reproduction period of growth is investigated numerically. The results show that the mixed growth period is increased and shifted toward the end of the season when the lengths of the season is increased. Additional details of the sensitivity analysis are also presented.  相似文献   

15.
Abstract: We examined the role of mixed‐species flocks for forest birds during their breeding and non‐breeding seasons in the use of savannas adjacent to forests in central Cerrado, Brazil. Transect surveys (n = 64) were conducted in eight savanna patches. Distances of birds from forests were estimated. Recorded birds were classified as members or not of mixed‐species flocks. About half of the bird species recorded in savannas were found in at least one mixed‐species flock. As distance from the forest increased, the number of species in mixed‐species flocks tended not to vary, while the number of species foraging alone or in mono‐specific groups decreased. Thus, for some forest species, participation in mixed‐species flocks allowed a greater use of more distant savannas. This tendency of being in mixed‐species flocks at greater distances from forests also can be interpreted as a reluctance to forage alone or in mono‐specific groups due to higher predation risk in less protective vegetation distant from cover. There was strong seasonal variation in the participation of bird species in mixed‐species flocks. There were significantly more species in mixed‐species flocks than out of these associations in the non‐breeding season, while differences in the breeding season were not significant. These patterns occurred, in part because mixed‐species flocks tended to be more frequent, to have more species and to forage at greater distances from forests during the early non‐breeding season than in other periods. This study suggests that the formation of mixed‐species flocks plays an important role in promoting the use of adjacent savannas by forest birds at forest/savanna boundaries in Cerrado. It also pointed out a novel advantage gained by birds with participation in mixed‐species flocks – greater use of adjacent vegetation patches.  相似文献   

16.
Current mathematical models used by food microbiologists do not address the issue of competitive growth in mixed cultures of bacteria. We developed a mathematical model which consists of a system of nonlinear differential equations describing the growth of competing bacterial cell cultures. In this model, bacterial cell growth is limited by the accumulation of protonated lactic acid and decreasing pH. In our experimental system, pure and mixed cultures of Lactococcus lactis and Listeria monocytogenes were grown in a vegetable broth medium. Predictions of the model indicate that pH is the primary factor that limits the growth of L. monocytogenes in competition with a strain of L. lactis which does not produce the bacteriocin nisin. The model also predicts the values of parameters that affect the growth and death of the competing populations. Further development of this model will incorporate the effects of additional inhibitors, such as bacteriocins, and may aid in the selection of lactic acid bacterium cultures for use in competitive inhibition of pathogens in minimally processed foods.  相似文献   

17.
高寒山区混播草地燕麦和毛苕子种间竞争对密度的响应   总被引:1,自引:0,他引:1  
混播草地种内与种间竞争的强弱和转化受混播牧草相对密度的制约。2010年6-9月采用取代系列实验方法,在石羊河上游建立燕麦(Avena sativa)和毛苕子(Vicia villo-sa)混播草地,按燕麦与毛苕子相对密度设置1∶0(KY)、8∶2(A)、6∶4(B)、5∶5(C)、4∶6(D)、2∶8(E)和0∶1(KM)7个处理,研究了密度制约下混播草地一年生牧草种间竞争的变化。结果表明:混播草地在密度影响下各物候期的种内与种间竞争发生不同程度的转化,所有混播处理中燕麦相对产量(RYy)随牧草的生长逐渐增加;混播处理A、B和C中毛苕子相对产量(RYm)随牧草的生长逐渐减小,混播处理D和E中逐渐增加;在燕麦出苗期和分蘖期除混播处理A外其余混播处理中两牧草为敌对关系(RYT<1),在牧草生长后期所有混播处理中两牧草转化为共生关系(RYT!1),且燕麦的竞争能力强于毛苕子(RCCy!1、RCCm"1);所有混播处理在牧草整个生长阶段的竞争偏利于燕麦(AG<1)。混播草地内种间竞争在各物候期表现出明显的密度制约现象,实现了资源协同利用目标。  相似文献   

18.
The relationship between the modern univariate mixed model for analyzing longitudinal data, popularized by Laird and Ware (1982, Biometrics 38, 963-974), and its predecessor, the classical multivariate growth curve model, summarized by Grizzle and Allen (1969, Biometrics 25, 357-381), has never been clearly established. Here, the link between the two methodologies is derived, and balanced polynomial and cosinor examples cited in the literature are analyzed with both approaches. Relating the two models demonstrates that classical covariance adjustment for higher-order terms is analogous to including them as random effects in the mixed model. The polynomial example clearly illustrates the relationship between the methodologies and shows their equivalence when all matrices are properly defined. The cosinor example demonstrates how results from each method may differ when the total variance-covariance matrix is positive definite, but that the between-subjects component of that matrix is not so constrained by the growth curve approach. Additionally, advocates of each approach tend to consider different covariance structures. Modern mixed model analysts consider only those terms in a model's expectation (or linear combinations), and preferably the most parsimonious subset, as candidates for random effects. Classical growth curve analysts automatically consider all terms in a model's expectation as random effects and then investigate whether "covariance adjusting" for higher-order terms improves the model. We apply mixed model techniques to cosinor analyses of a large, unbalanced data set to demonstrate the relevance of classical covariance structures that were previously conceived for use only with completely balanced data.  相似文献   

19.
Hinton A  Hume ME 《Anaerobe》1995,1(2):121-127
A Veillonella species and Bacteroides fragilis were isolated from the cecal contents of adult chickens. When growth on an agar medium supplemented with 0.4% glucose and adjusted to pH 6.5, mixed cultures containing Veillonella and B. fragilis inhibited the growth of Salmonella typhimurium; Salmonella enteritidis, Escherichia coli 0157:H7 and Pseudomonas aeruginosa. Decreasing the glucose concentration of the agar decreased the inhibitory activity of the mixed culture. Mixed cultures grown on agar media supplemented with 0.5% glucose and adjusted to pH 6.5, 7.0 or 7.5 also inhibited the growth of S. typhimurium, S. enteritidis, E. coli 0157:H7 and P. aeruginosa. However, increasing the pH of the agar decreased the inhibitory activity of the mixed culture. Pure cultures of Veillonella or B. fragilis did not inhibit the growth of S. typhimurium, S. enteritidis, E. coli 0157:H7 or P. aeruginosa on any of the agar supplemented with different concentrations of glucose or on any of the agar adjusted to different pH levels. The inhibitory activity of the mixed culture was correlated with the concentration of volatile fatty acids that were formed as B. fragilis metabolized glucose to produce succinate and acetate and as the succinate produced by B. fragilis was decarboxylated by Veillonella to produce propionate.  相似文献   

20.
The accepted food yeast Saccharomyces fragilis was grown in batch and chemostat culture on coconut water and on a simulated coconut-water medium containing glucose, fructose, sucrose and sorbitol, to provide kinetic data for a feasibility study of microbial protein production. Analyses of growth on individual and mixed carbon substrates were made to determine sugar assimilation patterns in batch and chemostat cultures on coconut water. Growth on the polyol produced a much reduced specific growth rate, assimilation rate, growth yield and productivity compared to growth on the sugars. In mixed substrate fermentations a sequential utilization of the carbohydrates occurred. Both the monosaccharides repressed invertase synthesis and all three sugars repressed sorbitol assimilation. Complete carbon assimilation was only obtained by prolonged batch fermentation or in chemostat cultures at low dilution rates (<0.10 h-1). Supplementation of coconut water with biotin and nicotinic acid increased biomass yields in chemostat cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号